Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_sse4_1_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_sse4_1_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_sse4_1_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128i          vfitab;
93     __m128i          ifour       = _mm_set1_epi32(4);
94     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
95     real             *vftab;
96     __m128d          dummy_mask,cutoff_mask;
97     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
98     __m128d          one     = _mm_set1_pd(1.0);
99     __m128d          two     = _mm_set1_pd(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm_set1_pd(fr->ic->epsfac);
112     charge           = mdatoms->chargeA;
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     vftab            = kernel_data->table_elec_vdw->data;
118     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
144
145         fix0             = _mm_setzero_pd();
146         fiy0             = _mm_setzero_pd();
147         fiz0             = _mm_setzero_pd();
148
149         /* Load parameters for i particles */
150         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
151         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
152
153         /* Reset potential sums */
154         velecsum         = _mm_setzero_pd();
155         vvdwsum          = _mm_setzero_pd();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166
167             /* load j atom coordinates */
168             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
169                                               &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _mm_sub_pd(ix0,jx0);
173             dy00             = _mm_sub_pd(iy0,jy0);
174             dz00             = _mm_sub_pd(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
178
179             rinv00           = sse41_invsqrt_d(rsq00);
180
181             /* Load parameters for j particles */
182             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
183             vdwjidx0A        = 2*vdwtype[jnrA+0];
184             vdwjidx0B        = 2*vdwtype[jnrB+0];
185
186             /**************************
187              * CALCULATE INTERACTIONS *
188              **************************/
189
190             r00              = _mm_mul_pd(rsq00,rinv00);
191
192             /* Compute parameters for interactions between i and j atoms */
193             qq00             = _mm_mul_pd(iq0,jq0);
194             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
195                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
196
197             /* Calculate table index by multiplying r with table scale and truncate to integer */
198             rt               = _mm_mul_pd(r00,vftabscale);
199             vfitab           = _mm_cvttpd_epi32(rt);
200             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
201             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
202
203             /* CUBIC SPLINE TABLE ELECTROSTATICS */
204             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
205             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
206             GMX_MM_TRANSPOSE2_PD(Y,F);
207             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
208             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
209             GMX_MM_TRANSPOSE2_PD(G,H);
210             Heps             = _mm_mul_pd(vfeps,H);
211             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
212             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
213             velec            = _mm_mul_pd(qq00,VV);
214             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
215             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
216
217             /* CUBIC SPLINE TABLE DISPERSION */
218             vfitab           = _mm_add_epi32(vfitab,ifour);
219             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
220             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
221             GMX_MM_TRANSPOSE2_PD(Y,F);
222             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
223             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
224             GMX_MM_TRANSPOSE2_PD(G,H);
225             Heps             = _mm_mul_pd(vfeps,H);
226             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
227             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
228             vvdw6            = _mm_mul_pd(c6_00,VV);
229             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
230             fvdw6            = _mm_mul_pd(c6_00,FF);
231
232             /* CUBIC SPLINE TABLE REPULSION */
233             vfitab           = _mm_add_epi32(vfitab,ifour);
234             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
235             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
236             GMX_MM_TRANSPOSE2_PD(Y,F);
237             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
238             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
239             GMX_MM_TRANSPOSE2_PD(G,H);
240             Heps             = _mm_mul_pd(vfeps,H);
241             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
242             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
243             vvdw12           = _mm_mul_pd(c12_00,VV);
244             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
245             fvdw12           = _mm_mul_pd(c12_00,FF);
246             vvdw             = _mm_add_pd(vvdw12,vvdw6);
247             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             velecsum         = _mm_add_pd(velecsum,velec);
251             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
252
253             fscal            = _mm_add_pd(felec,fvdw);
254
255             /* Calculate temporary vectorial force */
256             tx               = _mm_mul_pd(fscal,dx00);
257             ty               = _mm_mul_pd(fscal,dy00);
258             tz               = _mm_mul_pd(fscal,dz00);
259
260             /* Update vectorial force */
261             fix0             = _mm_add_pd(fix0,tx);
262             fiy0             = _mm_add_pd(fiy0,ty);
263             fiz0             = _mm_add_pd(fiz0,tz);
264
265             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
266
267             /* Inner loop uses 73 flops */
268         }
269
270         if(jidx<j_index_end)
271         {
272
273             jnrA             = jjnr[jidx];
274             j_coord_offsetA  = DIM*jnrA;
275
276             /* load j atom coordinates */
277             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
278                                               &jx0,&jy0,&jz0);
