Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_sse4_1_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_sse4_1_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_elec_vdw->data;
130     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
135     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
136     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
163                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
164
165         fix0             = _mm_setzero_pd();
166         fiy0             = _mm_setzero_pd();
167         fiz0             = _mm_setzero_pd();
168         fix1             = _mm_setzero_pd();
169         fiy1             = _mm_setzero_pd();
170         fiz1             = _mm_setzero_pd();
171         fix2             = _mm_setzero_pd();
172         fiy2             = _mm_setzero_pd();
173         fiz2             = _mm_setzero_pd();
174         fix3             = _mm_setzero_pd();
175         fiy3             = _mm_setzero_pd();
176         fiz3             = _mm_setzero_pd();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_pd();
180         vvdwsum          = _mm_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_pd(ix0,jx0);
198             dy00             = _mm_sub_pd(iy0,jy0);
199             dz00             = _mm_sub_pd(iz0,jz0);
200             dx10             = _mm_sub_pd(ix1,jx0);
201             dy10             = _mm_sub_pd(iy1,jy0);
202             dz10             = _mm_sub_pd(iz1,jz0);
203             dx20             = _mm_sub_pd(ix2,jx0);
204             dy20             = _mm_sub_pd(iy2,jy0);
205             dz20             = _mm_sub_pd(iz2,jz0);
206             dx30             = _mm_sub_pd(ix3,jx0);
207             dy30             = _mm_sub_pd(iy3,jy0);
208             dz30             = _mm_sub_pd(iz3,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
212             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
213             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
214             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
215
216             rinv00           = gmx_mm_invsqrt_pd(rsq00);
217             rinv10           = gmx_mm_invsqrt_pd(rsq10);
218             rinv20           = gmx_mm_invsqrt_pd(rsq20);
219             rinv30           = gmx_mm_invsqrt_pd(rsq30);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
223             vdwjidx0A        = 2*vdwtype[jnrA+0];
224             vdwjidx0B        = 2*vdwtype[jnrB+0];
225
226             fjx0             = _mm_setzero_pd();
227             fjy0             = _mm_setzero_pd();
228             fjz0             = _mm_setzero_pd();
229
230             /**************************
231              * CALCULATE INTERACTIONS *
232              **************************/
233
234             r00              = _mm_mul_pd(rsq00,rinv00);
235
236             /* Compute parameters for interactions between i and j atoms */
237             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
238                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
239
240             /* Calculate table index by multiplying r with table scale and truncate to integer */
241             rt               = _mm_mul_pd(r00,vftabscale);
242             vfitab           = _mm_cvttpd_epi32(rt);
243             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
244             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
245
246             /* CUBIC SPLINE TABLE DISPERSION */
247             vfitab           = _mm_add_epi32(vfitab,ifour);
248             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
249             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
250             GMX_MM_TRANSPOSE2_PD(Y,F);
251             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
252             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
253             GMX_MM_TRANSPOSE2_PD(G,H);
254             Heps             = _mm_mul_pd(vfeps,H);
255             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
256             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
257             vvdw6            = _mm_mul_pd(c6_00,VV);
258             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
259             fvdw6            = _mm_mul_pd(c6_00,FF);
260
261             /* CUBIC SPLINE TABLE REPULSION */
262             vfitab           = _mm_add_epi32(vfitab,ifour);
263             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
264             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
265             GMX_MM_TRANSPOSE2_PD(Y,F);
266             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
267             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
268             GMX_MM_TRANSPOSE2_PD(G,H);
269             Heps             = _mm_mul_pd(vfeps,H);
270             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
271             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
272             vvdw12           = _mm_mul_pd(c12_00,VV);
273             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
274             fvdw12           = _mm_mul_pd(c12_00,FF);
275             vvdw             = _mm_add_pd(vvdw12,vvdw6);
276             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
280
281             fscal            = fvdw;
282
283             /* Calculate temporary vectorial force */
284             tx               = _mm_mul_pd(fscal,dx00);
285             ty               = _mm_mul_pd(fscal,dy00);
286             tz               = _mm_mul_pd(fscal,dz00);
287
288             /* Update vectorial force */
289             fix0             = _mm_add_pd(fix0,tx);
290             fiy0             = _mm_add_pd(fiy0,ty);
291             fiz0             = _mm_add_pd(fiz0,tz);
292
293             fjx0             = _mm_add_pd(fjx0,tx);
294             fjy0             = _mm_add_pd(fjy0,ty);
295             fjz0             = _mm_add_pd(fjz0,tz);
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             r10              = _mm_mul_pd(rsq10,rinv10);
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq10             = _mm_mul_pd(iq1,jq0);
305
306             /* Calculate table index by multiplying r with table scale and truncate to integer */
307             rt               = _mm_mul_pd(r10,vftabscale);
308             vfitab           = _mm_cvttpd_epi32(rt);
309             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
310             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
311
312             /* CUBIC SPLINE TABLE ELECTROSTATICS */
313             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
314             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
315             GMX_MM_TRANSPOSE2_PD(Y,F);
316             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
317             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
