ea4d498650e9104a2ab2c3a896a9cdd2226adb66
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRF_VdwLJ_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_sse2_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm_set1_ps(fr->ic->k_rf);
122     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
123     crf              = _mm_set1_ps(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
131     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
132     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     for(iidx=0;iidx<4*DIM;iidx++)
146     {
147         scratch[iidx] = 0.0;
148     }  
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
166                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
167         
168         fix0             = _mm_setzero_ps();
169         fiy0             = _mm_setzero_ps();
170         fiz0             = _mm_setzero_ps();
171         fix1             = _mm_setzero_ps();
172         fiy1             = _mm_setzero_ps();
173         fiz1             = _mm_setzero_ps();
174         fix2             = _mm_setzero_ps();
175         fiy2             = _mm_setzero_ps();
176         fiz2             = _mm_setzero_ps();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_ps();
180         vvdwsum          = _mm_setzero_ps();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             jnrC             = jjnr[jidx+2];
190             jnrD             = jjnr[jidx+3];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195
196             /* load j atom coordinates */
197             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               x+j_coord_offsetC,x+j_coord_offsetD,
199                                               &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm_sub_ps(ix0,jx0);
203             dy00             = _mm_sub_ps(iy0,jy0);
204             dz00             = _mm_sub_ps(iz0,jz0);
205             dx10             = _mm_sub_ps(ix1,jx0);
206             dy10             = _mm_sub_ps(iy1,jy0);
207             dz10             = _mm_sub_ps(iz1,jz0);
208             dx20             = _mm_sub_ps(ix2,jx0);
209             dy20             = _mm_sub_ps(iy2,jy0);
210             dz20             = _mm_sub_ps(iz2,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
214             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
215             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
216
217             rinv00           = gmx_mm_invsqrt_ps(rsq00);
218             rinv10           = gmx_mm_invsqrt_ps(rsq10);
219             rinv20           = gmx_mm_invsqrt_ps(rsq20);
220
221             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
222             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
223             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                               charge+jnrC+0,charge+jnrD+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232
233             fjx0             = _mm_setzero_ps();
234             fjy0             = _mm_setzero_ps();
235             fjz0             = _mm_setzero_ps();
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _mm_mul_ps(iq0,jq0);
243             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
244                                          vdwparam+vdwioffset0+vdwjidx0B,
245                                          vdwparam+vdwioffset0+vdwjidx0C,
246                                          vdwparam+vdwioffset0+vdwjidx0D,
247                                          &c6_00,&c12_00);
248
249             /* REACTION-FIELD ELECTROSTATICS */
250             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
251             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
252
253             /* LENNARD-JONES DISPERSION/REPULSION */
254
255             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
256             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
257             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
258             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
259             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
260
261             /* Update potential sum for this i atom from the interaction with this j atom. */
262             velecsum         = _mm_add_ps(velecsum,velec);
263             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
264
265             fscal            = _mm_add_ps(felec,fvdw);
266
267             /* Calculate temporary vectorial force */
268             tx               = _mm_mul_ps(fscal,dx00);
269             ty               = _mm_mul_ps(fscal,dy00);
270             tz               = _mm_mul_ps(fscal,dz00);
271
272             /* Update vectorial force */
273             fix0             = _mm_add_ps(fix0,tx);
274             fiy0             = _mm_add_ps(fiy0,ty);
275             fiz0             = _mm_add_ps(fiz0,tz);
276
277             fjx0             = _mm_add_ps(fjx0,tx);
278             fjy0             = _mm_add_ps(fjy0,ty);
279             fjz0             = _mm_add_ps(fjz0,tz);
280             
281             /**************************
282              * CALCULATE INTERACTIONS *
283              **************************/
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq10             = _mm_mul_ps(iq1,jq0);
287
288             /* REACTION-FIELD ELECTROSTATICS */
289             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
290             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             velecsum         = _mm_add_ps(velecsum,velec);
294
295             fscal            = felec;
296
297             /* Calculate temporary vectorial force */
298             tx               = _mm_mul_ps(fscal,dx10);
299             ty               = _mm_mul_ps(fscal,dy10);
300             tz               = _mm_mul_ps(fscal,dz10);
301
302             /* Update vectorial force */
303             fix1             = _mm_add_ps(fix1,tx);
304             fiy1             = _mm_add_ps(fiy1,ty);
305             fiz1             = _mm_add_ps(fiz1,tz);
306
307             fjx0             = _mm_add_ps(fjx0,tx);
308             fjy0             = _mm_add_ps(fjy0,ty);