279
280             /* Calculate displacement vector */
281             dx00             = _mm_sub_pd(ix0,jx0);
282             dy00             = _mm_sub_pd(iy0,jy0);
283             dz00             = _mm_sub_pd(iz0,jz0);
284
285             /* Calculate squared distance and things based on it */
286             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
287
288             rinv00           = sse41_invsqrt_d(rsq00);
289
290             /* Load parameters for j particles */
291             jq0              = _mm_load_sd(charge+jnrA+0);
292             vdwjidx0A        = 2*vdwtype[jnrA+0];
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             r00              = _mm_mul_pd(rsq00,rinv00);
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq00             = _mm_mul_pd(iq0,jq0);
302             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
303
304             /* Calculate table index by multiplying r with table scale and truncate to integer */
305             rt               = _mm_mul_pd(r00,vftabscale);
306             vfitab           = _mm_cvttpd_epi32(rt);
307             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
308             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
309
310             /* CUBIC SPLINE TABLE ELECTROSTATICS */
311             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
312             F                = _mm_setzero_pd();
313             GMX_MM_TRANSPOSE2_PD(Y,F);
314             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
315             H                = _mm_setzero_pd();
316             GMX_MM_TRANSPOSE2_PD(G,H);
317             Heps             = _mm_mul_pd(vfeps,H);
318             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
319             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
320             velec            = _mm_mul_pd(qq00,VV);
321             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
322             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
323
324             /* CUBIC SPLINE TABLE DISPERSION */
325             vfitab           = _mm_add_epi32(vfitab,ifour);
326             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
327             F                = _mm_setzero_pd();
328             GMX_MM_TRANSPOSE2_PD(Y,F);
329             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
330             H                = _mm_setzero_pd();
331             GMX_MM_TRANSPOSE2_PD(G,H);
332             Heps             = _mm_mul_pd(vfeps,H);
333             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
334             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
335             vvdw6            = _mm_mul_pd(c6_00,VV);
336             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
337             fvdw6            = _mm_mul_pd(c6_00,FF);
338
339             /* CUBIC SPLINE TABLE REPULSION */
340             vfitab           = _mm_add_epi32(vfitab,ifour);
341             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
342             F                = _mm_setzero_pd();
343             GMX_MM_TRANSPOSE2_PD(Y,F);
344             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
345             H                = _mm_setzero_pd();
346             GMX_MM_TRANSPOSE2_PD(G,H);
347             Heps             = _mm_mul_pd(vfeps,H);
348             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
349             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
350             vvdw12           = _mm_mul_pd(c12_00,VV);
351             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
352             fvdw12           = _mm_mul_pd(c12_00,FF);
353             vvdw             = _mm_add_pd(vvdw12,vvdw6);
354             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
358             velecsum         = _mm_add_pd(velecsum,velec);
359             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
360             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
361
362             fscal            = _mm_add_pd(felec,fvdw);
363
364             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
365
366             /* Calculate temporary vectorial force */
367             tx               = _mm_mul_pd(fscal,dx00);
368             ty               = _mm_mul_pd(fscal,dy00);
369             tz               = _mm_mul_pd(fscal,dz00);
370
371             /* Update vectorial force */
372             fix0             = _mm_add_pd(fix0,tx);
373             fiy0             = _mm_add_pd(fiy0,ty);
374             fiz0             = _mm_add_pd(fiz0,tz);
375
376             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
377
378             /* Inner loop uses 73 flops */
379         }
380
381         /* End of innermost loop */
382
383         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
384                                               f+i_coord_offset,fshift+i_shift_offset);
385
386         ggid                        = gid[iidx];
387         /* Update potential energies */
388         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
389         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
390
391         /* Increment number of inner iterations */
392         inneriter                  += j_index_end - j_index_start;
393
394         /* Outer loop uses 9 flops */
395     }
396
397     /* Increment number of outer iterations */
398     outeriter        += nri;
399
400     /* Update outer/inner flops */
401
402     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
403 }
404 /*
405  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_sse4_1_double
406  * Electrostatics interaction: CubicSplineTable
407  * VdW interaction:            CubicSplineTable
408  * Geometry:                   Particle-Particle
409  * Calculate force/pot:        Force
410  */
411 void
412 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_sse4_1_double
413                     (t_nblist                    * gmx_restrict       nlist,
414                      rvec                        * gmx_restrict          xx,
415                      rvec                        * gmx_restrict          ff,
416                      struct t_forcerec           * gmx_restrict          fr,
417                      t_mdatoms                   * gmx_restrict     mdatoms,
418                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
419                      t_nrnb                      * gmx_restrict        nrnb)
420 {
421     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
422      * just 0 for non-waters.
423      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
424      * jnr indices corresponding to data put in the four positions in the SIMD register.
