Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_sse4_1_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_sse4_1_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_elec_vdw->data;
125     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
126
127     /* Setup water-specific parameters */
128     inr              = nlist->iinr[0];
129     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
130     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
131     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
132     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
158                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
159
160         fix0             = _mm_setzero_pd();
161         fiy0             = _mm_setzero_pd();
162         fiz0             = _mm_setzero_pd();
163         fix1             = _mm_setzero_pd();
164         fiy1             = _mm_setzero_pd();
165         fiz1             = _mm_setzero_pd();
166         fix2             = _mm_setzero_pd();
167         fiy2             = _mm_setzero_pd();
168         fiz2             = _mm_setzero_pd();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_pd();
172         vvdwsum          = _mm_setzero_pd();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm_sub_pd(ix0,jx0);
190             dy00             = _mm_sub_pd(iy0,jy0);
191             dz00             = _mm_sub_pd(iz0,jz0);
192             dx10             = _mm_sub_pd(ix1,jx0);
193             dy10             = _mm_sub_pd(iy1,jy0);
194             dz10             = _mm_sub_pd(iz1,jz0);
195             dx20             = _mm_sub_pd(ix2,jx0);
196             dy20             = _mm_sub_pd(iy2,jy0);
197             dz20             = _mm_sub_pd(iz2,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
201             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
202             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
203
204             rinv00           = gmx_mm_invsqrt_pd(rsq00);
205             rinv10           = gmx_mm_invsqrt_pd(rsq10);
206             rinv20           = gmx_mm_invsqrt_pd(rsq20);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
210             vdwjidx0A        = 2*vdwtype[jnrA+0];
211             vdwjidx0B        = 2*vdwtype[jnrB+0];
212
213             fjx0             = _mm_setzero_pd();
214             fjy0             = _mm_setzero_pd();
215             fjz0             = _mm_setzero_pd();
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             r00              = _mm_mul_pd(rsq00,rinv00);
222
223             /* Compute parameters for interactions between i and j atoms */
224             qq00             = _mm_mul_pd(iq0,jq0);
225             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
226                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
227
228             /* Calculate table index by multiplying r with table scale and truncate to integer */
229             rt               = _mm_mul_pd(r00,vftabscale);
230             vfitab           = _mm_cvttpd_epi32(rt);
231             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
232             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
233
234             /* CUBIC SPLINE TABLE ELECTROSTATICS */
235             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
236             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
237             GMX_MM_TRANSPOSE2_PD(Y,F);
238             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
239             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
240             GMX_MM_TRANSPOSE2_PD(G,H);
241             Heps             = _mm_mul_pd(vfeps,H);
242             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
243             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
244             velec            = _mm_mul_pd(qq00,VV);
245             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
246             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
247
248             /* CUBIC SPLINE TABLE DISPERSION */
249             vfitab           = _mm_add_epi32(vfitab,ifour);
250             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
251             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
252             GMX_MM_TRANSPOSE2_PD(Y,F);
253             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
254             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
255             GMX_MM_TRANSPOSE2_PD(G,H);
256             Heps             = _mm_mul_pd(vfeps,H);
257             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
258             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
259             vvdw6            = _mm_mul_pd(c6_00,VV);
260             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
261             fvdw6            = _mm_mul_pd(c6_00,FF);
262
263             /* CUBIC SPLINE TABLE REPULSION */
264             vfitab           = _mm_add_epi32(vfitab,ifour);
265             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
266             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
267             GMX_MM_TRANSPOSE2_PD(Y,F);
268             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
269             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
270             GMX_MM_TRANSPOSE2_PD(G,H);
271             Heps             = _mm_mul_pd(vfeps,H);
272             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
273             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
274             vvdw12           = _mm_mul_pd(c12_00,VV);
275             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
276             fvdw12           = _mm_mul_pd(c12_00,FF);
277             vvdw             = _mm_add_pd(vvdw12,vvdw6);
278             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm_add_pd(velecsum,velec);
282             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
283
284             fscal            = _mm_add_pd(felec,fvdw);
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm_mul_pd(fscal,dx00);
