c0ac4708639377eb27a2283d893d2724e9394eec
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRF_VdwLJ_GeomW4P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_sse2_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128           dummy_mask,cutoff_mask;
106     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
107     __m128           one     = _mm_set1_ps(1.0);
108     __m128           two     = _mm_set1_ps(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_ps(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     krf              = _mm_set1_ps(fr->ic->k_rf);
123     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
124     crf              = _mm_set1_ps(fr->ic->c_rf);
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
132     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
133     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }  
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
167                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
168         
169         fix0             = _mm_setzero_ps();
170         fiy0             = _mm_setzero_ps();
171         fiz0             = _mm_setzero_ps();
172         fix1             = _mm_setzero_ps();
173         fiy1             = _mm_setzero_ps();
174         fiz1             = _mm_setzero_ps();
175         fix2             = _mm_setzero_ps();
176         fiy2             = _mm_setzero_ps();
177         fiz2             = _mm_setzero_ps();
178         fix3             = _mm_setzero_ps();
179         fiy3             = _mm_setzero_ps();
180         fiz3             = _mm_setzero_ps();
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_ps();
184         vvdwsum          = _mm_setzero_ps();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202                                               x+j_coord_offsetC,x+j_coord_offsetD,
203                                               &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm_sub_ps(ix0,jx0);
207             dy00             = _mm_sub_ps(iy0,jy0);
208             dz00             = _mm_sub_ps(iz0,jz0);
209             dx10             = _mm_sub_ps(ix1,jx0);
210             dy10             = _mm_sub_ps(iy1,jy0);
211             dz10             = _mm_sub_ps(iz1,jz0);
212             dx20             = _mm_sub_ps(ix2,jx0);
213             dy20             = _mm_sub_ps(iy2,jy0);
214             dz20             = _mm_sub_ps(iz2,jz0);
215             dx30             = _mm_sub_ps(ix3,jx0);
216             dy30             = _mm_sub_ps(iy3,jy0);
217             dz30             = _mm_sub_ps(iz3,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
221             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
222             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
223             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
224
225             rinv10           = gmx_mm_invsqrt_ps(rsq10);
226             rinv20           = gmx_mm_invsqrt_ps(rsq20);
227             rinv30           = gmx_mm_invsqrt_ps(rsq30);
228
229             rinvsq00         = gmx_mm_inv_ps(rsq00);
230             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
231             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
232             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
236                                                               charge+jnrC+0,charge+jnrD+0);
237             vdwjidx0A        = 2*vdwtype[jnrA+0];
238             vdwjidx0B        = 2*vdwtype[jnrB+0];
239             vdwjidx0C        = 2*vdwtype[jnrC+0];
240             vdwjidx0D        = 2*vdwtype[jnrD+0];
241
242             fjx0             = _mm_setzero_ps();
243             fjy0             = _mm_setzero_ps();
244             fjz0             = _mm_setzero_ps();
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             /* Compute parameters for interactions between i and j atoms */
251             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
252                                          vdwparam+vdwioffset0+vdwjidx0B,
253                                          vdwparam+vdwioffset0+vdwjidx0C,
254                                          vdwparam+vdwioffset0+vdwjidx0D,
255                                          &c6_00,&c12_00);
256
257             /* LENNARD-JONES DISPERSION/REPULSION */
258
259             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
260             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
261             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
262             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
263             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