425      */
426     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
427     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
428     int              jnrA,jnrB;
429     int              j_coord_offsetA,j_coord_offsetB;
430     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
431     real             rcutoff_scalar;
432     real             *shiftvec,*fshift,*x,*f;
433     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
434     int              vdwioffset0;
435     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
436     int              vdwjidx0A,vdwjidx0B;
437     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
438     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
439     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
440     real             *charge;
441     int              nvdwtype;
442     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
443     int              *vdwtype;
444     real             *vdwparam;
445     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
446     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
447     __m128i          vfitab;
448     __m128i          ifour       = _mm_set1_epi32(4);
449     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
450     real             *vftab;
451     __m128d          dummy_mask,cutoff_mask;
452     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
453     __m128d          one     = _mm_set1_pd(1.0);
454     __m128d          two     = _mm_set1_pd(2.0);
455     x                = xx[0];
456     f                = ff[0];
457
458     nri              = nlist->nri;
459     iinr             = nlist->iinr;
460     jindex           = nlist->jindex;
461     jjnr             = nlist->jjnr;
462     shiftidx         = nlist->shift;
463     gid              = nlist->gid;
464     shiftvec         = fr->shift_vec[0];
465     fshift           = fr->fshift[0];
466     facel            = _mm_set1_pd(fr->ic->epsfac);
467     charge           = mdatoms->chargeA;
468     nvdwtype         = fr->ntype;
469     vdwparam         = fr->nbfp;
470     vdwtype          = mdatoms->typeA;
471
472     vftab            = kernel_data->table_elec_vdw->data;
473     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
474
475     /* Avoid stupid compiler warnings */
476     jnrA = jnrB = 0;
477     j_coord_offsetA = 0;
478     j_coord_offsetB = 0;
479
480     outeriter        = 0;
481     inneriter        = 0;
482
483     /* Start outer loop over neighborlists */
484     for(iidx=0; iidx<nri; iidx++)
485     {
486         /* Load shift vector for this list */
487         i_shift_offset   = DIM*shiftidx[iidx];
488
489         /* Load limits for loop over neighbors */
490         j_index_start    = jindex[iidx];
491         j_index_end      = jindex[iidx+1];
492
493         /* Get outer coordinate index */
494         inr              = iinr[iidx];
495         i_coord_offset   = DIM*inr;
496
497         /* Load i particle coords and add shift vector */
498         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
499
500         fix0             = _mm_setzero_pd();
501         fiy0             = _mm_setzero_pd();
502         fiz0             = _mm_setzero_pd();
503
504         /* Load parameters for i particles */
505         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
506         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
507
508         /* Start inner kernel loop */
509         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
510         {
511
512             /* Get j neighbor index, and coordinate index */
513             jnrA             = jjnr[jidx];
514             jnrB             = jjnr[jidx+1];
515             j_coord_offsetA  = DIM*jnrA;
516             j_coord_offsetB  = DIM*jnrB;
517
518             /* load j atom coordinates */
519             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
520                                               &jx0,&jy0,&jz0);
521
522             /* Calculate displacement vector */
523             dx00             = _mm_sub_pd(ix0,jx0);
524             dy00             = _mm_sub_pd(iy0,jy0);
525             dz00             = _mm_sub_pd(iz0,jz0);
526
527             /* Calculate squared distance and things based on it */
528             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
529
530             rinv00           = sse41_invsqrt_d(rsq00);
531
532             /* Load parameters for j particles */
533             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
534             vdwjidx0A        = 2*vdwtype[jnrA+0];
535             vdwjidx0B        = 2*vdwtype[jnrB+0];
536
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             r00              = _mm_mul_pd(rsq00,rinv00);
542
543             /* Compute parameters for interactions between i and j atoms */
544             qq00             = _mm_mul_pd(iq0,jq0);
545             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
546                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
547
548             /* Calculate table index by multiplying r with table scale and truncate to integer */
549             rt               = _mm_mul_pd(r00,vftabscale);
550             vfitab           = _mm_cvttpd_epi32(rt);
551             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
552             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
553
554             /* CUBIC SPLINE TABLE ELECTROSTATICS */
555             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
556             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
557             GMX_MM_TRANSPOSE2_PD(Y,F);
558             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
559             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
560             GMX_MM_TRANSPOSE2_PD(G,H);
561             Heps             = _mm_mul_pd(vfeps,H);
562             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
563             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
564             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
565
566             /* CUBIC SPLINE TABLE DISPERSION */
567             vfitab           = _mm_add_epi32(vfitab,ifour);
568             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
569             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
570             GMX_MM_TRANSPOSE2_PD(Y,F);
571             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
572             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
573             GMX_MM_TRANSPOSE2_PD(G,H);
574             Heps             = _mm_mul_pd(vfeps,H);
575             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
