Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRF_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse2_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_ps(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     krf              = _mm_set1_ps(fr->ic->k_rf);
116     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
117     crf              = _mm_set1_ps(fr->ic->c_rf);
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }  
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153         
154         fix0             = _mm_setzero_ps();
155         fiy0             = _mm_setzero_ps();
156         fiz0             = _mm_setzero_ps();
157
158         /* Load parameters for i particles */
159         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
160         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_ps();
164         vvdwsum          = _mm_setzero_ps();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             jnrC             = jjnr[jidx+2];
174             jnrD             = jjnr[jidx+3];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177             j_coord_offsetC  = DIM*jnrC;
178             j_coord_offsetD  = DIM*jnrD;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               x+j_coord_offsetC,x+j_coord_offsetD,
183                                               &jx0,&jy0,&jz0);
184
185             /* Calculate displacement vector */
186             dx00             = _mm_sub_ps(ix0,jx0);
187             dy00             = _mm_sub_ps(iy0,jy0);
188             dz00             = _mm_sub_ps(iz0,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
192
193             rinv00           = gmx_mm_invsqrt_ps(rsq00);
194
195             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
196
197             /* Load parameters for j particles */
198             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
199                                                               charge+jnrC+0,charge+jnrD+0);
200             vdwjidx0A        = 2*vdwtype[jnrA+0];
201             vdwjidx0B        = 2*vdwtype[jnrB+0];
202             vdwjidx0C        = 2*vdwtype[jnrC+0];
203             vdwjidx0D        = 2*vdwtype[jnrD+0];
204
205             /**************************
206              * CALCULATE INTERACTIONS *
207              **************************/
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq00             = _mm_mul_ps(iq0,jq0);
211             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
212                                          vdwparam+vdwioffset0+vdwjidx0B,
213                                          vdwparam+vdwioffset0+vdwjidx0C,
214                                          vdwparam+vdwioffset0+vdwjidx0D,
215                                          &c6_00,&c12_00);
216
217             /* REACTION-FIELD ELECTROSTATICS */
218             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
219             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
220
221             /* LENNARD-JONES DISPERSION/REPULSION */
222
223             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
224             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
225             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
226             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
227             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
228
229             /* Update potential sum for this i atom from the interaction with this j atom. */
230             velecsum         = _mm_add_ps(velecsum,velec);
231             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
232
233             fscal            = _mm_add_ps(felec,fvdw);
234
235             /* Calculate temporary vectorial force */
236             tx               = _mm_mul_ps(fscal,dx00);
237             ty               = _mm_mul_ps(fscal,dy00);
238             tz               = _mm_mul_ps(fscal,dz00);
239
240             /* Update vectorial force */
241             fix0             = _mm_add_ps(fix0,tx);
242             fiy0             = _mm_add_ps(fiy0,ty);
243             fiz0             = _mm_add_ps(fiz0,tz);
244
245             fjptrA             = f+j_coord_offsetA;
246             fjptrB             = f+j_coord_offsetB;
247             fjptrC             = f+j_coord_offsetC;
248             fjptrD             = f+j_coord_offsetD;
249             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
250             
251             /* Inner loop uses 44 flops */
252         }
253
254         if(jidx<j_index_end)
255         {
256
257             /* Get j neighbor index, and coordinate index */
258             jnrlistA         = jjnr[jidx];
259             jnrlistB         = jjnr[jidx+1];
260             jnrlistC         = jjnr[jidx+2];
261             jnrlistD         = jjnr[jidx+3];
262             /* Sign of each element will be negative for non-real atoms.