318             GMX_MM_TRANSPOSE2_PD(G,H);
319             Heps             = _mm_mul_pd(vfeps,H);
320             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
321             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
322             velec            = _mm_mul_pd(qq10,VV);
323             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
324             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velecsum         = _mm_add_pd(velecsum,velec);
328
329             fscal            = felec;
330
331             /* Calculate temporary vectorial force */
332             tx               = _mm_mul_pd(fscal,dx10);
333             ty               = _mm_mul_pd(fscal,dy10);
334             tz               = _mm_mul_pd(fscal,dz10);
335
336             /* Update vectorial force */
337             fix1             = _mm_add_pd(fix1,tx);
338             fiy1             = _mm_add_pd(fiy1,ty);
339             fiz1             = _mm_add_pd(fiz1,tz);
340
341             fjx0             = _mm_add_pd(fjx0,tx);
342             fjy0             = _mm_add_pd(fjy0,ty);
343             fjz0             = _mm_add_pd(fjz0,tz);
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             r20              = _mm_mul_pd(rsq20,rinv20);
350
351             /* Compute parameters for interactions between i and j atoms */
352             qq20             = _mm_mul_pd(iq2,jq0);
353
354             /* Calculate table index by multiplying r with table scale and truncate to integer */
355             rt               = _mm_mul_pd(r20,vftabscale);
356             vfitab           = _mm_cvttpd_epi32(rt);
357             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
358             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
359
360             /* CUBIC SPLINE TABLE ELECTROSTATICS */
361             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
362             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
363             GMX_MM_TRANSPOSE2_PD(Y,F);
364             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
365             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
366             GMX_MM_TRANSPOSE2_PD(G,H);
367             Heps             = _mm_mul_pd(vfeps,H);
368             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
369             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
370             velec            = _mm_mul_pd(qq20,VV);
371             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
372             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velecsum         = _mm_add_pd(velecsum,velec);
376
377             fscal            = felec;
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm_mul_pd(fscal,dx20);
381             ty               = _mm_mul_pd(fscal,dy20);
382             tz               = _mm_mul_pd(fscal,dz20);
383
384             /* Update vectorial force */
385             fix2             = _mm_add_pd(fix2,tx);
386             fiy2             = _mm_add_pd(fiy2,ty);
387             fiz2             = _mm_add_pd(fiz2,tz);
388
389             fjx0             = _mm_add_pd(fjx0,tx);
390             fjy0             = _mm_add_pd(fjy0,ty);
391             fjz0             = _mm_add_pd(fjz0,tz);
392
393             /**************************
394              * CALCULATE INTERACTIONS *
395              **************************/
396
397             r30              = _mm_mul_pd(rsq30,rinv30);
398
399             /* Compute parameters for interactions between i and j atoms */
400             qq30             = _mm_mul_pd(iq3,jq0);
401
402             /* Calculate table index by multiplying r with table scale and truncate to integer */
403             rt               = _mm_mul_pd(r30,vftabscale);
404             vfitab           = _mm_cvttpd_epi32(rt);
405             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
406             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
407
408             /* CUBIC SPLINE TABLE ELECTROSTATICS */
409             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
410             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
411             GMX_MM_TRANSPOSE2_PD(Y,F);
412             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
413             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
414             GMX_MM_TRANSPOSE2_PD(G,H);
415             Heps             = _mm_mul_pd(vfeps,H);
416             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
417             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
418             velec            = _mm_mul_pd(qq30,VV);
419             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
420             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
421
422             /* Update potential sum for this i atom from the interaction with this j atom. */
423             velecsum         = _mm_add_pd(velecsum,velec);
424
425             fscal            = felec;
426
427             /* Calculate temporary vectorial force */
428             tx               = _mm_mul_pd(fscal,dx30);
429             ty               = _mm_mul_pd(fscal,dy30);
430             tz               = _mm_mul_pd(fscal,dz30);
431
432             /* Update vectorial force */
433             fix3             = _mm_add_pd(fix3,tx);
434             fiy3             = _mm_add_pd(fiy3,ty);
435             fiz3             = _mm_add_pd(fiz3,tz);
436
437             fjx0             = _mm_add_pd(fjx0,tx);
438             fjy0             = _mm_add_pd(fjy0,ty);
439             fjz0             = _mm_add_pd(fjz0,tz);
440
441             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
442
443             /* Inner loop uses 188 flops */
444         }
445
446         if(jidx<j_index_end)
447         {
448
449             jnrA             = jjnr[jidx];
450             j_coord_offsetA  = DIM*jnrA;
451
452             /* load j atom coordinates */
453             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
454                                               &jx0,&jy0,&jz0);
455
456             /* Calculate displacement vector */
457             dx00             = _mm_sub_pd(ix0,jx0);
458             dy00             = _mm_sub_pd(iy0,jy0);
459             dz00             = _mm_sub_pd(iz0,jz0);
460             dx10             = _mm_sub_pd(ix1,jx0);
461             dy10             = _mm_sub_pd(iy1,jy0);
462             dz10             = _mm_sub_pd(iz1,jz0);
463             dx20             = _mm_sub_pd(ix2,jx0);
464             dy20             = _mm_sub_pd(iy2,jy0);
465             dz20             = _mm_sub_pd(iz2,jz0);
466             dx30             = _mm_sub_pd(ix3,jx0);
467             dy30             = _mm_sub_pd(iy3,jy0);
468             dz30             = _mm_sub_pd(iz3,jz0);
469
470             /* Calculate squared distance and things based on it */