288             ty               = _mm_mul_pd(fscal,dy00);
289             tz               = _mm_mul_pd(fscal,dz00);
290
291             /* Update vectorial force */
292             fix0             = _mm_add_pd(fix0,tx);
293             fiy0             = _mm_add_pd(fiy0,ty);
294             fiz0             = _mm_add_pd(fiz0,tz);
295
296             fjx0             = _mm_add_pd(fjx0,tx);
297             fjy0             = _mm_add_pd(fjy0,ty);
298             fjz0             = _mm_add_pd(fjz0,tz);
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r10              = _mm_mul_pd(rsq10,rinv10);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq10             = _mm_mul_pd(iq1,jq0);
308
309             /* Calculate table index by multiplying r with table scale and truncate to integer */
310             rt               = _mm_mul_pd(r10,vftabscale);
311             vfitab           = _mm_cvttpd_epi32(rt);
312             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
313             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
314
315             /* CUBIC SPLINE TABLE ELECTROSTATICS */
316             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
317             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
318             GMX_MM_TRANSPOSE2_PD(Y,F);
319             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
320             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
321             GMX_MM_TRANSPOSE2_PD(G,H);
322             Heps             = _mm_mul_pd(vfeps,H);
323             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
324             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
325             velec            = _mm_mul_pd(qq10,VV);
326             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
327             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velecsum         = _mm_add_pd(velecsum,velec);
331
332             fscal            = felec;
333
334             /* Calculate temporary vectorial force */
335             tx               = _mm_mul_pd(fscal,dx10);
336             ty               = _mm_mul_pd(fscal,dy10);
337             tz               = _mm_mul_pd(fscal,dz10);
338
339             /* Update vectorial force */
340             fix1             = _mm_add_pd(fix1,tx);
341             fiy1             = _mm_add_pd(fiy1,ty);
342             fiz1             = _mm_add_pd(fiz1,tz);
343
344             fjx0             = _mm_add_pd(fjx0,tx);
345             fjy0             = _mm_add_pd(fjy0,ty);
346             fjz0             = _mm_add_pd(fjz0,tz);
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             r20              = _mm_mul_pd(rsq20,rinv20);
353
354             /* Compute parameters for interactions between i and j atoms */
355             qq20             = _mm_mul_pd(iq2,jq0);
356
357             /* Calculate table index by multiplying r with table scale and truncate to integer */
358             rt               = _mm_mul_pd(r20,vftabscale);
359             vfitab           = _mm_cvttpd_epi32(rt);
360             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
361             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
362
363             /* CUBIC SPLINE TABLE ELECTROSTATICS */
364             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
365             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
366             GMX_MM_TRANSPOSE2_PD(Y,F);
367             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
368             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
369             GMX_MM_TRANSPOSE2_PD(G,H);
370             Heps             = _mm_mul_pd(vfeps,H);
371             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
372             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
373             velec            = _mm_mul_pd(qq20,VV);
374             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
375             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
376
377             /* Update potential sum for this i atom from the interaction with this j atom. */
378             velecsum         = _mm_add_pd(velecsum,velec);
379
380             fscal            = felec;
381
382             /* Calculate temporary vectorial force */
383             tx               = _mm_mul_pd(fscal,dx20);
384             ty               = _mm_mul_pd(fscal,dy20);
385             tz               = _mm_mul_pd(fscal,dz20);
386
387             /* Update vectorial force */
388             fix2             = _mm_add_pd(fix2,tx);
389             fiy2             = _mm_add_pd(fiy2,ty);
390             fiz2             = _mm_add_pd(fiz2,tz);
391
392             fjx0             = _mm_add_pd(fjx0,tx);
393             fjy0             = _mm_add_pd(fjy0,ty);
394             fjz0             = _mm_add_pd(fjz0,tz);
395
396             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
397
398             /* Inner loop uses 162 flops */
399         }
400
401         if(jidx<j_index_end)
402         {
403
404             jnrA             = jjnr[jidx];
405             j_coord_offsetA  = DIM*jnrA;
406
407             /* load j atom coordinates */
408             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
409                                               &jx0,&jy0,&jz0);
410
411             /* Calculate displacement vector */
412             dx00             = _mm_sub_pd(ix0,jx0);
413             dy00             = _mm_sub_pd(iy0,jy0);
414             dz00             = _mm_sub_pd(iz0,jz0);
415             dx10             = _mm_sub_pd(ix1,jx0);
416             dy10             = _mm_sub_pd(iy1,jy0);
417             dz10             = _mm_sub_pd(iz1,jz0);
418             dx20             = _mm_sub_pd(ix2,jx0);
419             dy20             = _mm_sub_pd(iy2,jy0);
420             dz20             = _mm_sub_pd(iz2,jz0);
421
422             /* Calculate squared distance and things based on it */
423             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
