Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRF_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
78     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
79     __m128           dummy_mask,cutoff_mask;
80     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
81     __m128           one     = _mm_set1_ps(1.0);
82     __m128           two     = _mm_set1_ps(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     facel            = _mm_set1_ps(fr->epsfac);
95     charge           = mdatoms->chargeA;
96     krf              = _mm_set1_ps(fr->ic->k_rf);
97     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
98     crf              = _mm_set1_ps(fr->ic->c_rf);
99     nvdwtype         = fr->ntype;
100     vdwparam         = fr->nbfp;
101     vdwtype          = mdatoms->typeA;
102
103     /* Avoid stupid compiler warnings */
104     jnrA = jnrB = jnrC = jnrD = 0;
105     j_coord_offsetA = 0;
106     j_coord_offsetB = 0;
107     j_coord_offsetC = 0;
108     j_coord_offsetD = 0;
109
110     outeriter        = 0;
111     inneriter        = 0;
112
113     /* Start outer loop over neighborlists */
114     for(iidx=0; iidx<nri; iidx++)
115     {
116         /* Load shift vector for this list */
117         i_shift_offset   = DIM*shiftidx[iidx];
118         shX              = shiftvec[i_shift_offset+XX];
119         shY              = shiftvec[i_shift_offset+YY];
120         shZ              = shiftvec[i_shift_offset+ZZ];
121
122         /* Load limits for loop over neighbors */
123         j_index_start    = jindex[iidx];
124         j_index_end      = jindex[iidx+1];
125
126         /* Get outer coordinate index */
127         inr              = iinr[iidx];
128         i_coord_offset   = DIM*inr;
129
130         /* Load i particle coords and add shift vector */
131         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
132         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
133         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
134
135         fix0             = _mm_setzero_ps();
136         fiy0             = _mm_setzero_ps();
137         fiz0             = _mm_setzero_ps();
138
139         /* Load parameters for i particles */
140         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
141         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
142
143         /* Reset potential sums */
144         velecsum         = _mm_setzero_ps();
145         vvdwsum          = _mm_setzero_ps();
146
147         /* Start inner kernel loop */
148         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
149         {
150
151             /* Get j neighbor index, and coordinate index */
152             jnrA             = jjnr[jidx];
153             jnrB             = jjnr[jidx+1];
154             jnrC             = jjnr[jidx+2];
155             jnrD             = jjnr[jidx+3];
156
157             j_coord_offsetA  = DIM*jnrA;
158             j_coord_offsetB  = DIM*jnrB;
159             j_coord_offsetC  = DIM*jnrC;
160             j_coord_offsetD  = DIM*jnrD;
161
162             /* load j atom coordinates */
163             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
164                                               x+j_coord_offsetC,x+j_coord_offsetD,
165                                               &jx0,&jy0,&jz0);
166
167             /* Calculate displacement vector */
168             dx00             = _mm_sub_ps(ix0,jx0);
169             dy00             = _mm_sub_ps(iy0,jy0);
170             dz00             = _mm_sub_ps(iz0,jz0);
171
172             /* Calculate squared distance and things based on it */
173             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
174
175             rinv00           = gmx_mm_invsqrt_ps(rsq00);
176
177             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
178
179             /* Load parameters for j particles */
180             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
181                                                               charge+jnrC+0,charge+jnrD+0);
182             vdwjidx0A        = 2*vdwtype[jnrA+0];
183             vdwjidx0B        = 2*vdwtype[jnrB+0];
184             vdwjidx0C        = 2*vdwtype[jnrC+0];
185             vdwjidx0D        = 2*vdwtype[jnrD+0];
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             /* Compute parameters for interactions between i and j atoms */
192             qq00             = _mm_mul_ps(iq0,jq0);
193             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
194                                          vdwparam+vdwioffset0+vdwjidx0B,
195                                          vdwparam+vdwioffset0+vdwjidx0C,
196                                          vdwparam+vdwioffset0+vdwjidx0D,
197                                          &c6_00,&c12_00);
198
199             /* REACTION-FIELD ELECTROSTATICS */
200             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
201             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
202
203             /* LENNARD-JONES DISPERSION/REPULSION */
204
205             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