471             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
472             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
473             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
474             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
475
476             rinv00           = gmx_mm_invsqrt_pd(rsq00);
477             rinv10           = gmx_mm_invsqrt_pd(rsq10);
478             rinv20           = gmx_mm_invsqrt_pd(rsq20);
479             rinv30           = gmx_mm_invsqrt_pd(rsq30);
480
481             /* Load parameters for j particles */
482             jq0              = _mm_load_sd(charge+jnrA+0);
483             vdwjidx0A        = 2*vdwtype[jnrA+0];
484
485             fjx0             = _mm_setzero_pd();
486             fjy0             = _mm_setzero_pd();
487             fjz0             = _mm_setzero_pd();
488
489             /**************************
490              * CALCULATE INTERACTIONS *
491              **************************/
492
493             r00              = _mm_mul_pd(rsq00,rinv00);
494
495             /* Compute parameters for interactions between i and j atoms */
496             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
497
498             /* Calculate table index by multiplying r with table scale and truncate to integer */
499             rt               = _mm_mul_pd(r00,vftabscale);
500             vfitab           = _mm_cvttpd_epi32(rt);
501             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
502             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
503
504             /* CUBIC SPLINE TABLE DISPERSION */
505             vfitab           = _mm_add_epi32(vfitab,ifour);
506             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
507             F                = _mm_setzero_pd();
508             GMX_MM_TRANSPOSE2_PD(Y,F);
509             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
510             H                = _mm_setzero_pd();
511             GMX_MM_TRANSPOSE2_PD(G,H);
512             Heps             = _mm_mul_pd(vfeps,H);
513             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
514             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
515             vvdw6            = _mm_mul_pd(c6_00,VV);
516             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
517             fvdw6            = _mm_mul_pd(c6_00,FF);
518
519             /* CUBIC SPLINE TABLE REPULSION */
520             vfitab           = _mm_add_epi32(vfitab,ifour);
521             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
522             F                = _mm_setzero_pd();
523             GMX_MM_TRANSPOSE2_PD(Y,F);
524             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
525             H                = _mm_setzero_pd();
526             GMX_MM_TRANSPOSE2_PD(G,H);
527             Heps             = _mm_mul_pd(vfeps,H);
528             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
529             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
530             vvdw12           = _mm_mul_pd(c12_00,VV);
531             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
532             fvdw12           = _mm_mul_pd(c12_00,FF);
533             vvdw             = _mm_add_pd(vvdw12,vvdw6);
534             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
535
536             /* Update potential sum for this i atom from the interaction with this j atom. */
537             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
538             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
539
540             fscal            = fvdw;
541
542             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
543
544             /* Calculate temporary vectorial force */
545             tx               = _mm_mul_pd(fscal,dx00);
546             ty               = _mm_mul_pd(fscal,dy00);
547             tz               = _mm_mul_pd(fscal,dz00);
548
549             /* Update vectorial force */
550             fix0             = _mm_add_pd(fix0,tx);
551             fiy0             = _mm_add_pd(fiy0,ty);
552             fiz0             = _mm_add_pd(fiz0,tz);
553
554             fjx0             = _mm_add_pd(fjx0,tx);
555             fjy0             = _mm_add_pd(fjy0,ty);
556             fjz0             = _mm_add_pd(fjz0,tz);
557
558             /**************************
559              * CALCULATE INTERACTIONS *
560              **************************/
561
562             r10              = _mm_mul_pd(rsq10,rinv10);
563
564             /* Compute parameters for interactions between i and j atoms */
565             qq10             = _mm_mul_pd(iq1,jq0);
566
567             /* Calculate table index by multiplying r with table scale and truncate to integer */
568             rt               = _mm_mul_pd(r10,vftabscale);
569             vfitab           = _mm_cvttpd_epi32(rt);
570             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
571             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
572
573             /* CUBIC SPLINE TABLE ELECTROSTATICS */
574             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
575             F                = _mm_setzero_pd();
576             GMX_MM_TRANSPOSE2_PD(Y,F);
577             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
578             H                = _mm_setzero_pd();
579             GMX_MM_TRANSPOSE2_PD(G,H);
580             Heps             = _mm_mul_pd(vfeps,H);
581             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
582             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
583             velec            = _mm_mul_pd(qq10,VV);
584             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
585             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
586
587             /* Update potential sum for this i atom from the interaction with this j atom. */
588             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
589             velecsum         = _mm_add_pd(velecsum,velec);
590
591             fscal            = felec;
592
593             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm_mul_pd(fscal,dx10);
597             ty               = _mm_mul_pd(fscal,dy10);
598             tz               = _mm_mul_pd(fscal,dz10);
599
600             /* Update vectorial force */
601             fix1             = _mm_add_pd(fix1,tx);
602             fiy1             = _mm_add_pd(fiy1,ty);
603             fiz1             = _mm_add_pd(fiz1,tz);
604
605             fjx0             = _mm_add_pd(fjx0,tx);
606             fjy0             = _mm_add_pd(fjy0,ty);
607             fjz0             = _mm_add_pd(fjz0,tz);
608
609             /**************************
610              * CALCULATE INTERACTIONS *
611              **************************/
612
613             r20              = _mm_mul_pd(rsq20,rinv20);