267
268             fscal            = fvdw;
269
270             /* Calculate temporary vectorial force */
271             tx               = _mm_mul_ps(fscal,dx00);
272             ty               = _mm_mul_ps(fscal,dy00);
273             tz               = _mm_mul_ps(fscal,dz00);
274
275             /* Update vectorial force */
276             fix0             = _mm_add_ps(fix0,tx);
277             fiy0             = _mm_add_ps(fiy0,ty);
278             fiz0             = _mm_add_ps(fiz0,tz);
279
280             fjx0             = _mm_add_ps(fjx0,tx);
281             fjy0             = _mm_add_ps(fjy0,ty);
282             fjz0             = _mm_add_ps(fjz0,tz);
283             
284             /**************************
285              * CALCULATE INTERACTIONS *
286              **************************/
287
288             /* Compute parameters for interactions between i and j atoms */
289             qq10             = _mm_mul_ps(iq1,jq0);
290
291             /* REACTION-FIELD ELECTROSTATICS */
292             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
293             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _mm_add_ps(velecsum,velec);
297
298             fscal            = felec;
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm_mul_ps(fscal,dx10);
302             ty               = _mm_mul_ps(fscal,dy10);
303             tz               = _mm_mul_ps(fscal,dz10);
304
305             /* Update vectorial force */
306             fix1             = _mm_add_ps(fix1,tx);
307             fiy1             = _mm_add_ps(fiy1,ty);
308             fiz1             = _mm_add_ps(fiz1,tz);
309
310             fjx0             = _mm_add_ps(fjx0,tx);
311             fjy0             = _mm_add_ps(fjy0,ty);
312             fjz0             = _mm_add_ps(fjz0,tz);
313             
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             /* Compute parameters for interactions between i and j atoms */
319             qq20             = _mm_mul_ps(iq2,jq0);
320
321             /* REACTION-FIELD ELECTROSTATICS */
322             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
323             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velecsum         = _mm_add_ps(velecsum,velec);
327
328             fscal            = felec;
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm_mul_ps(fscal,dx20);
332             ty               = _mm_mul_ps(fscal,dy20);
333             tz               = _mm_mul_ps(fscal,dz20);
334
335             /* Update vectorial force */
336             fix2             = _mm_add_ps(fix2,tx);
337             fiy2             = _mm_add_ps(fiy2,ty);
338             fiz2             = _mm_add_ps(fiz2,tz);
339
340             fjx0             = _mm_add_ps(fjx0,tx);
341             fjy0             = _mm_add_ps(fjy0,ty);
342             fjz0             = _mm_add_ps(fjz0,tz);
343             
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq30             = _mm_mul_ps(iq3,jq0);
350
351             /* REACTION-FIELD ELECTROSTATICS */
352             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
353             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velecsum         = _mm_add_ps(velecsum,velec);
357
358             fscal            = felec;
359
360             /* Calculate temporary vectorial force */
361             tx               = _mm_mul_ps(fscal,dx30);
362             ty               = _mm_mul_ps(fscal,dy30);
363             tz               = _mm_mul_ps(fscal,dz30);
364
365             /* Update vectorial force */
366             fix3             = _mm_add_ps(fix3,tx);
367             fiy3             = _mm_add_ps(fiy3,ty);
368             fiz3             = _mm_add_ps(fiz3,tz);
369
370             fjx0             = _mm_add_ps(fjx0,tx);
371             fjy0             = _mm_add_ps(fjy0,ty);
372             fjz0             = _mm_add_ps(fjz0,tz);
373             
374             fjptrA             = f+j_coord_offsetA;
375             fjptrB             = f+j_coord_offsetB;
376             fjptrC             = f+j_coord_offsetC;
377             fjptrD             = f+j_coord_offsetD;
378
379             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
380
381             /* Inner loop uses 128 flops */
382         }
383
384         if(jidx<j_index_end)
385         {
386
387             /* Get j neighbor index, and coordinate index */
388             jnrlistA         = jjnr[jidx];
389             jnrlistB         = jjnr[jidx+1];
390             jnrlistC         = jjnr[jidx+2];
391             jnrlistD         = jjnr[jidx+3];
392             /* Sign of each element will be negative for non-real atoms.