206             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
207             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
208             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
209             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
210
211             /* Update potential sum for this i atom from the interaction with this j atom. */
212             velecsum         = _mm_add_ps(velecsum,velec);
213             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
214
215             fscal            = _mm_add_ps(felec,fvdw);
216
217             /* Calculate temporary vectorial force */
218             tx               = _mm_mul_ps(fscal,dx00);
219             ty               = _mm_mul_ps(fscal,dy00);
220             tz               = _mm_mul_ps(fscal,dz00);
221
222             /* Update vectorial force */
223             fix0             = _mm_add_ps(fix0,tx);
224             fiy0             = _mm_add_ps(fiy0,ty);
225             fiz0             = _mm_add_ps(fiz0,tz);
226
227             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
228                                                    f+j_coord_offsetC,f+j_coord_offsetD,
229                                                    tx,ty,tz);
230
231             /* Inner loop uses 44 flops */
232         }
233
234         if(jidx<j_index_end)
235         {
236
237             /* Get j neighbor index, and coordinate index */
238             jnrA             = jjnr[jidx];
239             jnrB             = jjnr[jidx+1];
240             jnrC             = jjnr[jidx+2];
241             jnrD             = jjnr[jidx+3];
242
243             /* Sign of each element will be negative for non-real atoms.
244              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
245              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
246              */
247             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
248             jnrA       = (jnrA>=0) ? jnrA : 0;
249             jnrB       = (jnrB>=0) ? jnrB : 0;
250             jnrC       = (jnrC>=0) ? jnrC : 0;
251             jnrD       = (jnrD>=0) ? jnrD : 0;
252
253             j_coord_offsetA  = DIM*jnrA;
254             j_coord_offsetB  = DIM*jnrB;
255             j_coord_offsetC  = DIM*jnrC;
256             j_coord_offsetD  = DIM*jnrD;
257
258             /* load j atom coordinates */
259             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
260                                               x+j_coord_offsetC,x+j_coord_offsetD,
261                                               &jx0,&jy0,&jz0);
262
263             /* Calculate displacement vector */
264             dx00             = _mm_sub_ps(ix0,jx0);
265             dy00             = _mm_sub_ps(iy0,jy0);
266             dz00             = _mm_sub_ps(iz0,jz0);
267
268             /* Calculate squared distance and things based on it */
269             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
270
271             rinv00           = gmx_mm_invsqrt_ps(rsq00);
272
273             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
274
275             /* Load parameters for j particles */
276             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
277                                                               charge+jnrC+0,charge+jnrD+0);
278             vdwjidx0A        = 2*vdwtype[jnrA+0];
279             vdwjidx0B        = 2*vdwtype[jnrB+0];
280             vdwjidx0C        = 2*vdwtype[jnrC+0];
281             vdwjidx0D        = 2*vdwtype[jnrD+0];
282
283             /**************************
284              * CALCULATE INTERACTIONS *
285              **************************/
286
287             /* Compute parameters for interactions between i and j atoms */
288             qq00             = _mm_mul_ps(iq0,jq0);
289             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
290                                          vdwparam+vdwioffset0+vdwjidx0B,
291                                          vdwparam+vdwioffset0+vdwjidx0C,
292                                          vdwparam+vdwioffset0+vdwjidx0D,
293                                          &c6_00,&c12_00);
294
295             /* REACTION-FIELD ELECTROSTATICS */
296             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
297             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
298
299             /* LENNARD-JONES DISPERSION/REPULSION */
300
301             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
302             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
303             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
304             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
305             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velec            = _mm_andnot_ps(dummy_mask,velec);
309             velecsum         = _mm_add_ps(velecsum,velec);
310             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
311             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
312
313             fscal            = _mm_add_ps(felec,fvdw);
314