424             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
425             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
426
427             rinv00           = gmx_mm_invsqrt_pd(rsq00);
428             rinv10           = gmx_mm_invsqrt_pd(rsq10);
429             rinv20           = gmx_mm_invsqrt_pd(rsq20);
430
431             /* Load parameters for j particles */
432             jq0              = _mm_load_sd(charge+jnrA+0);
433             vdwjidx0A        = 2*vdwtype[jnrA+0];
434
435             fjx0             = _mm_setzero_pd();
436             fjy0             = _mm_setzero_pd();
437             fjz0             = _mm_setzero_pd();
438
439             /**************************
440              * CALCULATE INTERACTIONS *
441              **************************/
442
443             r00              = _mm_mul_pd(rsq00,rinv00);
444
445             /* Compute parameters for interactions between i and j atoms */
446             qq00             = _mm_mul_pd(iq0,jq0);
447             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
448
449             /* Calculate table index by multiplying r with table scale and truncate to integer */
450             rt               = _mm_mul_pd(r00,vftabscale);
451             vfitab           = _mm_cvttpd_epi32(rt);
452             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
453             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
454
455             /* CUBIC SPLINE TABLE ELECTROSTATICS */
456             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
457             F                = _mm_setzero_pd();
458             GMX_MM_TRANSPOSE2_PD(Y,F);
459             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
460             H                = _mm_setzero_pd();
461             GMX_MM_TRANSPOSE2_PD(G,H);
462             Heps             = _mm_mul_pd(vfeps,H);
463             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
464             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
465             velec            = _mm_mul_pd(qq00,VV);
466             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
467             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
468
469             /* CUBIC SPLINE TABLE DISPERSION */
470             vfitab           = _mm_add_epi32(vfitab,ifour);
471             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
472             F                = _mm_setzero_pd();
473             GMX_MM_TRANSPOSE2_PD(Y,F);
474             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
475             H                = _mm_setzero_pd();
476             GMX_MM_TRANSPOSE2_PD(G,H);
477             Heps             = _mm_mul_pd(vfeps,H);
478             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
479             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
480             vvdw6            = _mm_mul_pd(c6_00,VV);
481             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
482             fvdw6            = _mm_mul_pd(c6_00,FF);
483
484             /* CUBIC SPLINE TABLE REPULSION */
485             vfitab           = _mm_add_epi32(vfitab,ifour);
486             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
487             F                = _mm_setzero_pd();
488             GMX_MM_TRANSPOSE2_PD(Y,F);
489             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
490             H                = _mm_setzero_pd();
491             GMX_MM_TRANSPOSE2_PD(G,H);
492             Heps             = _mm_mul_pd(vfeps,H);
493             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
494             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
495             vvdw12           = _mm_mul_pd(c12_00,VV);
496             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
497             fvdw12           = _mm_mul_pd(c12_00,FF);
498             vvdw             = _mm_add_pd(vvdw12,vvdw6);
499             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
500
501             /* Update potential sum for this i atom from the interaction with this j atom. */
502             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
503             velecsum         = _mm_add_pd(velecsum,velec);
504             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
505             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
506
507             fscal            = _mm_add_pd(felec,fvdw);
508
509             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
510
511             /* Calculate temporary vectorial force */
512             tx               = _mm_mul_pd(fscal,dx00);
513             ty               = _mm_mul_pd(fscal,dy00);
514             tz               = _mm_mul_pd(fscal,dz00);
515
516             /* Update vectorial force */
517             fix0             = _mm_add_pd(fix0,tx);
518             fiy0             = _mm_add_pd(fiy0,ty);
519             fiz0             = _mm_add_pd(fiz0,tz);
520
521             fjx0             = _mm_add_pd(fjx0,tx);
522             fjy0             = _mm_add_pd(fjy0,ty);
523             fjz0             = _mm_add_pd(fjz0,tz);
524
525             /**************************
526              * CALCULATE INTERACTIONS *
527              **************************/
528
529             r10              = _mm_mul_pd(rsq10,rinv10);
530
531             /* Compute parameters for interactions between i and j atoms */
532             qq10             = _mm_mul_pd(iq1,jq0);
533
534             /* Calculate table index by multiplying r with table scale and truncate to integer */
535             rt               = _mm_mul_pd(r10,vftabscale);
536             vfitab           = _mm_cvttpd_epi32(rt);
537             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
538             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
539
540             /* CUBIC SPLINE TABLE ELECTROSTATICS */
541             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
542             F                = _mm_setzero_pd();
543             GMX_MM_TRANSPOSE2_PD(Y,F);