614
615             /* Compute parameters for interactions between i and j atoms */
616             qq20             = _mm_mul_pd(iq2,jq0);
617
618             /* Calculate table index by multiplying r with table scale and truncate to integer */
619             rt               = _mm_mul_pd(r20,vftabscale);
620             vfitab           = _mm_cvttpd_epi32(rt);
621             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
622             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
623
624             /* CUBIC SPLINE TABLE ELECTROSTATICS */
625             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
626             F                = _mm_setzero_pd();
627             GMX_MM_TRANSPOSE2_PD(Y,F);
628             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
629             H                = _mm_setzero_pd();
630             GMX_MM_TRANSPOSE2_PD(G,H);
631             Heps             = _mm_mul_pd(vfeps,H);
632             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
633             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
634             velec            = _mm_mul_pd(qq20,VV);
635             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
636             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
637
638             /* Update potential sum for this i atom from the interaction with this j atom. */
639             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
640             velecsum         = _mm_add_pd(velecsum,velec);
641
642             fscal            = felec;
643
644             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
645
646             /* Calculate temporary vectorial force */
647             tx               = _mm_mul_pd(fscal,dx20);
648             ty               = _mm_mul_pd(fscal,dy20);
649             tz               = _mm_mul_pd(fscal,dz20);
650
651             /* Update vectorial force */
652             fix2             = _mm_add_pd(fix2,tx);
653             fiy2             = _mm_add_pd(fiy2,ty);
654             fiz2             = _mm_add_pd(fiz2,tz);
655
656             fjx0             = _mm_add_pd(fjx0,tx);
657             fjy0             = _mm_add_pd(fjy0,ty);
658             fjz0             = _mm_add_pd(fjz0,tz);
659
660             /**************************
661              * CALCULATE INTERACTIONS *
662              **************************/
663
664             r30              = _mm_mul_pd(rsq30,rinv30);
665
666             /* Compute parameters for interactions between i and j atoms */
667             qq30             = _mm_mul_pd(iq3,jq0);
668
669             /* Calculate table index by multiplying r with table scale and truncate to integer */
670             rt               = _mm_mul_pd(r30,vftabscale);
671             vfitab           = _mm_cvttpd_epi32(rt);
672             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
673             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
674
675             /* CUBIC SPLINE TABLE ELECTROSTATICS */
676             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
677             F                = _mm_setzero_pd();
678             GMX_MM_TRANSPOSE2_PD(Y,F);
679             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
680             H                = _mm_setzero_pd();
681             GMX_MM_TRANSPOSE2_PD(G,H);
682             Heps             = _mm_mul_pd(vfeps,H);
683             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
684             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
685             velec            = _mm_mul_pd(qq30,VV);
686             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
687             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
688
689             /* Update potential sum for this i atom from the interaction with this j atom. */
690             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
691             velecsum         = _mm_add_pd(velecsum,velec);
692
693             fscal            = felec;
694
695             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
696
697             /* Calculate temporary vectorial force */
698             tx               = _mm_mul_pd(fscal,dx30);
699             ty               = _mm_mul_pd(fscal,dy30);
700             tz               = _mm_mul_pd(fscal,dz30);
701
702             /* Update vectorial force */
703             fix3             = _mm_add_pd(fix3,tx);
704             fiy3             = _mm_add_pd(fiy3,ty);
705             fiz3             = _mm_add_pd(fiz3,tz);
706
707             fjx0             = _mm_add_pd(fjx0,tx);
708             fjy0             = _mm_add_pd(fjy0,ty);
709             fjz0             = _mm_add_pd(fjz0,tz);
710
711             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
712
713             /* Inner loop uses 188 flops */
714         }
715
716         /* End of innermost loop */
717
718         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
719                                               f+i_coord_offset,fshift+i_shift_offset);
720
721         ggid                        = gid[iidx];
722         /* Update potential energies */
723         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
724         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
725
726         /* Increment number of inner iterations */
727         inneriter                  += j_index_end - j_index_start;
728
729         /* Outer loop uses 26 flops */
730     }
731
732     /* Increment number of outer iterations */
733     outeriter        += nri;
734
735     /* Update outer/inner flops */
736
737     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*188);
738 }
739 /*
740  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_sse4_1_double
741  * Electrostatics interaction: CubicSplineTable
742  * VdW interaction:            CubicSplineTable
743  * Geometry:                   Water4-Particle
744  * Calculate force/pot:        Force
745  */
746 void
747 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_sse4_1_double
748                     (t_nblist                    * gmx_restrict       nlist,
749                      rvec                        * gmx_restrict          xx,
750                      rvec                        * gmx_restrict          ff,
751                      t_forcerec                  * gmx_restrict          fr,
752                      t_mdatoms                   * gmx_restrict     mdatoms,
753                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
754                      t_nrnb                      * gmx_restrict        nrnb)
755 {
756     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
757      * just 0 for non-waters.
758      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
759      * jnr indices corresponding to data put in the four positions in the SIMD register.