393              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
394              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
395              */
396             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
397             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
398             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
399             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
400             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
401             j_coord_offsetA  = DIM*jnrA;
402             j_coord_offsetB  = DIM*jnrB;
403             j_coord_offsetC  = DIM*jnrC;
404             j_coord_offsetD  = DIM*jnrD;
405
406             /* load j atom coordinates */
407             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
408                                               x+j_coord_offsetC,x+j_coord_offsetD,
409                                               &jx0,&jy0,&jz0);
410
411             /* Calculate displacement vector */
412             dx00             = _mm_sub_ps(ix0,jx0);
413             dy00             = _mm_sub_ps(iy0,jy0);
414             dz00             = _mm_sub_ps(iz0,jz0);
415             dx10             = _mm_sub_ps(ix1,jx0);
416             dy10             = _mm_sub_ps(iy1,jy0);
417             dz10             = _mm_sub_ps(iz1,jz0);
418             dx20             = _mm_sub_ps(ix2,jx0);
419             dy20             = _mm_sub_ps(iy2,jy0);
420             dz20             = _mm_sub_ps(iz2,jz0);
421             dx30             = _mm_sub_ps(ix3,jx0);
422             dy30             = _mm_sub_ps(iy3,jy0);
423             dz30             = _mm_sub_ps(iz3,jz0);
424
425             /* Calculate squared distance and things based on it */
426             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
427             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
428             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
429             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
430
431             rinv10           = gmx_mm_invsqrt_ps(rsq10);
432             rinv20           = gmx_mm_invsqrt_ps(rsq20);
433             rinv30           = gmx_mm_invsqrt_ps(rsq30);
434
435             rinvsq00         = gmx_mm_inv_ps(rsq00);
436             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
437             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
438             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
439
440             /* Load parameters for j particles */
441             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
442                                                               charge+jnrC+0,charge+jnrD+0);
443             vdwjidx0A        = 2*vdwtype[jnrA+0];
444             vdwjidx0B        = 2*vdwtype[jnrB+0];
445             vdwjidx0C        = 2*vdwtype[jnrC+0];
446             vdwjidx0D        = 2*vdwtype[jnrD+0];
447
448             fjx0             = _mm_setzero_ps();
449             fjy0             = _mm_setzero_ps();
450             fjz0             = _mm_setzero_ps();
451
452             /**************************
453              * CALCULATE INTERACTIONS *
454              **************************/
455
456             /* Compute parameters for interactions between i and j atoms */
457             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
458                                          vdwparam+vdwioffset0+vdwjidx0B,
459                                          vdwparam+vdwioffset0+vdwjidx0C,
460                                          vdwparam+vdwioffset0+vdwjidx0D,
461                                          &c6_00,&c12_00);
462
463             /* LENNARD-JONES DISPERSION/REPULSION */
464
465             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
466             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
467             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
468             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
469             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
470
471             /* Update potential sum for this i atom from the interaction with this j atom. */
472             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
473             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
474
475             fscal            = fvdw;
476
477             fscal            = _mm_andnot_ps(dummy_mask,fscal);
478
479             /* Calculate temporary vectorial force */
480             tx               = _mm_mul_ps(fscal,dx00);
481             ty               = _mm_mul_ps(fscal,dy00);
482             tz               = _mm_mul_ps(fscal,dz00);
483
484             /* Update vectorial force */
485             fix0             = _mm_add_ps(fix0,tx);
486             fiy0             = _mm_add_ps(fiy0,ty);
487             fiz0             = _mm_add_ps(fiz0,tz);
488
489             fjx0             = _mm_add_ps(fjx0,tx);
490             fjy0             = _mm_add_ps(fjy0,ty);
491             fjz0             = _mm_add_ps(fjz0,tz);
492             
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             /* Compute parameters for interactions between i and j atoms */
498             qq10             = _mm_mul_ps(iq1,jq0);
499
500             /* REACTION-FIELD ELECTROSTATICS */
501             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
502             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
503
504             /* Update potential sum for this i atom from the interaction with this j atom. */
505             velec            = _mm_andnot_ps(dummy_mask,velec);
506             velecsum         = _mm_add_ps(velecsum,velec);
507
508             fscal            = felec;
509