544             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
545             H                = _mm_setzero_pd();
546             GMX_MM_TRANSPOSE2_PD(G,H);
547             Heps             = _mm_mul_pd(vfeps,H);
548             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
549             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
550             velec            = _mm_mul_pd(qq10,VV);
551             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
552             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
553
554             /* Update potential sum for this i atom from the interaction with this j atom. */
555             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
556             velecsum         = _mm_add_pd(velecsum,velec);
557
558             fscal            = felec;
559
560             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
561
562             /* Calculate temporary vectorial force */
563             tx               = _mm_mul_pd(fscal,dx10);
564             ty               = _mm_mul_pd(fscal,dy10);
565             tz               = _mm_mul_pd(fscal,dz10);
566
567             /* Update vectorial force */
568             fix1             = _mm_add_pd(fix1,tx);
569             fiy1             = _mm_add_pd(fiy1,ty);
570             fiz1             = _mm_add_pd(fiz1,tz);
571
572             fjx0             = _mm_add_pd(fjx0,tx);
573             fjy0             = _mm_add_pd(fjy0,ty);
574             fjz0             = _mm_add_pd(fjz0,tz);
575
576             /**************************
577              * CALCULATE INTERACTIONS *
578              **************************/
579
580             r20              = _mm_mul_pd(rsq20,rinv20);
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq20             = _mm_mul_pd(iq2,jq0);
584
585             /* Calculate table index by multiplying r with table scale and truncate to integer */
586             rt               = _mm_mul_pd(r20,vftabscale);
587             vfitab           = _mm_cvttpd_epi32(rt);
588             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
589             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
590
591             /* CUBIC SPLINE TABLE ELECTROSTATICS */
592             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
593             F                = _mm_setzero_pd();
594             GMX_MM_TRANSPOSE2_PD(Y,F);
595             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
596             H                = _mm_setzero_pd();
597             GMX_MM_TRANSPOSE2_PD(G,H);
598             Heps             = _mm_mul_pd(vfeps,H);
599             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
600             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
601             velec            = _mm_mul_pd(qq20,VV);
602             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
603             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
604
605             /* Update potential sum for this i atom from the interaction with this j atom. */
606             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
607             velecsum         = _mm_add_pd(velecsum,velec);
608
609             fscal            = felec;
610
611             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
612
613             /* Calculate temporary vectorial force */
614             tx               = _mm_mul_pd(fscal,dx20);
615             ty               = _mm_mul_pd(fscal,dy20);
616             tz               = _mm_mul_pd(fscal,dz20);
617
618             /* Update vectorial force */
619             fix2             = _mm_add_pd(fix2,tx);
620             fiy2             = _mm_add_pd(fiy2,ty);
621             fiz2             = _mm_add_pd(fiz2,tz);
622
623             fjx0             = _mm_add_pd(fjx0,tx);
624             fjy0             = _mm_add_pd(fjy0,ty);
625             fjz0             = _mm_add_pd(fjz0,tz);
626
627             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
628
629             /* Inner loop uses 162 flops */
630         }
631
632         /* End of innermost loop */
633
634         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
635                                               f+i_coord_offset,fshift+i_shift_offset);
636
637         ggid                        = gid[iidx];
638         /* Update potential energies */
639         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
640         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
641
642         /* Increment number of inner iterations */
643         inneriter                  += j_index_end - j_index_start;
644
645         /* Outer loop uses 20 flops */
646     }
647
648     /* Increment number of outer iterations */
649     outeriter        += nri;
650
651     /* Update outer/inner flops */
652
653     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*162);
654 }
655 /*
656  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_sse4_1_double
657  * Electrostatics interaction: CubicSplineTable
658  * VdW interaction:            CubicSplineTable
659  * Geometry:                   Water3-Particle
660  * Calculate force/pot:        Force
661  */
662 void
663 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_sse4_1_double
664                     (t_nblist                    * gmx_restrict       nlist,
665                      rvec                        * gmx_restrict          xx,
666                      rvec                        * gmx_restrict          ff,
667                      t_forcerec                  * gmx_restrict          fr,
668                      t_mdatoms                   * gmx_restrict     mdatoms,
669                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
670                      t_nrnb                      * gmx_restrict        nrnb)
671 {
672     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
673      * just 0 for non-waters.
674      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
675      * jnr indices corresponding to data put in the four positions in the SIMD register.