576             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
577             fvdw6            = _mm_mul_pd(c6_00,FF);
578
579             /* CUBIC SPLINE TABLE REPULSION */
580             vfitab           = _mm_add_epi32(vfitab,ifour);
581             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
582             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
583             GMX_MM_TRANSPOSE2_PD(Y,F);
584             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
585             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
586             GMX_MM_TRANSPOSE2_PD(G,H);
587             Heps             = _mm_mul_pd(vfeps,H);
588             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
589             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
590             fvdw12           = _mm_mul_pd(c12_00,FF);
591             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
592
593             fscal            = _mm_add_pd(felec,fvdw);
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm_mul_pd(fscal,dx00);
597             ty               = _mm_mul_pd(fscal,dy00);
598             tz               = _mm_mul_pd(fscal,dz00);
599
600             /* Update vectorial force */
601             fix0             = _mm_add_pd(fix0,tx);
602             fiy0             = _mm_add_pd(fiy0,ty);
603             fiz0             = _mm_add_pd(fiz0,tz);
604
605             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
606
607             /* Inner loop uses 61 flops */
608         }
609
610         if(jidx<j_index_end)
611         {
612
613             jnrA             = jjnr[jidx];
614             j_coord_offsetA  = DIM*jnrA;
615
616             /* load j atom coordinates */
617             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
618                                               &jx0,&jy0,&jz0);
619
620             /* Calculate displacement vector */
621             dx00             = _mm_sub_pd(ix0,jx0);
622             dy00             = _mm_sub_pd(iy0,jy0);
623             dz00             = _mm_sub_pd(iz0,jz0);
624
625             /* Calculate squared distance and things based on it */
626             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
627
628             rinv00           = sse41_invsqrt_d(rsq00);
629
630             /* Load parameters for j particles */
631             jq0              = _mm_load_sd(charge+jnrA+0);
632             vdwjidx0A        = 2*vdwtype[jnrA+0];
633
634             /**************************
635              * CALCULATE INTERACTIONS *
636              **************************/
637
638             r00              = _mm_mul_pd(rsq00,rinv00);
639
640             /* Compute parameters for interactions between i and j atoms */
641             qq00             = _mm_mul_pd(iq0,jq0);
642             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
643
644             /* Calculate table index by multiplying r with table scale and truncate to integer */
645             rt               = _mm_mul_pd(r00,vftabscale);
646             vfitab           = _mm_cvttpd_epi32(rt);
647             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
648             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
649
650             /* CUBIC SPLINE TABLE ELECTROSTATICS */
651             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
652             F                = _mm_setzero_pd();
653             GMX_MM_TRANSPOSE2_PD(Y,F);
654             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
655             H                = _mm_setzero_pd();
656             GMX_MM_TRANSPOSE2_PD(G,H);
657             Heps             = _mm_mul_pd(vfeps,H);
658             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
659             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
660             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
661
662             /* CUBIC SPLINE TABLE DISPERSION */
663             vfitab           = _mm_add_epi32(vfitab,ifour);
664             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
665             F                = _mm_setzero_pd();
666             GMX_MM_TRANSPOSE2_PD(Y,F);
667             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
668             H                = _mm_setzero_pd();
669             GMX_MM_TRANSPOSE2_PD(G,H);
670             Heps             = _mm_mul_pd(vfeps,H);
671             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
672             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
673             fvdw6            = _mm_mul_pd(c6_00,FF);
674
675             /* CUBIC SPLINE TABLE REPULSION */
676             vfitab           = _mm_add_epi32(vfitab,ifour);
677             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
678             F                = _mm_setzero_pd();
679             GMX_MM_TRANSPOSE2_PD(Y,F);
680             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
681             H                = _mm_setzero_pd();
682             GMX_MM_TRANSPOSE2_PD(G,H);
683             Heps             = _mm_mul_pd(vfeps,H);
684             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
685             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
686             fvdw12           = _mm_mul_pd(c12_00,FF);
687             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
688
689             fscal            = _mm_add_pd(felec,fvdw);
690
691             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
692
693             /* Calculate temporary vectorial force */
694             tx               = _mm_mul_pd(fscal,dx00);
695             ty               = _mm_mul_pd(fscal,dy00);
696             tz               = _mm_mul_pd(fscal,dz00);
697
698             /* Update vectorial force */
699             fix0             = _mm_add_pd(fix0,tx);
700             fiy0             = _mm_add_pd(fiy0,ty);
701             fiz0             = _mm_add_pd(fiz0,tz);
702
703             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
704
705             /* Inner loop uses 61 flops */
706         }
707
708         /* End of innermost loop */
709
710         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
711                                               f+i_coord_offset,fshift+i_shift_offset);
712
713         /* Increment number of inner iterations */
714         inneriter                  += j_index_end - j_index_start;
715
716         /* Outer loop uses 7 flops */
717     }
718
719     /* Increment number of outer iterations */
720     outeriter        += nri;
721
722     /* Update outer/inner flops */
723
724     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*61);
725 }