309             fjz0             = _mm_add_ps(fjz0,tz);
310             
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq20             = _mm_mul_ps(iq2,jq0);
317
318             /* REACTION-FIELD ELECTROSTATICS */
319             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
320             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
321
322             /* Update potential sum for this i atom from the interaction with this j atom. */
323             velecsum         = _mm_add_ps(velecsum,velec);
324
325             fscal            = felec;
326
327             /* Calculate temporary vectorial force */
328             tx               = _mm_mul_ps(fscal,dx20);
329             ty               = _mm_mul_ps(fscal,dy20);
330             tz               = _mm_mul_ps(fscal,dz20);
331
332             /* Update vectorial force */
333             fix2             = _mm_add_ps(fix2,tx);
334             fiy2             = _mm_add_ps(fiy2,ty);
335             fiz2             = _mm_add_ps(fiz2,tz);
336
337             fjx0             = _mm_add_ps(fjx0,tx);
338             fjy0             = _mm_add_ps(fjy0,ty);
339             fjz0             = _mm_add_ps(fjz0,tz);
340             
341             fjptrA             = f+j_coord_offsetA;
342             fjptrB             = f+j_coord_offsetB;
343             fjptrC             = f+j_coord_offsetC;
344             fjptrD             = f+j_coord_offsetD;
345
346             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
347
348             /* Inner loop uses 108 flops */
349         }
350
351         if(jidx<j_index_end)
352         {
353
354             /* Get j neighbor index, and coordinate index */
355             jnrlistA         = jjnr[jidx];
356             jnrlistB         = jjnr[jidx+1];
357             jnrlistC         = jjnr[jidx+2];
358             jnrlistD         = jjnr[jidx+3];
359             /* Sign of each element will be negative for non-real atoms.
360              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
361              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
362              */
363             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
364             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
365             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
366             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
367             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
368             j_coord_offsetA  = DIM*jnrA;
369             j_coord_offsetB  = DIM*jnrB;
370             j_coord_offsetC  = DIM*jnrC;
371             j_coord_offsetD  = DIM*jnrD;
372
373             /* load j atom coordinates */
374             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
375                                               x+j_coord_offsetC,x+j_coord_offsetD,
376                                               &jx0,&jy0,&jz0);
377
378             /* Calculate displacement vector */
379             dx00             = _mm_sub_ps(ix0,jx0);
380             dy00             = _mm_sub_ps(iy0,jy0);
381             dz00             = _mm_sub_ps(iz0,jz0);
382             dx10             = _mm_sub_ps(ix1,jx0);
383             dy10             = _mm_sub_ps(iy1,jy0);
384             dz10             = _mm_sub_ps(iz1,jz0);
385             dx20             = _mm_sub_ps(ix2,jx0);
386             dy20             = _mm_sub_ps(iy2,jy0);
387             dz20             = _mm_sub_ps(iz2,jz0);
388
389             /* Calculate squared distance and things based on it */
390             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
391             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
392             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
393
394             rinv00           = gmx_mm_invsqrt_ps(rsq00);
395             rinv10           = gmx_mm_invsqrt_ps(rsq10);
396             rinv20           = gmx_mm_invsqrt_ps(rsq20);
397
398             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
399             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
400             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
401
402             /* Load parameters for j particles */
403             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
404                                                               charge+jnrC+0,charge+jnrD+0);
405             vdwjidx0A        = 2*vdwtype[jnrA+0];
406             vdwjidx0B        = 2*vdwtype[jnrB+0];
407             vdwjidx0C        = 2*vdwtype[jnrC+0];
408             vdwjidx0D        = 2*vdwtype[jnrD+0];
409
410             fjx0             = _mm_setzero_ps();
411             fjy0             = _mm_setzero_ps();
412             fjz0             = _mm_setzero_ps();
413
414             /**************************
415              * CALCULATE INTERACTIONS *
416              **************************/
417
418             /* Compute parameters for interactions between i and j atoms */
419             qq00             = _mm_mul_ps(iq0,jq0);
420             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
421                                          vdwparam+vdwioffset0+vdwjidx0B,
422                                          vdwparam+vdwioffset0+vdwjidx0C,
423                                          vdwparam+vdwioffset0+vdwjidx0D,
424                                          &c6_00,&c12_00);
425
426             /* REACTION-FIELD ELECTROSTATICS */
427             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
428             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
429
430             /* LENNARD-JONES DISPERSION/REPULSION */
431
432             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
433             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
434             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
435             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
436             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
437
438             /* Update potential sum for this i atom from the interaction with this j atom. */