315             fscal            = _mm_andnot_ps(dummy_mask,fscal);
316
317             /* Calculate temporary vectorial force */
318             tx               = _mm_mul_ps(fscal,dx00);
319             ty               = _mm_mul_ps(fscal,dy00);
320             tz               = _mm_mul_ps(fscal,dz00);
321
322             /* Update vectorial force */
323             fix0             = _mm_add_ps(fix0,tx);
324             fiy0             = _mm_add_ps(fiy0,ty);
325             fiz0             = _mm_add_ps(fiz0,tz);
326
327             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
328                                                    f+j_coord_offsetC,f+j_coord_offsetD,
329                                                    tx,ty,tz);
330
331             /* Inner loop uses 44 flops */
332         }
333
334         /* End of innermost loop */
335
336         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
337                                               f+i_coord_offset,fshift+i_shift_offset);
338
339         ggid                        = gid[iidx];
340         /* Update potential energies */
341         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
342         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
343
344         /* Increment number of inner iterations */
345         inneriter                  += j_index_end - j_index_start;
346
347         /* Outer loop uses 12 flops */
348     }
349
350     /* Increment number of outer iterations */
351     outeriter        += nri;
352
353     /* Update outer/inner flops */
354
355     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*12 + inneriter*44);
356 }
357 /*
358  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse2_single
359  * Electrostatics interaction: ReactionField
360  * VdW interaction:            LennardJones
361  * Geometry:                   Particle-Particle
362  * Calculate force/pot:        Force
363  */
364 void
365 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse2_single
366                     (t_nblist * gmx_restrict                nlist,
367                      rvec * gmx_restrict                    xx,
368                      rvec * gmx_restrict                    ff,
369                      t_forcerec * gmx_restrict              fr,
370                      t_mdatoms * gmx_restrict               mdatoms,
371                      nb_kernel_data_t * gmx_restrict        kernel_data,
372                      t_nrnb * gmx_restrict                  nrnb)
373 {
374     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
375      * just 0 for non-waters.
376      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
377      * jnr indices corresponding to data put in the four positions in the SIMD register.
378      */
379     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
380     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
381     int              jnrA,jnrB,jnrC,jnrD;
382     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
383     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
384     real             shX,shY,shZ,rcutoff_scalar;
385     real             *shiftvec,*fshift,*x,*f;
386     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
387     int              vdwioffset0;
388     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
389     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
390     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
391     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
392     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
393     real             *charge;
394     int              nvdwtype;
395     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
396     int              *vdwtype;
397     real             *vdwparam;
398     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
399     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
400     __m128           dummy_mask,cutoff_mask;
401     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
402     __m128           one     = _mm_set1_ps(1.0);
403     __m128           two     = _mm_set1_ps(2.0);
404     x                = xx[0];
405     f                = ff[0];
406
407     nri              = nlist->nri;
408     iinr             = nlist->iinr;
409     jindex           = nlist->jindex;
410     jjnr             = nlist->jjnr;
411     shiftidx         = nlist->shift;
412     gid              = nlist->gid;
413     shiftvec         = fr->shift_vec[0];
414     fshift           = fr->fshift[0];
415     facel            = _mm_set1_ps(fr->epsfac);
416     charge           = mdatoms->chargeA;
417     krf              = _mm_set1_ps(fr->ic->k_rf);
418     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
419     crf              = _mm_set1_ps(fr->ic->c_rf);
420     nvdwtype         = fr->ntype;
421     vdwparam         = fr->nbfp;
422     vdwtype          = mdatoms->typeA;
423
424     /* Avoid stupid compiler warnings */
425     jnrA = jnrB = jnrC = jnrD = 0;
426     j_coord_offsetA = 0;
427     j_coord_offsetB = 0;
428     j_coord_offsetC = 0;
429     j_coord_offsetD = 0;
430
431     outeriter        = 0;
432     inneriter        = 0;