676      */
677     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
678     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
679     int              jnrA,jnrB;
680     int              j_coord_offsetA,j_coord_offsetB;
681     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
682     real             rcutoff_scalar;
683     real             *shiftvec,*fshift,*x,*f;
684     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
685     int              vdwioffset0;
686     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
687     int              vdwioffset1;
688     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
689     int              vdwioffset2;
690     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
691     int              vdwjidx0A,vdwjidx0B;
692     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
693     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
694     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
695     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
696     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
697     real             *charge;
698     int              nvdwtype;
699     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
700     int              *vdwtype;
701     real             *vdwparam;
702     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
703     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
704     __m128i          vfitab;
705     __m128i          ifour       = _mm_set1_epi32(4);
706     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
707     real             *vftab;
708     __m128d          dummy_mask,cutoff_mask;
709     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
710     __m128d          one     = _mm_set1_pd(1.0);
711     __m128d          two     = _mm_set1_pd(2.0);
712     x                = xx[0];
713     f                = ff[0];
714
715     nri              = nlist->nri;
716     iinr             = nlist->iinr;
717     jindex           = nlist->jindex;
718     jjnr             = nlist->jjnr;
719     shiftidx         = nlist->shift;
720     gid              = nlist->gid;
721     shiftvec         = fr->shift_vec[0];
722     fshift           = fr->fshift[0];
723     facel            = _mm_set1_pd(fr->epsfac);
724     charge           = mdatoms->chargeA;
725     nvdwtype         = fr->ntype;
726     vdwparam         = fr->nbfp;
727     vdwtype          = mdatoms->typeA;
728
729     vftab            = kernel_data->table_elec_vdw->data;
730     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
731
732     /* Setup water-specific parameters */
733     inr              = nlist->iinr[0];
734     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
735     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
736     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
737     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
738
739     /* Avoid stupid compiler warnings */
740     jnrA = jnrB = 0;
741     j_coord_offsetA = 0;
742     j_coord_offsetB = 0;
743
744     outeriter        = 0;
745     inneriter        = 0;
746
747     /* Start outer loop over neighborlists */
748     for(iidx=0; iidx<nri; iidx++)
749     {
750         /* Load shift vector for this list */
751         i_shift_offset   = DIM*shiftidx[iidx];
752
753         /* Load limits for loop over neighbors */
754         j_index_start    = jindex[iidx];
755         j_index_end      = jindex[iidx+1];
756
757         /* Get outer coordinate index */
758         inr              = iinr[iidx];
759         i_coord_offset   = DIM*inr;
760
761         /* Load i particle coords and add shift vector */
762         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
763                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
764
765         fix0             = _mm_setzero_pd();
766         fiy0             = _mm_setzero_pd();
767         fiz0             = _mm_setzero_pd();
768         fix1             = _mm_setzero_pd();
769         fiy1             = _mm_setzero_pd();
770         fiz1             = _mm_setzero_pd();
771         fix2             = _mm_setzero_pd();
772         fiy2             = _mm_setzero_pd();
773         fiz2             = _mm_setzero_pd();
774
775         /* Start inner kernel loop */
776         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
777         {
778
779             /* Get j neighbor index, and coordinate index */
780             jnrA             = jjnr[jidx];
781             jnrB             = jjnr[jidx+1];
782             j_coord_offsetA  = DIM*jnrA;
783             j_coord_offsetB  = DIM*jnrB;
784
785             /* load j atom coordinates */
786             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
787                                               &jx0,&jy0,&jz0);
788
789             /* Calculate displacement vector */
790             dx00             = _mm_sub_pd(ix0,jx0);
791             dy00             = _mm_sub_pd(iy0,jy0);
792             dz00             = _mm_sub_pd(iz0,jz0);
793             dx10             = _mm_sub_pd(ix1,jx0);
794             dy10             = _mm_sub_pd(iy1,jy0);
795             dz10             = _mm_sub_pd(iz1,jz0);
796             dx20             = _mm_sub_pd(ix2,jx0);
797             dy20             = _mm_sub_pd(iy2,jy0);
798             dz20             = _mm_sub_pd(iz2,jz0);
799
800             /* Calculate squared distance and things based on it */
801             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
802             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
803             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
804
805             rinv00           = gmx_mm_invsqrt_pd(rsq00);
806             rinv10           = gmx_mm_invsqrt_pd(rsq10);
807             rinv20           = gmx_mm_invsqrt_pd(rsq20);
808
809             /* Load parameters for j particles */
810             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
811             vdwjidx0A        = 2*vdwtype[jnrA+0];
812             vdwjidx0B        = 2*vdwtype[jnrB+0];
813
814             fjx0             = _mm_setzero_pd();
815             fjy0             = _mm_setzero_pd();