439             velec            = _mm_andnot_ps(dummy_mask,velec);
440             velecsum         = _mm_add_ps(velecsum,velec);
441             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
442             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
443
444             fscal            = _mm_add_ps(felec,fvdw);
445
446             fscal            = _mm_andnot_ps(dummy_mask,fscal);
447
448             /* Calculate temporary vectorial force */
449             tx               = _mm_mul_ps(fscal,dx00);
450             ty               = _mm_mul_ps(fscal,dy00);
451             tz               = _mm_mul_ps(fscal,dz00);
452
453             /* Update vectorial force */
454             fix0             = _mm_add_ps(fix0,tx);
455             fiy0             = _mm_add_ps(fiy0,ty);
456             fiz0             = _mm_add_ps(fiz0,tz);
457
458             fjx0             = _mm_add_ps(fjx0,tx);
459             fjy0             = _mm_add_ps(fjy0,ty);
460             fjz0             = _mm_add_ps(fjz0,tz);
461             
462             /**************************
463              * CALCULATE INTERACTIONS *
464              **************************/
465
466             /* Compute parameters for interactions between i and j atoms */
467             qq10             = _mm_mul_ps(iq1,jq0);
468
469             /* REACTION-FIELD ELECTROSTATICS */
470             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
471             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
472
473             /* Update potential sum for this i atom from the interaction with this j atom. */
474             velec            = _mm_andnot_ps(dummy_mask,velec);
475             velecsum         = _mm_add_ps(velecsum,velec);
476
477             fscal            = felec;
478
479             fscal            = _mm_andnot_ps(dummy_mask,fscal);
480
481             /* Calculate temporary vectorial force */
482             tx               = _mm_mul_ps(fscal,dx10);
483             ty               = _mm_mul_ps(fscal,dy10);
484             tz               = _mm_mul_ps(fscal,dz10);
485
486             /* Update vectorial force */
487             fix1             = _mm_add_ps(fix1,tx);
488             fiy1             = _mm_add_ps(fiy1,ty);
489             fiz1             = _mm_add_ps(fiz1,tz);
490
491             fjx0             = _mm_add_ps(fjx0,tx);
492             fjy0             = _mm_add_ps(fjy0,ty);
493             fjz0             = _mm_add_ps(fjz0,tz);
494             
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             /* Compute parameters for interactions between i and j atoms */
500             qq20             = _mm_mul_ps(iq2,jq0);
501
502             /* REACTION-FIELD ELECTROSTATICS */
503             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
504             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
505
506             /* Update potential sum for this i atom from the interaction with this j atom. */
507             velec            = _mm_andnot_ps(dummy_mask,velec);
508             velecsum         = _mm_add_ps(velecsum,velec);
509
510             fscal            = felec;
511
512             fscal            = _mm_andnot_ps(dummy_mask,fscal);
513
514             /* Calculate temporary vectorial force */
515             tx               = _mm_mul_ps(fscal,dx20);
516             ty               = _mm_mul_ps(fscal,dy20);
517             tz               = _mm_mul_ps(fscal,dz20);
518
519             /* Update vectorial force */
520             fix2             = _mm_add_ps(fix2,tx);
521             fiy2             = _mm_add_ps(fiy2,ty);
522             fiz2             = _mm_add_ps(fiz2,tz);
523
524             fjx0             = _mm_add_ps(fjx0,tx);
525             fjy0             = _mm_add_ps(fjy0,ty);
526             fjz0             = _mm_add_ps(fjz0,tz);
527             
528             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
529             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
530             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
531             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
532
533             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
534
535             /* Inner loop uses 108 flops */
536         }
537
538         /* End of innermost loop */
539
540         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
541                                               f+i_coord_offset,fshift+i_shift_offset);
542
543         ggid                        = gid[iidx];
544         /* Update potential energies */
545         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
546         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
547
548         /* Increment number of inner iterations */
549         inneriter                  += j_index_end - j_index_start;
550
551         /* Outer loop uses 20 flops */
552     }
553
554     /* Increment number of outer iterations */
555     outeriter        += nri;
556
557     /* Update outer/inner flops */
558
559     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*108);
560 }
561 /*
562  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_sse2_single
563  * Electrostatics interaction: ReactionField
564  * VdW interaction:            LennardJones
565  * Geometry:                   Water3-Particle
566  * Calculate force/pot:        Force
567  */
568 void
569 nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_sse2_single
570                     (t_nblist                    * gmx_restrict       nlist,
571                      rvec                        * gmx_restrict          xx,
572                      rvec                        * gmx_restrict          ff,
573                      t_forcerec                  * gmx_restrict          fr,
574                      t_mdatoms                   * gmx_restrict     mdatoms,
575                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
576                      t_nrnb                      * gmx_restrict        nrnb)
577 {
578     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
579      * just 0 for non-waters.