433
434     /* Start outer loop over neighborlists */
435     for(iidx=0; iidx<nri; iidx++)
436     {
437         /* Load shift vector for this list */
438         i_shift_offset   = DIM*shiftidx[iidx];
439         shX              = shiftvec[i_shift_offset+XX];
440         shY              = shiftvec[i_shift_offset+YY];
441         shZ              = shiftvec[i_shift_offset+ZZ];
442
443         /* Load limits for loop over neighbors */
444         j_index_start    = jindex[iidx];
445         j_index_end      = jindex[iidx+1];
446
447         /* Get outer coordinate index */
448         inr              = iinr[iidx];
449         i_coord_offset   = DIM*inr;
450
451         /* Load i particle coords and add shift vector */
452         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
453         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
454         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
455
456         fix0             = _mm_setzero_ps();
457         fiy0             = _mm_setzero_ps();
458         fiz0             = _mm_setzero_ps();
459
460         /* Load parameters for i particles */
461         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
462         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
463
464         /* Start inner kernel loop */
465         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
466         {
467
468             /* Get j neighbor index, and coordinate index */
469             jnrA             = jjnr[jidx];
470             jnrB             = jjnr[jidx+1];
471             jnrC             = jjnr[jidx+2];
472             jnrD             = jjnr[jidx+3];
473
474             j_coord_offsetA  = DIM*jnrA;
475             j_coord_offsetB  = DIM*jnrB;
476             j_coord_offsetC  = DIM*jnrC;
477             j_coord_offsetD  = DIM*jnrD;
478
479             /* load j atom coordinates */
480             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
481                                               x+j_coord_offsetC,x+j_coord_offsetD,
482                                               &jx0,&jy0,&jz0);
483
484             /* Calculate displacement vector */
485             dx00             = _mm_sub_ps(ix0,jx0);
486             dy00             = _mm_sub_ps(iy0,jy0);
487             dz00             = _mm_sub_ps(iz0,jz0);
488
489             /* Calculate squared distance and things based on it */
490             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
491
492             rinv00           = gmx_mm_invsqrt_ps(rsq00);
493
494             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
495
496             /* Load parameters for j particles */
497             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
498                                                               charge+jnrC+0,charge+jnrD+0);
499             vdwjidx0A        = 2*vdwtype[jnrA+0];
500             vdwjidx0B        = 2*vdwtype[jnrB+0];
501             vdwjidx0C        = 2*vdwtype[jnrC+0];
502             vdwjidx0D        = 2*vdwtype[jnrD+0];
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             /* Compute parameters for interactions between i and j atoms */
509             qq00             = _mm_mul_ps(iq0,jq0);
510             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
511                                          vdwparam+vdwioffset0+vdwjidx0B,
512                                          vdwparam+vdwioffset0+vdwjidx0C,
513                                          vdwparam+vdwioffset0+vdwjidx0D,
514                                          &c6_00,&c12_00);
515
516             /* REACTION-FIELD ELECTROSTATICS */
517             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
518
519             /* LENNARD-JONES DISPERSION/REPULSION */
520
521             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
522             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
523
524             fscal            = _mm_add_ps(felec,fvdw);
525
526             /* Calculate temporary vectorial force */
527             tx               = _mm_mul_ps(fscal,dx00);
528             ty               = _mm_mul_ps(fscal,dy00);
529             tz               = _mm_mul_ps(fscal,dz00);
530
531             /* Update vectorial force */
532             fix0             = _mm_add_ps(fix0,tx);
533             fiy0             = _mm_add_ps(fiy0,ty);
534             fiz0             = _mm_add_ps(fiz0,tz);
535
536             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
537                                                    f+j_coord_offsetC,f+j_coord_offsetD,
538                                                    tx,ty,tz);
539
540             /* Inner loop uses 34 flops */
541         }
542
543         if(jidx<j_index_end)
544         {
545
546             /* Get j neighbor index, and coordinate index */
547             jnrA             = jjnr[jidx];
548             jnrB             = jjnr[jidx+1];
549             jnrC             = jjnr[jidx+2];
550             jnrD             = jjnr[jidx+3];
551
552             /* Sign of each element will be negative for non-real atoms.