760      */
761     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
762     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
763     int              jnrA,jnrB;
764     int              j_coord_offsetA,j_coord_offsetB;
765     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
766     real             rcutoff_scalar;
767     real             *shiftvec,*fshift,*x,*f;
768     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
769     int              vdwioffset0;
770     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
771     int              vdwioffset1;
772     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
773     int              vdwioffset2;
774     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
775     int              vdwioffset3;
776     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
777     int              vdwjidx0A,vdwjidx0B;
778     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
779     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
780     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
781     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
782     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
783     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
784     real             *charge;
785     int              nvdwtype;
786     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
787     int              *vdwtype;
788     real             *vdwparam;
789     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
790     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
791     __m128i          vfitab;
792     __m128i          ifour       = _mm_set1_epi32(4);
793     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
794     real             *vftab;
795     __m128d          dummy_mask,cutoff_mask;
796     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
797     __m128d          one     = _mm_set1_pd(1.0);
798     __m128d          two     = _mm_set1_pd(2.0);
799     x                = xx[0];
800     f                = ff[0];
801
802     nri              = nlist->nri;
803     iinr             = nlist->iinr;
804     jindex           = nlist->jindex;
805     jjnr             = nlist->jjnr;
806     shiftidx         = nlist->shift;
807     gid              = nlist->gid;
808     shiftvec         = fr->shift_vec[0];
809     fshift           = fr->fshift[0];
810     facel            = _mm_set1_pd(fr->epsfac);
811     charge           = mdatoms->chargeA;
812     nvdwtype         = fr->ntype;
813     vdwparam         = fr->nbfp;
814     vdwtype          = mdatoms->typeA;
815
816     vftab            = kernel_data->table_elec_vdw->data;
817     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
818
819     /* Setup water-specific parameters */
820     inr              = nlist->iinr[0];
821     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
822     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
823     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
824     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
825
826     /* Avoid stupid compiler warnings */
827     jnrA = jnrB = 0;
828     j_coord_offsetA = 0;
829     j_coord_offsetB = 0;
830
831     outeriter        = 0;
832     inneriter        = 0;
833
834     /* Start outer loop over neighborlists */
835     for(iidx=0; iidx<nri; iidx++)
836     {
837         /* Load shift vector for this list */
838         i_shift_offset   = DIM*shiftidx[iidx];
839
840         /* Load limits for loop over neighbors */
841         j_index_start    = jindex[iidx];
842         j_index_end      = jindex[iidx+1];
843
844         /* Get outer coordinate index */
845         inr              = iinr[iidx];
846         i_coord_offset   = DIM*inr;
847
848         /* Load i particle coords and add shift vector */
849         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
850                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
851
852         fix0             = _mm_setzero_pd();
853         fiy0             = _mm_setzero_pd();
854         fiz0             = _mm_setzero_pd();
855         fix1             = _mm_setzero_pd();
856         fiy1             = _mm_setzero_pd();
857         fiz1             = _mm_setzero_pd();
858         fix2             = _mm_setzero_pd();
859         fiy2             = _mm_setzero_pd();
860         fiz2             = _mm_setzero_pd();
861         fix3             = _mm_setzero_pd();
862         fiy3             = _mm_setzero_pd();
863         fiz3             = _mm_setzero_pd();
864
865         /* Start inner kernel loop */
866         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
867         {
868
869             /* Get j neighbor index, and coordinate index */
870             jnrA             = jjnr[jidx];
871             jnrB             = jjnr[jidx+1];
872             j_coord_offsetA  = DIM*jnrA;
873             j_coord_offsetB  = DIM*jnrB;
874
875             /* load j atom coordinates */
876             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
877                                               &jx0,&jy0,&jz0);
878
879             /* Calculate displacement vector */
880             dx00             = _mm_sub_pd(ix0,jx0);
881             dy00             = _mm_sub_pd(iy0,jy0);
882             dz00             = _mm_sub_pd(iz0,jz0);
883             dx10             = _mm_sub_pd(ix1,jx0);
884             dy10             = _mm_sub_pd(iy1,jy0);
885             dz10             = _mm_sub_pd(iz1,jz0);
886             dx20             = _mm_sub_pd(ix2,jx0);
887             dy20             = _mm_sub_pd(iy2,jy0);
888             dz20             = _mm_sub_pd(iz2,jz0);
889             dx30             = _mm_sub_pd(ix3,jx0);
890             dy30             = _mm_sub_pd(iy3,jy0);
891             dz30             = _mm_sub_pd(iz3,jz0);
892
893             /* Calculate squared distance and things based on it */
894             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
895             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
896             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
897             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
898
899             rinv00           = gmx_mm_invsqrt_pd(rsq00);
900             rinv10           = gmx_mm_invsqrt_pd(rsq10);
901             rinv20           = gmx_mm_invsqrt_pd(rsq20);
902             rinv30           = gmx_mm_invsqrt_pd(rsq30);
903
904             /* Load parameters for j particles */
905             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
906             vdwjidx0A        = 2*vdwtype[jnrA+0];
907             vdwjidx0B        = 2*vdwtype[jnrB+0];
908
909             fjx0             = _mm_setzero_pd();
910             fjy0             = _mm_setzero_pd();
911             fjz0             = _mm_setzero_pd();
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             r00              = _mm_mul_pd(rsq00,rinv00);
918
919             /* Compute parameters for interactions between i and j atoms */
920             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