580      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
581      * jnr indices corresponding to data put in the four positions in the SIMD register.
582      */
583     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
584     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
585     int              jnrA,jnrB,jnrC,jnrD;
586     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
587     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
588     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
589     real             rcutoff_scalar;
590     real             *shiftvec,*fshift,*x,*f;
591     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
592     real             scratch[4*DIM];
593     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
594     int              vdwioffset0;
595     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
596     int              vdwioffset1;
597     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
598     int              vdwioffset2;
599     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
600     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
601     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
602     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
603     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
604     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
605     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
606     real             *charge;
607     int              nvdwtype;
608     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
609     int              *vdwtype;
610     real             *vdwparam;
611     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
612     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
613     __m128           dummy_mask,cutoff_mask;
614     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
615     __m128           one     = _mm_set1_ps(1.0);
616     __m128           two     = _mm_set1_ps(2.0);
617     x                = xx[0];
618     f                = ff[0];
619
620     nri              = nlist->nri;
621     iinr             = nlist->iinr;
622     jindex           = nlist->jindex;
623     jjnr             = nlist->jjnr;
624     shiftidx         = nlist->shift;
625     gid              = nlist->gid;
626     shiftvec         = fr->shift_vec[0];
627     fshift           = fr->fshift[0];
628     facel            = _mm_set1_ps(fr->epsfac);
629     charge           = mdatoms->chargeA;
630     krf              = _mm_set1_ps(fr->ic->k_rf);
631     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
632     crf              = _mm_set1_ps(fr->ic->c_rf);
633     nvdwtype         = fr->ntype;
634     vdwparam         = fr->nbfp;
635     vdwtype          = mdatoms->typeA;
636
637     /* Setup water-specific parameters */
638     inr              = nlist->iinr[0];
639     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
640     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
641     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
642     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
643
644     /* Avoid stupid compiler warnings */
645     jnrA = jnrB = jnrC = jnrD = 0;
646     j_coord_offsetA = 0;
647     j_coord_offsetB = 0;
648     j_coord_offsetC = 0;
649     j_coord_offsetD = 0;
650
651     outeriter        = 0;
652     inneriter        = 0;
653
654     for(iidx=0;iidx<4*DIM;iidx++)
655     {
656         scratch[iidx] = 0.0;
657     }  
658
659     /* Start outer loop over neighborlists */
660     for(iidx=0; iidx<nri; iidx++)
661     {
662         /* Load shift vector for this list */
663         i_shift_offset   = DIM*shiftidx[iidx];
664
665         /* Load limits for loop over neighbors */
666         j_index_start    = jindex[iidx];
667         j_index_end      = jindex[iidx+1];
668
669         /* Get outer coordinate index */
670         inr              = iinr[iidx];
671         i_coord_offset   = DIM*inr;
672
673         /* Load i particle coords and add shift vector */
674         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
675                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
676         
677         fix0             = _mm_setzero_ps();
678         fiy0             = _mm_setzero_ps();
679         fiz0             = _mm_setzero_ps();
680         fix1             = _mm_setzero_ps();
681         fiy1             = _mm_setzero_ps();
682         fiz1             = _mm_setzero_ps();
683         fix2             = _mm_setzero_ps();
684         fiy2             = _mm_setzero_ps();
685         fiz2             = _mm_setzero_ps();
686
687         /* Start inner kernel loop */
688         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
689         {
690
691             /* Get j neighbor index, and coordinate index */
692             jnrA             = jjnr[jidx];
693             jnrB             = jjnr[jidx+1];