510             fscal            = _mm_andnot_ps(dummy_mask,fscal);
511
512             /* Calculate temporary vectorial force */
513             tx               = _mm_mul_ps(fscal,dx10);
514             ty               = _mm_mul_ps(fscal,dy10);
515             tz               = _mm_mul_ps(fscal,dz10);
516
517             /* Update vectorial force */
518             fix1             = _mm_add_ps(fix1,tx);
519             fiy1             = _mm_add_ps(fiy1,ty);
520             fiz1             = _mm_add_ps(fiz1,tz);
521
522             fjx0             = _mm_add_ps(fjx0,tx);
523             fjy0             = _mm_add_ps(fjy0,ty);
524             fjz0             = _mm_add_ps(fjz0,tz);
525             
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq20             = _mm_mul_ps(iq2,jq0);
532
533             /* REACTION-FIELD ELECTROSTATICS */
534             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
535             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
536
537             /* Update potential sum for this i atom from the interaction with this j atom. */
538             velec            = _mm_andnot_ps(dummy_mask,velec);
539             velecsum         = _mm_add_ps(velecsum,velec);
540
541             fscal            = felec;
542
543             fscal            = _mm_andnot_ps(dummy_mask,fscal);
544
545             /* Calculate temporary vectorial force */
546             tx               = _mm_mul_ps(fscal,dx20);
547             ty               = _mm_mul_ps(fscal,dy20);
548             tz               = _mm_mul_ps(fscal,dz20);
549
550             /* Update vectorial force */
551             fix2             = _mm_add_ps(fix2,tx);
552             fiy2             = _mm_add_ps(fiy2,ty);
553             fiz2             = _mm_add_ps(fiz2,tz);
554
555             fjx0             = _mm_add_ps(fjx0,tx);
556             fjy0             = _mm_add_ps(fjy0,ty);
557             fjz0             = _mm_add_ps(fjz0,tz);
558             
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             /* Compute parameters for interactions between i and j atoms */
564             qq30             = _mm_mul_ps(iq3,jq0);
565
566             /* REACTION-FIELD ELECTROSTATICS */
567             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
568             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
569
570             /* Update potential sum for this i atom from the interaction with this j atom. */
571             velec            = _mm_andnot_ps(dummy_mask,velec);
572             velecsum         = _mm_add_ps(velecsum,velec);
573
574             fscal            = felec;
575
576             fscal            = _mm_andnot_ps(dummy_mask,fscal);
577
578             /* Calculate temporary vectorial force */
579             tx               = _mm_mul_ps(fscal,dx30);
580             ty               = _mm_mul_ps(fscal,dy30);
581             tz               = _mm_mul_ps(fscal,dz30);
582
583             /* Update vectorial force */
584             fix3             = _mm_add_ps(fix3,tx);
585             fiy3             = _mm_add_ps(fiy3,ty);
586             fiz3             = _mm_add_ps(fiz3,tz);
587
588             fjx0             = _mm_add_ps(fjx0,tx);
589             fjy0             = _mm_add_ps(fjy0,ty);
590             fjz0             = _mm_add_ps(fjz0,tz);
591             
592             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
593             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
594             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
595             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
596
597             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
598
599             /* Inner loop uses 128 flops */
600         }
601
602         /* End of innermost loop */
603
604         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
605                                               f+i_coord_offset,fshift+i_shift_offset);
606
607         ggid                        = gid[iidx];
608         /* Update potential energies */
609         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
610         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
611
612         /* Increment number of inner iterations */
613         inneriter                  += j_index_end - j_index_start;
614
615         /* Outer loop uses 26 flops */
616     }
617
618     /* Increment number of outer iterations */
619     outeriter        += nri;
620
621     /* Update outer/inner flops */
622
623     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*128);
624 }
625 /*
626  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_sse2_single
627  * Electrostatics interaction: ReactionField
628  * VdW interaction:            LennardJones
629  * Geometry:                   Water4-Particle
630  * Calculate force/pot:        Force
631  */
632 void
633 nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_sse2_single
634                     (t_nblist                    * gmx_restrict       nlist,
635                      rvec                        * gmx_restrict          xx,
636                      rvec                        * gmx_restrict          ff,
637                      t_forcerec                  * gmx_restrict          fr,
638                      t_mdatoms                   * gmx_restrict     mdatoms,
639                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
640                      t_nrnb                      * gmx_restrict        nrnb)
641 {
642     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
643      * just 0 for non-waters.
644      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
645      * jnr indices corresponding to data put in the four positions in the SIMD register.