921                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
922
923             /* Calculate table index by multiplying r with table scale and truncate to integer */
924             rt               = _mm_mul_pd(r00,vftabscale);
925             vfitab           = _mm_cvttpd_epi32(rt);
926             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
927             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
928
929             /* CUBIC SPLINE TABLE DISPERSION */
930             vfitab           = _mm_add_epi32(vfitab,ifour);
931             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
932             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
933             GMX_MM_TRANSPOSE2_PD(Y,F);
934             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
935             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
936             GMX_MM_TRANSPOSE2_PD(G,H);
937             Heps             = _mm_mul_pd(vfeps,H);
938             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
939             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
940             fvdw6            = _mm_mul_pd(c6_00,FF);
941
942             /* CUBIC SPLINE TABLE REPULSION */
943             vfitab           = _mm_add_epi32(vfitab,ifour);
944             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
945             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
946             GMX_MM_TRANSPOSE2_PD(Y,F);
947             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
948             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
949             GMX_MM_TRANSPOSE2_PD(G,H);
950             Heps             = _mm_mul_pd(vfeps,H);
951             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
952             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
953             fvdw12           = _mm_mul_pd(c12_00,FF);
954             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
955
956             fscal            = fvdw;
957
958             /* Calculate temporary vectorial force */
959             tx               = _mm_mul_pd(fscal,dx00);
960             ty               = _mm_mul_pd(fscal,dy00);
961             tz               = _mm_mul_pd(fscal,dz00);
962
963             /* Update vectorial force */
964             fix0             = _mm_add_pd(fix0,tx);
965             fiy0             = _mm_add_pd(fiy0,ty);
966             fiz0             = _mm_add_pd(fiz0,tz);
967
968             fjx0             = _mm_add_pd(fjx0,tx);
969             fjy0             = _mm_add_pd(fjy0,ty);
970             fjz0             = _mm_add_pd(fjz0,tz);
971
972             /**************************
973              * CALCULATE INTERACTIONS *
974              **************************/
975
976             r10              = _mm_mul_pd(rsq10,rinv10);
977
978             /* Compute parameters for interactions between i and j atoms */
979             qq10             = _mm_mul_pd(iq1,jq0);
980
981             /* Calculate table index by multiplying r with table scale and truncate to integer */
982             rt               = _mm_mul_pd(r10,vftabscale);
983             vfitab           = _mm_cvttpd_epi32(rt);
984             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
985             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
986
987             /* CUBIC SPLINE TABLE ELECTROSTATICS */
988             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
989             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
990             GMX_MM_TRANSPOSE2_PD(Y,F);
991             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
992             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
993             GMX_MM_TRANSPOSE2_PD(G,H);
994             Heps             = _mm_mul_pd(vfeps,H);
995             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
996             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
997             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
998
999             fscal            = felec;
1000
1001             /* Calculate temporary vectorial force */
1002             tx               = _mm_mul_pd(fscal,dx10);
1003             ty               = _mm_mul_pd(fscal,dy10);
1004             tz               = _mm_mul_pd(fscal,dz10);
1005
1006             /* Update vectorial force */
1007             fix1             = _mm_add_pd(fix1,tx);
1008             fiy1             = _mm_add_pd(fiy1,ty);
1009             fiz1             = _mm_add_pd(fiz1,tz);
1010
1011             fjx0             = _mm_add_pd(fjx0,tx);
1012             fjy0             = _mm_add_pd(fjy0,ty);
1013             fjz0             = _mm_add_pd(fjz0,tz);
1014
1015             /**************************
1016              * CALCULATE INTERACTIONS *
1017              **************************/
1018
1019             r20              = _mm_mul_pd(rsq20,rinv20);
1020
1021             /* Compute parameters for interactions between i and j atoms */
1022             qq20             = _mm_mul_pd(iq2,jq0);
1023
1024             /* Calculate table index by multiplying r with table scale and truncate to integer */
1025             rt               = _mm_mul_pd(r20,vftabscale);
1026             vfitab           = _mm_cvttpd_epi32(rt);
1027             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1028             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1029
1030             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1031             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1032             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
1033             GMX_MM_TRANSPOSE2_PD(Y,F);
1034             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1035             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
1036             GMX_MM_TRANSPOSE2_PD(G,H);
1037             Heps             = _mm_mul_pd(vfeps,H);
1038             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1039             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1040             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1041
1042             fscal            = felec;
1043
1044             /* Calculate temporary vectorial force */
1045             tx               = _mm_mul_pd(fscal,dx20);
1046             ty               = _mm_mul_pd(fscal,dy20);
1047             tz               = _mm_mul_pd(fscal,dz20);
1048
1049             /* Update vectorial force */
1050             fix2             = _mm_add_pd(fix2,tx);
1051             fiy2             = _mm_add_pd(fiy2,ty);
1052             fiz2             = _mm_add_pd(fiz2,tz);
1053
1054             fjx0             = _mm_add_pd(fjx0,tx);
1055             fjy0             = _mm_add_pd(fjy0,ty);
1056             fjz0             = _mm_add_pd(fjz0,tz);
1057
1058             /**************************
1059              * CALCULATE INTERACTIONS *
1060              **************************/
1061
1062             r30              = _mm_mul_pd(rsq30,rinv30);
1063
1064             /* Compute parameters for interactions between i and j atoms */