694             jnrC             = jjnr[jidx+2];
695             jnrD             = jjnr[jidx+3];
696             j_coord_offsetA  = DIM*jnrA;
697             j_coord_offsetB  = DIM*jnrB;
698             j_coord_offsetC  = DIM*jnrC;
699             j_coord_offsetD  = DIM*jnrD;
700
701             /* load j atom coordinates */
702             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
703                                               x+j_coord_offsetC,x+j_coord_offsetD,
704                                               &jx0,&jy0,&jz0);
705
706             /* Calculate displacement vector */
707             dx00             = _mm_sub_ps(ix0,jx0);
708             dy00             = _mm_sub_ps(iy0,jy0);
709             dz00             = _mm_sub_ps(iz0,jz0);
710             dx10             = _mm_sub_ps(ix1,jx0);
711             dy10             = _mm_sub_ps(iy1,jy0);
712             dz10             = _mm_sub_ps(iz1,jz0);
713             dx20             = _mm_sub_ps(ix2,jx0);
714             dy20             = _mm_sub_ps(iy2,jy0);
715             dz20             = _mm_sub_ps(iz2,jz0);
716
717             /* Calculate squared distance and things based on it */
718             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
719             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
720             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
721
722             rinv00           = gmx_mm_invsqrt_ps(rsq00);
723             rinv10           = gmx_mm_invsqrt_ps(rsq10);
724             rinv20           = gmx_mm_invsqrt_ps(rsq20);
725
726             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
727             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
728             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
729
730             /* Load parameters for j particles */
731             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
732                                                               charge+jnrC+0,charge+jnrD+0);
733             vdwjidx0A        = 2*vdwtype[jnrA+0];
734             vdwjidx0B        = 2*vdwtype[jnrB+0];
735             vdwjidx0C        = 2*vdwtype[jnrC+0];
736             vdwjidx0D        = 2*vdwtype[jnrD+0];
737
738             fjx0             = _mm_setzero_ps();
739             fjy0             = _mm_setzero_ps();
740             fjz0             = _mm_setzero_ps();
741
742             /**************************
743              * CALCULATE INTERACTIONS *
744              **************************/
745
746             /* Compute parameters for interactions between i and j atoms */
747             qq00             = _mm_mul_ps(iq0,jq0);
748             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
749                                          vdwparam+vdwioffset0+vdwjidx0B,
750                                          vdwparam+vdwioffset0+vdwjidx0C,
751                                          vdwparam+vdwioffset0+vdwjidx0D,
752                                          &c6_00,&c12_00);
753
754             /* REACTION-FIELD ELECTROSTATICS */
755             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
756
757             /* LENNARD-JONES DISPERSION/REPULSION */
758
759             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
760             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
761
762             fscal            = _mm_add_ps(felec,fvdw);
763
764             /* Calculate temporary vectorial force */
765             tx               = _mm_mul_ps(fscal,dx00);
766             ty               = _mm_mul_ps(fscal,dy00);
767             tz               = _mm_mul_ps(fscal,dz00);
768
769             /* Update vectorial force */
770             fix0             = _mm_add_ps(fix0,tx);
771             fiy0             = _mm_add_ps(fiy0,ty);
772             fiz0             = _mm_add_ps(fiz0,tz);
773
774             fjx0             = _mm_add_ps(fjx0,tx);
775             fjy0             = _mm_add_ps(fjy0,ty);
776             fjz0             = _mm_add_ps(fjz0,tz);
777             
778             /**************************
779              * CALCULATE INTERACTIONS *
780              **************************/
781
782             /* Compute parameters for interactions between i and j atoms */
783             qq10             = _mm_mul_ps(iq1,jq0);
784
785             /* REACTION-FIELD ELECTROSTATICS */
786             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
787
788             fscal            = felec;
789
790             /* Calculate temporary vectorial force */
791             tx               = _mm_mul_ps(fscal,dx10);
792             ty               = _mm_mul_ps(fscal,dy10);
793             tz               = _mm_mul_ps(fscal,dz10);
794
795             /* Update vectorial force */
796             fix1             = _mm_add_ps(fix1,tx);
797             fiy1             = _mm_add_ps(fiy1,ty);
798             fiz1             = _mm_add_ps(fiz1,tz);