646      */
647     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
648     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
649     int              jnrA,jnrB,jnrC,jnrD;
650     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
651     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
652     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
653     real             rcutoff_scalar;
654     real             *shiftvec,*fshift,*x,*f;
655     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
656     real             scratch[4*DIM];
657     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
658     int              vdwioffset0;
659     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
660     int              vdwioffset1;
661     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
662     int              vdwioffset2;
663     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
664     int              vdwioffset3;
665     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
666     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
667     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
668     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
669     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
670     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
671     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
672     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
673     real             *charge;
674     int              nvdwtype;
675     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
676     int              *vdwtype;
677     real             *vdwparam;
678     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
679     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
680     __m128           dummy_mask,cutoff_mask;
681     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
682     __m128           one     = _mm_set1_ps(1.0);
683     __m128           two     = _mm_set1_ps(2.0);
684     x                = xx[0];
685     f                = ff[0];
686
687     nri              = nlist->nri;
688     iinr             = nlist->iinr;
689     jindex           = nlist->jindex;
690     jjnr             = nlist->jjnr;
691     shiftidx         = nlist->shift;
692     gid              = nlist->gid;
693     shiftvec         = fr->shift_vec[0];
694     fshift           = fr->fshift[0];
695     facel            = _mm_set1_ps(fr->epsfac);
696     charge           = mdatoms->chargeA;
697     krf              = _mm_set1_ps(fr->ic->k_rf);
698     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
699     crf              = _mm_set1_ps(fr->ic->c_rf);
700     nvdwtype         = fr->ntype;
701     vdwparam         = fr->nbfp;
702     vdwtype          = mdatoms->typeA;
703
704     /* Setup water-specific parameters */
705     inr              = nlist->iinr[0];
706     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
707     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
708     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
709     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
710
711     /* Avoid stupid compiler warnings */
712     jnrA = jnrB = jnrC = jnrD = 0;
713     j_coord_offsetA = 0;
714     j_coord_offsetB = 0;
715     j_coord_offsetC = 0;
716     j_coord_offsetD = 0;
717
718     outeriter        = 0;
719     inneriter        = 0;
720
721     for(iidx=0;iidx<4*DIM;iidx++)
722     {
723         scratch[iidx] = 0.0;
724     }  
725
726     /* Start outer loop over neighborlists */
727     for(iidx=0; iidx<nri; iidx++)
728     {
729         /* Load shift vector for this list */
730         i_shift_offset   = DIM*shiftidx[iidx];
731
732         /* Load limits for loop over neighbors */
733         j_index_start    = jindex[iidx];
734         j_index_end      = jindex[iidx+1];
735
736         /* Get outer coordinate index */
737         inr              = iinr[iidx];
738         i_coord_offset   = DIM*inr;
739
740         /* Load i particle coords and add shift vector */
741         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
742                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
743         
744         fix0             = _mm_setzero_ps();
745         fiy0             = _mm_setzero_ps();
746         fiz0             = _mm_setzero_ps();
747         fix1             = _mm_setzero_ps();
748         fiy1             = _mm_setzero_ps();
749         fiz1             = _mm_setzero_ps();
750         fix2             = _mm_setzero_ps();
751         fiy2             = _mm_setzero_ps();
752         fiz2             = _mm_setzero_ps();
753         fix3             = _mm_setzero_ps();
754         fiy3             = _mm_setzero_ps();
755         fiz3             = _mm_setzero_ps();
756
757         /* Start inner kernel loop */
758         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
759         {
760
761             /* Get j neighbor index, and coordinate index */
762             jnrA             = jjnr[jidx];
763             jnrB             = jjnr[jidx+1];
764             jnrC             = jjnr[jidx+2];
765             jnrD             = jjnr[jidx+3];
766             j_coord_offsetA  = DIM*jnrA;
767             j_coord_offsetB  = DIM*jnrB;
768             j_coord_offsetC  = DIM*jnrC;
769             j_coord_offsetD  = DIM*jnrD;
770
771             /* load j atom coordinates */
772             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
773                                               x+j_coord_offsetC,x+j_coord_offsetD,
774                                               &jx0,&jy0,&jz0);