816             fjz0             = _mm_setzero_pd();
817
818             /**************************
819              * CALCULATE INTERACTIONS *
820              **************************/
821
822             r00              = _mm_mul_pd(rsq00,rinv00);
823
824             /* Compute parameters for interactions between i and j atoms */
825             qq00             = _mm_mul_pd(iq0,jq0);
826             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
827                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
828
829             /* Calculate table index by multiplying r with table scale and truncate to integer */
830             rt               = _mm_mul_pd(r00,vftabscale);
831             vfitab           = _mm_cvttpd_epi32(rt);
832             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
833             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
834
835             /* CUBIC SPLINE TABLE ELECTROSTATICS */
836             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
837             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
838             GMX_MM_TRANSPOSE2_PD(Y,F);
839             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
840             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
841             GMX_MM_TRANSPOSE2_PD(G,H);
842             Heps             = _mm_mul_pd(vfeps,H);
843             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
844             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
845             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
846
847             /* CUBIC SPLINE TABLE DISPERSION */
848             vfitab           = _mm_add_epi32(vfitab,ifour);
849             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
850             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
851             GMX_MM_TRANSPOSE2_PD(Y,F);
852             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
853             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
854             GMX_MM_TRANSPOSE2_PD(G,H);
855             Heps             = _mm_mul_pd(vfeps,H);
856             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
857             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
858             fvdw6            = _mm_mul_pd(c6_00,FF);
859
860             /* CUBIC SPLINE TABLE REPULSION */
861             vfitab           = _mm_add_epi32(vfitab,ifour);
862             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
863             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
864             GMX_MM_TRANSPOSE2_PD(Y,F);
865             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
866             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
867             GMX_MM_TRANSPOSE2_PD(G,H);
868             Heps             = _mm_mul_pd(vfeps,H);
869             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
870             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
871             fvdw12           = _mm_mul_pd(c12_00,FF);
872             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
873
874             fscal            = _mm_add_pd(felec,fvdw);
875
876             /* Calculate temporary vectorial force */
877             tx               = _mm_mul_pd(fscal,dx00);
878             ty               = _mm_mul_pd(fscal,dy00);
879             tz               = _mm_mul_pd(fscal,dz00);
880
881             /* Update vectorial force */
882             fix0             = _mm_add_pd(fix0,tx);
883             fiy0             = _mm_add_pd(fiy0,ty);
884             fiz0             = _mm_add_pd(fiz0,tz);
885
886             fjx0             = _mm_add_pd(fjx0,tx);
887             fjy0             = _mm_add_pd(fjy0,ty);
888             fjz0             = _mm_add_pd(fjz0,tz);
889
890             /**************************
891              * CALCULATE INTERACTIONS *
892              **************************/
893
894             r10              = _mm_mul_pd(rsq10,rinv10);
895
896             /* Compute parameters for interactions between i and j atoms */
897             qq10             = _mm_mul_pd(iq1,jq0);
898
899             /* Calculate table index by multiplying r with table scale and truncate to integer */
900             rt               = _mm_mul_pd(r10,vftabscale);
901             vfitab           = _mm_cvttpd_epi32(rt);
902             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
903             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
904
905             /* CUBIC SPLINE TABLE ELECTROSTATICS */
906             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
907             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
908             GMX_MM_TRANSPOSE2_PD(Y,F);
909             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
910             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
911             GMX_MM_TRANSPOSE2_PD(G,H);
912             Heps             = _mm_mul_pd(vfeps,H);
913             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
914             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
915             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
916
917             fscal            = felec;
918
919             /* Calculate temporary vectorial force */
920             tx               = _mm_mul_pd(fscal,dx10);
921             ty               = _mm_mul_pd(fscal,dy10);
922             tz               = _mm_mul_pd(fscal,dz10);
923
924             /* Update vectorial force */
925             fix1             = _mm_add_pd(fix1,tx);
926             fiy1             = _mm_add_pd(fiy1,ty);
927             fiz1             = _mm_add_pd(fiz1,tz);
928
929             fjx0             = _mm_add_pd(fjx0,tx);
930             fjy0             = _mm_add_pd(fjy0,ty);
931             fjz0             = _mm_add_pd(fjz0,tz);
932
933             /**************************
934              * CALCULATE INTERACTIONS *
935              **************************/
936
937             r20              = _mm_mul_pd(rsq20,rinv20);
938
939             /* Compute parameters for interactions between i and j atoms */