799
800             fjx0             = _mm_add_ps(fjx0,tx);
801             fjy0             = _mm_add_ps(fjy0,ty);
802             fjz0             = _mm_add_ps(fjz0,tz);
803             
804             /**************************
805              * CALCULATE INTERACTIONS *
806              **************************/
807
808             /* Compute parameters for interactions between i and j atoms */
809             qq20             = _mm_mul_ps(iq2,jq0);
810
811             /* REACTION-FIELD ELECTROSTATICS */
812             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
813
814             fscal            = felec;
815
816             /* Calculate temporary vectorial force */
817             tx               = _mm_mul_ps(fscal,dx20);
818             ty               = _mm_mul_ps(fscal,dy20);
819             tz               = _mm_mul_ps(fscal,dz20);
820
821             /* Update vectorial force */
822             fix2             = _mm_add_ps(fix2,tx);
823             fiy2             = _mm_add_ps(fiy2,ty);
824             fiz2             = _mm_add_ps(fiz2,tz);
825
826             fjx0             = _mm_add_ps(fjx0,tx);
827             fjy0             = _mm_add_ps(fjy0,ty);
828             fjz0             = _mm_add_ps(fjz0,tz);
829             
830             fjptrA             = f+j_coord_offsetA;
831             fjptrB             = f+j_coord_offsetB;
832             fjptrC             = f+j_coord_offsetC;
833             fjptrD             = f+j_coord_offsetD;
834
835             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
836
837             /* Inner loop uses 88 flops */
838         }
839
840         if(jidx<j_index_end)
841         {
842
843             /* Get j neighbor index, and coordinate index */
844             jnrlistA         = jjnr[jidx];
845             jnrlistB         = jjnr[jidx+1];
846             jnrlistC         = jjnr[jidx+2];
847             jnrlistD         = jjnr[jidx+3];
848             /* Sign of each element will be negative for non-real atoms.
849              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
850              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
851              */
852             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
853             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
854             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
855             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
856             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
857             j_coord_offsetA  = DIM*jnrA;
858             j_coord_offsetB  = DIM*jnrB;
859             j_coord_offsetC  = DIM*jnrC;
860             j_coord_offsetD  = DIM*jnrD;
861
862             /* load j atom coordinates */
863             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
864                                               x+j_coord_offsetC,x+j_coord_offsetD,
865                                               &jx0,&jy0,&jz0);
866
867             /* Calculate displacement vector */
868             dx00             = _mm_sub_ps(ix0,jx0);
869             dy00             = _mm_sub_ps(iy0,jy0);
870             dz00             = _mm_sub_ps(iz0,jz0);
871             dx10             = _mm_sub_ps(ix1,jx0);
872             dy10             = _mm_sub_ps(iy1,jy0);
873             dz10             = _mm_sub_ps(iz1,jz0);
874             dx20             = _mm_sub_ps(ix2,jx0);
875             dy20             = _mm_sub_ps(iy2,jy0);
876             dz20             = _mm_sub_ps(iz2,jz0);
877
878             /* Calculate squared distance and things based on it */
879             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
880             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
881             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
882
883             rinv00           = gmx_mm_invsqrt_ps(rsq00);
884             rinv10           = gmx_mm_invsqrt_ps(rsq10);
885             rinv20           = gmx_mm_invsqrt_ps(rsq20);
886
887             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
888             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
889             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
890
891             /* Load parameters for j particles */
892             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
893                                                               charge+jnrC+0,charge+jnrD+0);
894             vdwjidx0A        = 2*vdwtype[jnrA+0];
895             vdwjidx0B        = 2*vdwtype[jnrB+0];
896             vdwjidx0C        = 2*vdwtype[jnrC+0];
897             vdwjidx0D        = 2*vdwtype[jnrD+0];
898
899             fjx0             = _mm_setzero_ps();
900             fjy0             = _mm_setzero_ps();
901             fjz0             = _mm_setzero_ps();
902
903             /**************************
904              * CALCULATE INTERACTIONS *