775
776             /* Calculate displacement vector */
777             dx00             = _mm_sub_ps(ix0,jx0);
778             dy00             = _mm_sub_ps(iy0,jy0);
779             dz00             = _mm_sub_ps(iz0,jz0);
780             dx10             = _mm_sub_ps(ix1,jx0);
781             dy10             = _mm_sub_ps(iy1,jy0);
782             dz10             = _mm_sub_ps(iz1,jz0);
783             dx20             = _mm_sub_ps(ix2,jx0);
784             dy20             = _mm_sub_ps(iy2,jy0);
785             dz20             = _mm_sub_ps(iz2,jz0);
786             dx30             = _mm_sub_ps(ix3,jx0);
787             dy30             = _mm_sub_ps(iy3,jy0);
788             dz30             = _mm_sub_ps(iz3,jz0);
789
790             /* Calculate squared distance and things based on it */
791             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
792             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
793             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
794             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
795
796             rinv10           = gmx_mm_invsqrt_ps(rsq10);
797             rinv20           = gmx_mm_invsqrt_ps(rsq20);
798             rinv30           = gmx_mm_invsqrt_ps(rsq30);
799
800             rinvsq00         = gmx_mm_inv_ps(rsq00);
801             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
802             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
803             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
804
805             /* Load parameters for j particles */
806             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
807                                                               charge+jnrC+0,charge+jnrD+0);
808             vdwjidx0A        = 2*vdwtype[jnrA+0];
809             vdwjidx0B        = 2*vdwtype[jnrB+0];
810             vdwjidx0C        = 2*vdwtype[jnrC+0];
811             vdwjidx0D        = 2*vdwtype[jnrD+0];
812
813             fjx0             = _mm_setzero_ps();
814             fjy0             = _mm_setzero_ps();
815             fjz0             = _mm_setzero_ps();
816
817             /**************************
818              * CALCULATE INTERACTIONS *
819              **************************/
820
821             /* Compute parameters for interactions between i and j atoms */
822             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
823                                          vdwparam+vdwioffset0+vdwjidx0B,
824                                          vdwparam+vdwioffset0+vdwjidx0C,
825                                          vdwparam+vdwioffset0+vdwjidx0D,
826                                          &c6_00,&c12_00);
827
828             /* LENNARD-JONES DISPERSION/REPULSION */
829
830             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
831             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
832
833             fscal            = fvdw;
834
835             /* Calculate temporary vectorial force */
836             tx               = _mm_mul_ps(fscal,dx00);
837             ty               = _mm_mul_ps(fscal,dy00);
838             tz               = _mm_mul_ps(fscal,dz00);
839
840             /* Update vectorial force */
841             fix0             = _mm_add_ps(fix0,tx);
842             fiy0             = _mm_add_ps(fiy0,ty);
843             fiz0             = _mm_add_ps(fiz0,tz);
844
845             fjx0             = _mm_add_ps(fjx0,tx);
846             fjy0             = _mm_add_ps(fjy0,ty);
847             fjz0             = _mm_add_ps(fjz0,tz);
848             
849             /**************************
850              * CALCULATE INTERACTIONS *
851              **************************/
852
853             /* Compute parameters for interactions between i and j atoms */
854             qq10             = _mm_mul_ps(iq1,jq0);
855
856             /* REACTION-FIELD ELECTROSTATICS */
857             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
858
859             fscal            = felec;
860
861             /* Calculate temporary vectorial force */
862             tx               = _mm_mul_ps(fscal,dx10);
863             ty               = _mm_mul_ps(fscal,dy10);
864             tz               = _mm_mul_ps(fscal,dz10);
865
866             /* Update vectorial force */
867             fix1             = _mm_add_ps(fix1,tx);
868             fiy1             = _mm_add_ps(fiy1,ty);
869             fiz1             = _mm_add_ps(fiz1,tz);
870
871             fjx0             = _mm_add_ps(fjx0,tx);
872             fjy0             = _mm_add_ps(fjy0,ty);
873             fjz0             = _mm_add_ps(fjz0,tz);
874             
875             /**************************
876              * CALCULATE INTERACTIONS *
877              **************************/
878
879             /* Compute parameters for interactions between i and j atoms */
880             qq20             = _mm_mul_ps(iq2,jq0);
881
882             /* REACTION-FIELD ELECTROSTATICS */
883             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
884
885             fscal            = felec;
886
887             /* Calculate temporary vectorial force */
888             tx               = _mm_mul_ps(fscal,dx20);
889             ty               = _mm_mul_ps(fscal,dy20);
890             tz               = _mm_mul_ps(fscal,dz20);
891
892             /* Update vectorial force */
893             fix2             = _mm_add_ps(fix2,tx);
894             fiy2             = _mm_add_ps(fiy2,ty);