263              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
264              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
265              */
266             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
267             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
268             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
269             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
270             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
271             j_coord_offsetA  = DIM*jnrA;
272             j_coord_offsetB  = DIM*jnrB;
273             j_coord_offsetC  = DIM*jnrC;
274             j_coord_offsetD  = DIM*jnrD;
275
276             /* load j atom coordinates */
277             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
278                                               x+j_coord_offsetC,x+j_coord_offsetD,
279                                               &jx0,&jy0,&jz0);
280
281             /* Calculate displacement vector */
282             dx00             = _mm_sub_ps(ix0,jx0);
283             dy00             = _mm_sub_ps(iy0,jy0);
284             dz00             = _mm_sub_ps(iz0,jz0);
285
286             /* Calculate squared distance and things based on it */
287             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
288
289             rinv00           = gmx_mm_invsqrt_ps(rsq00);
290
291             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
292
293             /* Load parameters for j particles */
294             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
295                                                               charge+jnrC+0,charge+jnrD+0);
296             vdwjidx0A        = 2*vdwtype[jnrA+0];
297             vdwjidx0B        = 2*vdwtype[jnrB+0];
298             vdwjidx0C        = 2*vdwtype[jnrC+0];
299             vdwjidx0D        = 2*vdwtype[jnrD+0];
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq00             = _mm_mul_ps(iq0,jq0);
307             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
308                                          vdwparam+vdwioffset0+vdwjidx0B,
309                                          vdwparam+vdwioffset0+vdwjidx0C,
310                                          vdwparam+vdwioffset0+vdwjidx0D,
311                                          &c6_00,&c12_00);
312
313             /* REACTION-FIELD ELECTROSTATICS */
314             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
315             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
316
317             /* LENNARD-JONES DISPERSION/REPULSION */
318
319             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
320             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
321             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
322             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
323             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velec            = _mm_andnot_ps(dummy_mask,velec);
327             velecsum         = _mm_add_ps(velecsum,velec);
328             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
329             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
330
331             fscal            = _mm_add_ps(felec,fvdw);
332
333             fscal            = _mm_andnot_ps(dummy_mask,fscal);
334
335             /* Calculate temporary vectorial force */
336             tx               = _mm_mul_ps(fscal,dx00);
337             ty               = _mm_mul_ps(fscal,dy00);
338             tz               = _mm_mul_ps(fscal,dz00);
339
340             /* Update vectorial force */
341             fix0             = _mm_add_ps(fix0,tx);
342             fiy0             = _mm_add_ps(fiy0,ty);
343             fiz0             = _mm_add_ps(fiz0,tz);
344
345             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
346             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
347             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
348             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
349             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
350             
351             /* Inner loop uses 44 flops */
352         }
353
354         /* End of innermost loop */
355
356         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
357                                               f+i_coord_offset,fshift+i_shift_offset);
358
359         ggid                        = gid[iidx];
360         /* Update potential energies */
361         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
362         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
363
364         /* Increment number of inner iterations */
365         inneriter                  += j_index_end - j_index_start;
366
367         /* Outer loop uses 9 flops */
368     }
369
370     /* Increment number of outer iterations */
371     outeriter        += nri;
372
373     /* Update outer/inner flops */
374
375     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*44);
376 }
377 /*
378  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse2_single
379  * Electrostatics interaction: ReactionField
380  * VdW interaction:            LennardJones
381  * Geometry:                   Particle-Particle
382  * Calculate force/pot:        Force
383  */
384 void
385 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse2_single
386                     (t_nblist                    * gmx_restrict       nlist,
387                      rvec                        * gmx_restrict          xx,
388                      rvec                        * gmx_restrict          ff,
389                      t_forcerec                  * gmx_restrict          fr,
390                      t_mdatoms                   * gmx_restrict     mdatoms,
391                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
392                      t_nrnb                      * gmx_restrict        nrnb)
393 {
394     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
395      * just 0 for non-waters.
396      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
397      * jnr indices corresponding to data put in the four positions in the SIMD register.
398      */
399     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
400     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
401     int              jnrA,jnrB,jnrC,jnrD;
402     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
403     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
404     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
405     real             rcutoff_scalar;
406     real             *shiftvec,*fshift,*x,*f;
407     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
408     real             scratch[4*DIM];
409     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
410     int              vdwioffset0;
411     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
412     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
413     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
414     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
415     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
416     real             *charge;
417     int              nvdwtype;
418     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
419     int              *vdwtype;
420     real             *vdwparam;
421     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