1065             qq30             = _mm_mul_pd(iq3,jq0);
1066
1067             /* Calculate table index by multiplying r with table scale and truncate to integer */
1068             rt               = _mm_mul_pd(r30,vftabscale);
1069             vfitab           = _mm_cvttpd_epi32(rt);
1070             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1071             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1072
1073             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1074             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1075             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
1076             GMX_MM_TRANSPOSE2_PD(Y,F);
1077             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1078             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
1079             GMX_MM_TRANSPOSE2_PD(G,H);
1080             Heps             = _mm_mul_pd(vfeps,H);
1081             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1082             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1083             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1084
1085             fscal            = felec;
1086
1087             /* Calculate temporary vectorial force */
1088             tx               = _mm_mul_pd(fscal,dx30);
1089             ty               = _mm_mul_pd(fscal,dy30);
1090             tz               = _mm_mul_pd(fscal,dz30);
1091
1092             /* Update vectorial force */
1093             fix3             = _mm_add_pd(fix3,tx);
1094             fiy3             = _mm_add_pd(fiy3,ty);
1095             fiz3             = _mm_add_pd(fiz3,tz);
1096
1097             fjx0             = _mm_add_pd(fjx0,tx);
1098             fjy0             = _mm_add_pd(fjy0,ty);
1099             fjz0             = _mm_add_pd(fjz0,tz);
1100
1101             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1102
1103             /* Inner loop uses 168 flops */
1104         }
1105
1106         if(jidx<j_index_end)
1107         {
1108
1109             jnrA             = jjnr[jidx];
1110             j_coord_offsetA  = DIM*jnrA;
1111
1112             /* load j atom coordinates */
1113             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1114                                               &jx0,&jy0,&jz0);
1115
1116             /* Calculate displacement vector */
1117             dx00             = _mm_sub_pd(ix0,jx0);
1118             dy00             = _mm_sub_pd(iy0,jy0);
1119             dz00             = _mm_sub_pd(iz0,jz0);
1120             dx10             = _mm_sub_pd(ix1,jx0);
1121             dy10             = _mm_sub_pd(iy1,jy0);
1122             dz10             = _mm_sub_pd(iz1,jz0);
1123             dx20             = _mm_sub_pd(ix2,jx0);
1124             dy20             = _mm_sub_pd(iy2,jy0);
1125             dz20             = _mm_sub_pd(iz2,jz0);
1126             dx30             = _mm_sub_pd(ix3,jx0);
1127             dy30             = _mm_sub_pd(iy3,jy0);
1128             dz30             = _mm_sub_pd(iz3,jz0);
1129
1130             /* Calculate squared distance and things based on it */
1131             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1132             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1133             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1134             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1135
1136             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1137             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1138             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1139             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1140
1141             /* Load parameters for j particles */
1142             jq0              = _mm_load_sd(charge+jnrA+0);
1143             vdwjidx0A        = 2*vdwtype[jnrA+0];
1144
1145             fjx0             = _mm_setzero_pd();
1146             fjy0             = _mm_setzero_pd();
1147             fjz0             = _mm_setzero_pd();
1148
1149             /**************************
1150              * CALCULATE INTERACTIONS *
1151              **************************/
1152
1153             r00              = _mm_mul_pd(rsq00,rinv00);
1154
1155             /* Compute parameters for interactions between i and j atoms */
1156             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1157
1158             /* Calculate table index by multiplying r with table scale and truncate to integer */
1159             rt               = _mm_mul_pd(r00,vftabscale);
1160             vfitab           = _mm_cvttpd_epi32(rt);
1161             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1162             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1163
1164             /* CUBIC SPLINE TABLE DISPERSION */
1165             vfitab           = _mm_add_epi32(vfitab,ifour);
1166             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1167             F                = _mm_setzero_pd();
1168             GMX_MM_TRANSPOSE2_PD(Y,F);
1169             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1170             H                = _mm_setzero_pd();
1171             GMX_MM_TRANSPOSE2_PD(G,H);
1172             Heps             = _mm_mul_pd(vfeps,H);
1173             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1174             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1175             fvdw6            = _mm_mul_pd(c6_00,FF);
1176
1177             /* CUBIC SPLINE TABLE REPULSION */
1178             vfitab           = _mm_add_epi32(vfitab,ifour);
1179             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1180             F                = _mm_setzero_pd();
1181             GMX_MM_TRANSPOSE2_PD(Y,F);
1182             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1183             H                = _mm_setzero_pd();
1184             GMX_MM_TRANSPOSE2_PD(G,H);
1185             Heps             = _mm_mul_pd(vfeps,H);
1186             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1187             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1188             fvdw12           = _mm_mul_pd(c12_00,FF);
1189             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1190
1191             fscal            = fvdw;
1192
1193             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1194
1195             /* Calculate temporary vectorial force */
1196             tx               = _mm_mul_pd(fscal,dx00);
1197             ty               = _mm_mul_pd(fscal,dy00);
1198             tz               = _mm_mul_pd(fscal,dz00);
1199
1200             /* Update vectorial force */
1201             fix0             = _mm_add_pd(fix0,tx);
1202             fiy0             = _mm_add_pd(fiy0,ty);
1203             fiz0             = _mm_add_pd(fiz0,tz);
1204
1205             fjx0             = _mm_add_pd(fjx0,tx);
1206             fjy0             = _mm_add_pd(fjy0,ty);
1207             fjz0             = _mm_add_pd(fjz0,tz);
1208
1209             /**************************
1210              * CALCULATE INTERACTIONS *