895             fiz2             = _mm_add_ps(fiz2,tz);
896
897             fjx0             = _mm_add_ps(fjx0,tx);
898             fjy0             = _mm_add_ps(fjy0,ty);
899             fjz0             = _mm_add_ps(fjz0,tz);
900             
901             /**************************
902              * CALCULATE INTERACTIONS *
903              **************************/
904
905             /* Compute parameters for interactions between i and j atoms */
906             qq30             = _mm_mul_ps(iq3,jq0);
907
908             /* REACTION-FIELD ELECTROSTATICS */
909             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
910
911             fscal            = felec;
912
913             /* Calculate temporary vectorial force */
914             tx               = _mm_mul_ps(fscal,dx30);
915             ty               = _mm_mul_ps(fscal,dy30);
916             tz               = _mm_mul_ps(fscal,dz30);
917
918             /* Update vectorial force */
919             fix3             = _mm_add_ps(fix3,tx);
920             fiy3             = _mm_add_ps(fiy3,ty);
921             fiz3             = _mm_add_ps(fiz3,tz);
922
923             fjx0             = _mm_add_ps(fjx0,tx);
924             fjy0             = _mm_add_ps(fjy0,ty);
925             fjz0             = _mm_add_ps(fjz0,tz);
926             
927             fjptrA             = f+j_coord_offsetA;
928             fjptrB             = f+j_coord_offsetB;
929             fjptrC             = f+j_coord_offsetC;
930             fjptrD             = f+j_coord_offsetD;
931
932             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
933
934             /* Inner loop uses 108 flops */
935         }
936
937         if(jidx<j_index_end)
938         {
939
940             /* Get j neighbor index, and coordinate index */
941             jnrlistA         = jjnr[jidx];
942             jnrlistB         = jjnr[jidx+1];
943             jnrlistC         = jjnr[jidx+2];
944             jnrlistD         = jjnr[jidx+3];
945             /* Sign of each element will be negative for non-real atoms.
946              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
947              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
948              */
949             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
950             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
951             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
952             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
953             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
954             j_coord_offsetA  = DIM*jnrA;
955             j_coord_offsetB  = DIM*jnrB;
956             j_coord_offsetC  = DIM*jnrC;
957             j_coord_offsetD  = DIM*jnrD;
958
959             /* load j atom coordinates */
960             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
961                                               x+j_coord_offsetC,x+j_coord_offsetD,
962                                               &jx0,&jy0,&jz0);
963
964             /* Calculate displacement vector */
965             dx00             = _mm_sub_ps(ix0,jx0);
966             dy00             = _mm_sub_ps(iy0,jy0);
967             dz00             = _mm_sub_ps(iz0,jz0);
968             dx10             = _mm_sub_ps(ix1,jx0);
969             dy10             = _mm_sub_ps(iy1,jy0);
970             dz10             = _mm_sub_ps(iz1,jz0);
971             dx20             = _mm_sub_ps(ix2,jx0);
972             dy20             = _mm_sub_ps(iy2,jy0);
973             dz20             = _mm_sub_ps(iz2,jz0);
974             dx30             = _mm_sub_ps(ix3,jx0);
975             dy30             = _mm_sub_ps(iy3,jy0);
976             dz30             = _mm_sub_ps(iz3,jz0);
977
978             /* Calculate squared distance and things based on it */
979             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
980             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
981             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
982             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
983
984             rinv10           = gmx_mm_invsqrt_ps(rsq10);
985             rinv20           = gmx_mm_invsqrt_ps(rsq20);
986             rinv30           = gmx_mm_invsqrt_ps(rsq30);
987
988             rinvsq00         = gmx_mm_inv_ps(rsq00);
989             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
990             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
991             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
992
993             /* Load parameters for j particles */
994             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
995                                                               charge+jnrC+0,charge+jnrD+0);
996             vdwjidx0A        = 2*vdwtype[jnrA+0];
997             vdwjidx0B        = 2*vdwtype[jnrB+0];
998             vdwjidx0C        = 2*vdwtype[jnrC+0];
999             vdwjidx0D        = 2*vdwtype[jnrD+0];
1000
1001             fjx0             = _mm_setzero_ps();
1002             fjy0             = _mm_setzero_ps();
1003             fjz0             = _mm_setzero_ps();
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             /* Compute parameters for interactions between i and j atoms */
1010             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1011                                          vdwparam+vdwioffset0+vdwjidx0B,
1012                                          vdwparam+vdwioffset0+vdwjidx0C,
1013                                          vdwparam+vdwioffset0+vdwjidx0D,