940             qq20             = _mm_mul_pd(iq2,jq0);
941
942             /* Calculate table index by multiplying r with table scale and truncate to integer */
943             rt               = _mm_mul_pd(r20,vftabscale);
944             vfitab           = _mm_cvttpd_epi32(rt);
945             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
946             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
947
948             /* CUBIC SPLINE TABLE ELECTROSTATICS */
949             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
950             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
951             GMX_MM_TRANSPOSE2_PD(Y,F);
952             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
953             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
954             GMX_MM_TRANSPOSE2_PD(G,H);
955             Heps             = _mm_mul_pd(vfeps,H);
956             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
957             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
958             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
959
960             fscal            = felec;
961
962             /* Calculate temporary vectorial force */
963             tx               = _mm_mul_pd(fscal,dx20);
964             ty               = _mm_mul_pd(fscal,dy20);
965             tz               = _mm_mul_pd(fscal,dz20);
966
967             /* Update vectorial force */
968             fix2             = _mm_add_pd(fix2,tx);
969             fiy2             = _mm_add_pd(fiy2,ty);
970             fiz2             = _mm_add_pd(fiz2,tz);
971
972             fjx0             = _mm_add_pd(fjx0,tx);
973             fjy0             = _mm_add_pd(fjy0,ty);
974             fjz0             = _mm_add_pd(fjz0,tz);
975
976             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
977
978             /* Inner loop uses 142 flops */
979         }
980
981         if(jidx<j_index_end)
982         {
983
984             jnrA             = jjnr[jidx];
985             j_coord_offsetA  = DIM*jnrA;
986
987             /* load j atom coordinates */
988             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
989                                               &jx0,&jy0,&jz0);
990
991             /* Calculate displacement vector */
992             dx00             = _mm_sub_pd(ix0,jx0);
993             dy00             = _mm_sub_pd(iy0,jy0);
994             dz00             = _mm_sub_pd(iz0,jz0);
995             dx10             = _mm_sub_pd(ix1,jx0);
996             dy10             = _mm_sub_pd(iy1,jy0);
997             dz10             = _mm_sub_pd(iz1,jz0);
998             dx20             = _mm_sub_pd(ix2,jx0);
999             dy20             = _mm_sub_pd(iy2,jy0);
1000             dz20             = _mm_sub_pd(iz2,jz0);
1001
1002             /* Calculate squared distance and things based on it */
1003             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1004             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1005             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1006
1007             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1008             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1009             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1010
1011             /* Load parameters for j particles */
1012             jq0              = _mm_load_sd(charge+jnrA+0);
1013             vdwjidx0A        = 2*vdwtype[jnrA+0];
1014
1015             fjx0             = _mm_setzero_pd();
1016             fjy0             = _mm_setzero_pd();
1017             fjz0             = _mm_setzero_pd();
1018
1019             /**************************
1020              * CALCULATE INTERACTIONS *
1021              **************************/
1022
1023             r00              = _mm_mul_pd(rsq00,rinv00);
1024
1025             /* Compute parameters for interactions between i and j atoms */
1026             qq00             = _mm_mul_pd(iq0,jq0);
1027             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1028
1029             /* Calculate table index by multiplying r with table scale and truncate to integer */
1030             rt               = _mm_mul_pd(r00,vftabscale);
1031             vfitab           = _mm_cvttpd_epi32(rt);
1032             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1033             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1034
1035             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1036             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1037             F                = _mm_setzero_pd();
1038             GMX_MM_TRANSPOSE2_PD(Y,F);
1039             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1040             H                = _mm_setzero_pd();
1041             GMX_MM_TRANSPOSE2_PD(G,H);
1042             Heps             = _mm_mul_pd(vfeps,H);
1043             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1044             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1045             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
1046
1047             /* CUBIC SPLINE TABLE DISPERSION */
1048             vfitab           = _mm_add_epi32(vfitab,ifour);
1049             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1050             F                = _mm_setzero_pd();
1051             GMX_MM_TRANSPOSE2_PD(Y,F);
1052             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1053             H                = _mm_setzero_pd();
1054             GMX_MM_TRANSPOSE2_PD(G,H);
1055             Heps             = _mm_mul_pd(vfeps,H);
1056             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1057             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1058             fvdw6            = _mm_mul_pd(c6_00,FF);
1059
1060             /* CUBIC SPLINE TABLE REPULSION */
1061             vfitab           = _mm_add_epi32(vfitab,ifour);
1062             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1063             F                = _mm_setzero_pd();
1064             GMX_MM_TRANSPOSE2_PD(Y,F);
1065             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1066             H                = _mm_setzero_pd();