553              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
554              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
555              */
556             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
557             jnrA       = (jnrA>=0) ? jnrA : 0;
558             jnrB       = (jnrB>=0) ? jnrB : 0;
559             jnrC       = (jnrC>=0) ? jnrC : 0;
560             jnrD       = (jnrD>=0) ? jnrD : 0;
561
562             j_coord_offsetA  = DIM*jnrA;
563             j_coord_offsetB  = DIM*jnrB;
564             j_coord_offsetC  = DIM*jnrC;
565             j_coord_offsetD  = DIM*jnrD;
566
567             /* load j atom coordinates */
568             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
569                                               x+j_coord_offsetC,x+j_coord_offsetD,
570                                               &jx0,&jy0,&jz0);
571
572             /* Calculate displacement vector */
573             dx00             = _mm_sub_ps(ix0,jx0);
574             dy00             = _mm_sub_ps(iy0,jy0);
575             dz00             = _mm_sub_ps(iz0,jz0);
576
577             /* Calculate squared distance and things based on it */
578             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
579
580             rinv00           = gmx_mm_invsqrt_ps(rsq00);
581
582             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
583
584             /* Load parameters for j particles */
585             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
586                                                               charge+jnrC+0,charge+jnrD+0);
587             vdwjidx0A        = 2*vdwtype[jnrA+0];
588             vdwjidx0B        = 2*vdwtype[jnrB+0];
589             vdwjidx0C        = 2*vdwtype[jnrC+0];
590             vdwjidx0D        = 2*vdwtype[jnrD+0];
591
592             /**************************
593              * CALCULATE INTERACTIONS *
594              **************************/
595
596             /* Compute parameters for interactions between i and j atoms */
597             qq00             = _mm_mul_ps(iq0,jq0);
598             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
599                                          vdwparam+vdwioffset0+vdwjidx0B,
600                                          vdwparam+vdwioffset0+vdwjidx0C,
601                                          vdwparam+vdwioffset0+vdwjidx0D,
602                                          &c6_00,&c12_00);
603
604             /* REACTION-FIELD ELECTROSTATICS */
605             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
606
607             /* LENNARD-JONES DISPERSION/REPULSION */
608
609             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
610             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
611
612             fscal            = _mm_add_ps(felec,fvdw);
613
614             fscal            = _mm_andnot_ps(dummy_mask,fscal);
615
616             /* Calculate temporary vectorial force */
617             tx               = _mm_mul_ps(fscal,dx00);
618             ty               = _mm_mul_ps(fscal,dy00);
619             tz               = _mm_mul_ps(fscal,dz00);
620
621             /* Update vectorial force */
622             fix0             = _mm_add_ps(fix0,tx);
623             fiy0             = _mm_add_ps(fiy0,ty);
624             fiz0             = _mm_add_ps(fiz0,tz);
625
626             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
627                                                    f+j_coord_offsetC,f+j_coord_offsetD,
628                                                    tx,ty,tz);
629
630             /* Inner loop uses 34 flops */
631         }
632
633         /* End of innermost loop */
634
635         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
636                                               f+i_coord_offset,fshift+i_shift_offset);
637
638         /* Increment number of inner iterations */
639         inneriter                  += j_index_end - j_index_start;
640
641         /* Outer loop uses 10 flops */
642     }
643
644     /* Increment number of outer iterations */
645     outeriter        += nri;
646
647     /* Update outer/inner flops */
648
649     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*10 + inneriter*34);
650 }