1014                                          &c6_00,&c12_00);
1015
1016             /* LENNARD-JONES DISPERSION/REPULSION */
1017
1018             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1019             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1020
1021             fscal            = fvdw;
1022
1023             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1024
1025             /* Calculate temporary vectorial force */
1026             tx               = _mm_mul_ps(fscal,dx00);
1027             ty               = _mm_mul_ps(fscal,dy00);
1028             tz               = _mm_mul_ps(fscal,dz00);
1029
1030             /* Update vectorial force */
1031             fix0             = _mm_add_ps(fix0,tx);
1032             fiy0             = _mm_add_ps(fiy0,ty);
1033             fiz0             = _mm_add_ps(fiz0,tz);
1034
1035             fjx0             = _mm_add_ps(fjx0,tx);
1036             fjy0             = _mm_add_ps(fjy0,ty);
1037             fjz0             = _mm_add_ps(fjz0,tz);
1038             
1039             /**************************
1040              * CALCULATE INTERACTIONS *
1041              **************************/
1042
1043             /* Compute parameters for interactions between i and j atoms */
1044             qq10             = _mm_mul_ps(iq1,jq0);
1045
1046             /* REACTION-FIELD ELECTROSTATICS */
1047             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1048
1049             fscal            = felec;
1050
1051             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1052
1053             /* Calculate temporary vectorial force */
1054             tx               = _mm_mul_ps(fscal,dx10);
1055             ty               = _mm_mul_ps(fscal,dy10);
1056             tz               = _mm_mul_ps(fscal,dz10);
1057
1058             /* Update vectorial force */
1059             fix1             = _mm_add_ps(fix1,tx);
1060             fiy1             = _mm_add_ps(fiy1,ty);
1061             fiz1             = _mm_add_ps(fiz1,tz);
1062
1063             fjx0             = _mm_add_ps(fjx0,tx);
1064             fjy0             = _mm_add_ps(fjy0,ty);
1065             fjz0             = _mm_add_ps(fjz0,tz);
1066             
1067             /**************************
1068              * CALCULATE INTERACTIONS *
1069              **************************/
1070
1071             /* Compute parameters for interactions between i and j atoms */
1072             qq20             = _mm_mul_ps(iq2,jq0);
1073
1074             /* REACTION-FIELD ELECTROSTATICS */
1075             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1076
1077             fscal            = felec;
1078
1079             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1080
1081             /* Calculate temporary vectorial force */
1082             tx               = _mm_mul_ps(fscal,dx20);
1083             ty               = _mm_mul_ps(fscal,dy20);
1084             tz               = _mm_mul_ps(fscal,dz20);
1085
1086             /* Update vectorial force */
1087             fix2             = _mm_add_ps(fix2,tx);
1088             fiy2             = _mm_add_ps(fiy2,ty);
1089             fiz2             = _mm_add_ps(fiz2,tz);
1090
1091             fjx0             = _mm_add_ps(fjx0,tx);
1092             fjy0             = _mm_add_ps(fjy0,ty);
1093             fjz0             = _mm_add_ps(fjz0,tz);
1094             
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             /* Compute parameters for interactions between i and j atoms */
1100             qq30             = _mm_mul_ps(iq3,jq0);
1101
1102             /* REACTION-FIELD ELECTROSTATICS */
1103             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1104
1105             fscal            = felec;
1106
1107             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1108
1109             /* Calculate temporary vectorial force */
1110             tx               = _mm_mul_ps(fscal,dx30);
1111             ty               = _mm_mul_ps(fscal,dy30);
1112             tz               = _mm_mul_ps(fscal,dz30);
1113
1114             /* Update vectorial force */
1115             fix3             = _mm_add_ps(fix3,tx);
1116             fiy3             = _mm_add_ps(fiy3,ty);
1117             fiz3             = _mm_add_ps(fiz3,tz);
1118
1119             fjx0             = _mm_add_ps(fjx0,tx);
1120             fjy0             = _mm_add_ps(fjy0,ty);
1121             fjz0             = _mm_add_ps(fjz0,tz);
1122             
1123             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1124             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1125             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1126             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1127
1128             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1129
1130             /* Inner loop uses 108 flops */
1131         }
1132
1133         /* End of innermost loop */
1134
1135         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1136                                               f+i_coord_offset,fshift+i_shift_offset);
1137
1138         /* Increment number of inner iterations */
1139         inneriter                  += j_index_end - j_index_start;
1140
1141         /* Outer loop uses 24 flops */
1142     }
1143
1144     /* Increment number of outer iterations */
1145     outeriter        += nri;
1146
1147     /* Update outer/inner flops */
1148
1149     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*108);
1150 }