1211              **************************/
1212
1213             r10              = _mm_mul_pd(rsq10,rinv10);
1214
1215             /* Compute parameters for interactions between i and j atoms */
1216             qq10             = _mm_mul_pd(iq1,jq0);
1217
1218             /* Calculate table index by multiplying r with table scale and truncate to integer */
1219             rt               = _mm_mul_pd(r10,vftabscale);
1220             vfitab           = _mm_cvttpd_epi32(rt);
1221             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1222             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1223
1224             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1225             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1226             F                = _mm_setzero_pd();
1227             GMX_MM_TRANSPOSE2_PD(Y,F);
1228             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1229             H                = _mm_setzero_pd();
1230             GMX_MM_TRANSPOSE2_PD(G,H);
1231             Heps             = _mm_mul_pd(vfeps,H);
1232             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1233             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1234             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1235
1236             fscal            = felec;
1237
1238             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1239
1240             /* Calculate temporary vectorial force */
1241             tx               = _mm_mul_pd(fscal,dx10);
1242             ty               = _mm_mul_pd(fscal,dy10);
1243             tz               = _mm_mul_pd(fscal,dz10);
1244
1245             /* Update vectorial force */
1246             fix1             = _mm_add_pd(fix1,tx);
1247             fiy1             = _mm_add_pd(fiy1,ty);
1248             fiz1             = _mm_add_pd(fiz1,tz);
1249
1250             fjx0             = _mm_add_pd(fjx0,tx);
1251             fjy0             = _mm_add_pd(fjy0,ty);
1252             fjz0             = _mm_add_pd(fjz0,tz);
1253
1254             /**************************
1255              * CALCULATE INTERACTIONS *
1256              **************************/
1257
1258             r20              = _mm_mul_pd(rsq20,rinv20);
1259
1260             /* Compute parameters for interactions between i and j atoms */
1261             qq20             = _mm_mul_pd(iq2,jq0);
1262
1263             /* Calculate table index by multiplying r with table scale and truncate to integer */
1264             rt               = _mm_mul_pd(r20,vftabscale);
1265             vfitab           = _mm_cvttpd_epi32(rt);
1266             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1267             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1268
1269             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1270             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1271             F                = _mm_setzero_pd();
1272             GMX_MM_TRANSPOSE2_PD(Y,F);
1273             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1274             H                = _mm_setzero_pd();
1275             GMX_MM_TRANSPOSE2_PD(G,H);
1276             Heps             = _mm_mul_pd(vfeps,H);
1277             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1278             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1279             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1280
1281             fscal            = felec;
1282
1283             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1284
1285             /* Calculate temporary vectorial force */
1286             tx               = _mm_mul_pd(fscal,dx20);
1287             ty               = _mm_mul_pd(fscal,dy20);
1288             tz               = _mm_mul_pd(fscal,dz20);
1289
1290             /* Update vectorial force */
1291             fix2             = _mm_add_pd(fix2,tx);
1292             fiy2             = _mm_add_pd(fiy2,ty);
1293             fiz2             = _mm_add_pd(fiz2,tz);
1294
1295             fjx0             = _mm_add_pd(fjx0,tx);
1296             fjy0             = _mm_add_pd(fjy0,ty);
1297             fjz0             = _mm_add_pd(fjz0,tz);
1298
1299             /**************************
1300              * CALCULATE INTERACTIONS *
1301              **************************/
1302
1303             r30              = _mm_mul_pd(rsq30,rinv30);
1304
1305             /* Compute parameters for interactions between i and j atoms */
1306             qq30             = _mm_mul_pd(iq3,jq0);
1307
1308             /* Calculate table index by multiplying r with table scale and truncate to integer */
1309             rt               = _mm_mul_pd(r30,vftabscale);
1310             vfitab           = _mm_cvttpd_epi32(rt);
1311             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1312             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1313
1314             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1315             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1316             F                = _mm_setzero_pd();
1317             GMX_MM_TRANSPOSE2_PD(Y,F);
1318             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1319             H                = _mm_setzero_pd();
1320             GMX_MM_TRANSPOSE2_PD(G,H);
1321             Heps             = _mm_mul_pd(vfeps,H);
1322             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1323             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1324             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1325
1326             fscal            = felec;
1327
1328             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1329
1330             /* Calculate temporary vectorial force */
1331             tx               = _mm_mul_pd(fscal,dx30);
1332             ty               = _mm_mul_pd(fscal,dy30);
1333             tz               = _mm_mul_pd(fscal,dz30);
1334
1335             /* Update vectorial force */
1336             fix3             = _mm_add_pd(fix3,tx);
1337             fiy3             = _mm_add_pd(fiy3,ty);
1338             fiz3             = _mm_add_pd(fiz3,tz);
1339
1340             fjx0             = _mm_add_pd(fjx0,tx);
1341             fjy0             = _mm_add_pd(fjy0,ty);
1342             fjz0             = _mm_add_pd(fjz0,tz);
1343
1344             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1345
1346             /* Inner loop uses 168 flops */
1347         }
1348
1349         /* End of innermost loop */
1350
1351         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1352                                               f+i_coord_offset,fshift+i_shift_offset);
1353
1354         /* Increment number of inner iterations */
1355         inneriter                  += j_index_end - j_index_start;
1356
1357         /* Outer loop uses 24 flops */
1358     }
1359
1360     /* Increment number of outer iterations */
1361     outeriter        += nri;
1362
1363     /* Update outer/inner flops */
1364
1365     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*168);
1366 }