1067             GMX_MM_TRANSPOSE2_PD(G,H);
1068             Heps             = _mm_mul_pd(vfeps,H);
1069             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1070             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1071             fvdw12           = _mm_mul_pd(c12_00,FF);
1072             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1073
1074             fscal            = _mm_add_pd(felec,fvdw);
1075
1076             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1077
1078             /* Calculate temporary vectorial force */
1079             tx               = _mm_mul_pd(fscal,dx00);
1080             ty               = _mm_mul_pd(fscal,dy00);
1081             tz               = _mm_mul_pd(fscal,dz00);
1082
1083             /* Update vectorial force */
1084             fix0             = _mm_add_pd(fix0,tx);
1085             fiy0             = _mm_add_pd(fiy0,ty);
1086             fiz0             = _mm_add_pd(fiz0,tz);
1087
1088             fjx0             = _mm_add_pd(fjx0,tx);
1089             fjy0             = _mm_add_pd(fjy0,ty);
1090             fjz0             = _mm_add_pd(fjz0,tz);
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             r10              = _mm_mul_pd(rsq10,rinv10);
1097
1098             /* Compute parameters for interactions between i and j atoms */
1099             qq10             = _mm_mul_pd(iq1,jq0);
1100
1101             /* Calculate table index by multiplying r with table scale and truncate to integer */
1102             rt               = _mm_mul_pd(r10,vftabscale);
1103             vfitab           = _mm_cvttpd_epi32(rt);
1104             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1105             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1106
1107             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1108             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1109             F                = _mm_setzero_pd();
1110             GMX_MM_TRANSPOSE2_PD(Y,F);
1111             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1112             H                = _mm_setzero_pd();
1113             GMX_MM_TRANSPOSE2_PD(G,H);
1114             Heps             = _mm_mul_pd(vfeps,H);
1115             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1116             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1117             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1118
1119             fscal            = felec;
1120
1121             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1122
1123             /* Calculate temporary vectorial force */
1124             tx               = _mm_mul_pd(fscal,dx10);
1125             ty               = _mm_mul_pd(fscal,dy10);
1126             tz               = _mm_mul_pd(fscal,dz10);
1127
1128             /* Update vectorial force */
1129             fix1             = _mm_add_pd(fix1,tx);
1130             fiy1             = _mm_add_pd(fiy1,ty);
1131             fiz1             = _mm_add_pd(fiz1,tz);
1132
1133             fjx0             = _mm_add_pd(fjx0,tx);
1134             fjy0             = _mm_add_pd(fjy0,ty);
1135             fjz0             = _mm_add_pd(fjz0,tz);
1136
1137             /**************************
1138              * CALCULATE INTERACTIONS *
1139              **************************/
1140
1141             r20              = _mm_mul_pd(rsq20,rinv20);
1142
1143             /* Compute parameters for interactions between i and j atoms */
1144             qq20             = _mm_mul_pd(iq2,jq0);
1145
1146             /* Calculate table index by multiplying r with table scale and truncate to integer */
1147             rt               = _mm_mul_pd(r20,vftabscale);
1148             vfitab           = _mm_cvttpd_epi32(rt);
1149             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1150             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1151
1152             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1153             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1154             F                = _mm_setzero_pd();
1155             GMX_MM_TRANSPOSE2_PD(Y,F);
1156             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1157             H                = _mm_setzero_pd();
1158             GMX_MM_TRANSPOSE2_PD(G,H);
1159             Heps             = _mm_mul_pd(vfeps,H);
1160             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1161             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1162             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1163
1164             fscal            = felec;
1165
1166             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1167
1168             /* Calculate temporary vectorial force */
1169             tx               = _mm_mul_pd(fscal,dx20);
1170             ty               = _mm_mul_pd(fscal,dy20);
1171             tz               = _mm_mul_pd(fscal,dz20);
1172
1173             /* Update vectorial force */
1174             fix2             = _mm_add_pd(fix2,tx);
1175             fiy2             = _mm_add_pd(fiy2,ty);
1176             fiz2             = _mm_add_pd(fiz2,tz);
1177
1178             fjx0             = _mm_add_pd(fjx0,tx);
1179             fjy0             = _mm_add_pd(fjy0,ty);
1180             fjz0             = _mm_add_pd(fjz0,tz);
1181
1182             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1183
1184             /* Inner loop uses 142 flops */
1185         }
1186
1187         /* End of innermost loop */
1188
1189         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1190                                               f+i_coord_offset,fshift+i_shift_offset);
1191
1192         /* Increment number of inner iterations */
1193         inneriter                  += j_index_end - j_index_start;
1194
1195         /* Outer loop uses 18 flops */
1196     }
1197
1198     /* Increment number of outer iterations */
1199     outeriter        += nri;
1200
1201     /* Update outer/inner flops */
1202
1203     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*142);
1204 }