905              **************************/
906
907             /* Compute parameters for interactions between i and j atoms */
908             qq00             = _mm_mul_ps(iq0,jq0);
909             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
910                                          vdwparam+vdwioffset0+vdwjidx0B,
911                                          vdwparam+vdwioffset0+vdwjidx0C,
912                                          vdwparam+vdwioffset0+vdwjidx0D,
913                                          &c6_00,&c12_00);
914
915             /* REACTION-FIELD ELECTROSTATICS */
916             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
917
918             /* LENNARD-JONES DISPERSION/REPULSION */
919
920             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
921             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
922
923             fscal            = _mm_add_ps(felec,fvdw);
924
925             fscal            = _mm_andnot_ps(dummy_mask,fscal);
926
927             /* Calculate temporary vectorial force */
928             tx               = _mm_mul_ps(fscal,dx00);
929             ty               = _mm_mul_ps(fscal,dy00);
930             tz               = _mm_mul_ps(fscal,dz00);
931
932             /* Update vectorial force */
933             fix0             = _mm_add_ps(fix0,tx);
934             fiy0             = _mm_add_ps(fiy0,ty);
935             fiz0             = _mm_add_ps(fiz0,tz);
936
937             fjx0             = _mm_add_ps(fjx0,tx);
938             fjy0             = _mm_add_ps(fjy0,ty);
939             fjz0             = _mm_add_ps(fjz0,tz);
940             
941             /**************************
942              * CALCULATE INTERACTIONS *
943              **************************/
944
945             /* Compute parameters for interactions between i and j atoms */
946             qq10             = _mm_mul_ps(iq1,jq0);
947
948             /* REACTION-FIELD ELECTROSTATICS */
949             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
950
951             fscal            = felec;
952
953             fscal            = _mm_andnot_ps(dummy_mask,fscal);
954
955             /* Calculate temporary vectorial force */
956             tx               = _mm_mul_ps(fscal,dx10);
957             ty               = _mm_mul_ps(fscal,dy10);
958             tz               = _mm_mul_ps(fscal,dz10);
959
960             /* Update vectorial force */
961             fix1             = _mm_add_ps(fix1,tx);
962             fiy1             = _mm_add_ps(fiy1,ty);
963             fiz1             = _mm_add_ps(fiz1,tz);
964
965             fjx0             = _mm_add_ps(fjx0,tx);
966             fjy0             = _mm_add_ps(fjy0,ty);
967             fjz0             = _mm_add_ps(fjz0,tz);
968             
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             /* Compute parameters for interactions between i and j atoms */
974             qq20             = _mm_mul_ps(iq2,jq0);
975
976             /* REACTION-FIELD ELECTROSTATICS */
977             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
978
979             fscal            = felec;
980
981             fscal            = _mm_andnot_ps(dummy_mask,fscal);
982
983             /* Calculate temporary vectorial force */
984             tx               = _mm_mul_ps(fscal,dx20);
985             ty               = _mm_mul_ps(fscal,dy20);
986             tz               = _mm_mul_ps(fscal,dz20);
987
988             /* Update vectorial force */
989             fix2             = _mm_add_ps(fix2,tx);
990             fiy2             = _mm_add_ps(fiy2,ty);
991             fiz2             = _mm_add_ps(fiz2,tz);
992
993             fjx0             = _mm_add_ps(fjx0,tx);
994             fjy0             = _mm_add_ps(fjy0,ty);
995             fjz0             = _mm_add_ps(fjz0,tz);
996             
997             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
998             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
999             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1000             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1001
1002             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1003
1004             /* Inner loop uses 88 flops */
1005         }
1006
1007         /* End of innermost loop */
1008
1009         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1010                                               f+i_coord_offset,fshift+i_shift_offset);
1011
1012         /* Increment number of inner iterations */
1013         inneriter                  += j_index_end - j_index_start;
1014
1015         /* Outer loop uses 18 flops */
1016     }
1017
1018     /* Increment number of outer iterations */
1019     outeriter        += nri;
1020
1021     /* Update outer/inner flops */
1022
1023     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*88);
1024 }