422     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
423     __m128           dummy_mask,cutoff_mask;
424     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
425     __m128           one     = _mm_set1_ps(1.0);
426     __m128           two     = _mm_set1_ps(2.0);
427     x                = xx[0];
428     f                = ff[0];
429
430     nri              = nlist->nri;
431     iinr             = nlist->iinr;
432     jindex           = nlist->jindex;
433     jjnr             = nlist->jjnr;
434     shiftidx         = nlist->shift;
435     gid              = nlist->gid;
436     shiftvec         = fr->shift_vec[0];
437     fshift           = fr->fshift[0];
438     facel            = _mm_set1_ps(fr->epsfac);
439     charge           = mdatoms->chargeA;
440     krf              = _mm_set1_ps(fr->ic->k_rf);
441     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
442     crf              = _mm_set1_ps(fr->ic->c_rf);
443     nvdwtype         = fr->ntype;
444     vdwparam         = fr->nbfp;
445     vdwtype          = mdatoms->typeA;
446
447     /* Avoid stupid compiler warnings */
448     jnrA = jnrB = jnrC = jnrD = 0;
449     j_coord_offsetA = 0;
450     j_coord_offsetB = 0;
451     j_coord_offsetC = 0;
452     j_coord_offsetD = 0;
453
454     outeriter        = 0;
455     inneriter        = 0;
456
457     for(iidx=0;iidx<4*DIM;iidx++)
458     {
459         scratch[iidx] = 0.0;
460     }  
461
462     /* Start outer loop over neighborlists */
463     for(iidx=0; iidx<nri; iidx++)
464     {
465         /* Load shift vector for this list */
466         i_shift_offset   = DIM*shiftidx[iidx];
467
468         /* Load limits for loop over neighbors */
469         j_index_start    = jindex[iidx];
470         j_index_end      = jindex[iidx+1];
471
472         /* Get outer coordinate index */
473         inr              = iinr[iidx];
474         i_coord_offset   = DIM*inr;
475
476         /* Load i particle coords and add shift vector */
477         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
478         
479         fix0             = _mm_setzero_ps();
480         fiy0             = _mm_setzero_ps();
481         fiz0             = _mm_setzero_ps();
482
483         /* Load parameters for i particles */
484         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
485         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
486
487         /* Start inner kernel loop */
488         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
489         {
490
491             /* Get j neighbor index, and coordinate index */
492             jnrA             = jjnr[jidx];
493             jnrB             = jjnr[jidx+1];
494             jnrC             = jjnr[jidx+2];
495             jnrD             = jjnr[jidx+3];
496             j_coord_offsetA  = DIM*jnrA;
497             j_coord_offsetB  = DIM*jnrB;
498             j_coord_offsetC  = DIM*jnrC;
499             j_coord_offsetD  = DIM*jnrD;
500
501             /* load j atom coordinates */
502             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
503                                               x+j_coord_offsetC,x+j_coord_offsetD,
504                                               &jx0,&jy0,&jz0);
505
506             /* Calculate displacement vector */
507             dx00             = _mm_sub_ps(ix0,jx0);
508             dy00             = _mm_sub_ps(iy0,jy0);
509             dz00             = _mm_sub_ps(iz0,jz0);
510
511             /* Calculate squared distance and things based on it */
512             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
513
514             rinv00           = gmx_mm_invsqrt_ps(rsq00);
515
516             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
517
518             /* Load parameters for j particles */
519             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
520                                                               charge+jnrC+0,charge+jnrD+0);
521             vdwjidx0A        = 2*vdwtype[jnrA+0];
522             vdwjidx0B        = 2*vdwtype[jnrB+0];
523             vdwjidx0C        = 2*vdwtype[jnrC+0];
524             vdwjidx0D        = 2*vdwtype[jnrD+0];
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq00             = _mm_mul_ps(iq0,jq0);
532             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
533                                          vdwparam+vdwioffset0+vdwjidx0B,
534                                          vdwparam+vdwioffset0+vdwjidx0C,
535                                          vdwparam+vdwioffset0+vdwjidx0D,
536                                          &c6_00,&c12_00);
537
538             /* REACTION-FIELD ELECTROSTATICS */
539             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
540
541             /* LENNARD-JONES DISPERSION/REPULSION */
542
543             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
544             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
545
546             fscal            = _mm_add_ps(felec,fvdw);
547
548             /* Calculate temporary vectorial force */
549             tx               = _mm_mul_ps(fscal,dx00);
550             ty               = _mm_mul_ps(fscal,dy00);
551             tz               = _mm_mul_ps(fscal,dz00);
552
553             /* Update vectorial force */
554             fix0             = _mm_add_ps(fix0,tx);
555             fiy0             = _mm_add_ps(fiy0,ty);
556             fiz0             = _mm_add_ps(fiz0,tz);
557
558             fjptrA             = f+j_coord_offsetA;
559             fjptrB             = f+j_coord_offsetB;
560             fjptrC             = f+j_coord_offsetC;
561             fjptrD             = f+j_coord_offsetD;
562             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
563             
564             /* Inner loop uses 34 flops */
565         }
566
567         if(jidx<j_index_end)
568         {
569
570             /* Get j neighbor index, and coordinate index */
571             jnrlistA         = jjnr[jidx];
572             jnrlistB         = jjnr[jidx+1];
573             jnrlistC         = jjnr[jidx+2];
574             jnrlistD         = jjnr[jidx+3];
575             /* Sign of each element will be negative for non-real atoms.
576              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
577              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
578              */
579             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
580             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
581             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
582             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
583             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
584             j_coord_offsetA  = DIM*jnrA;
585             j_coord_offsetB  = DIM*jnrB;
586             j_coord_offsetC  = DIM*jnrC;
587             j_coord_offsetD  = DIM*jnrD;
588
589             /* load j atom coordinates */
590             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
591                                               x+j_coord_offsetC,x+j_coord_offsetD,
592                                               &jx0,&jy0,&jz0);
593
594             /* Calculate displacement vector */
595             dx00             = _mm_sub_ps(ix0,jx0);
596             dy00             = _mm_sub_ps(iy0,jy0);
597             dz00             = _mm_sub_ps(iz0,jz0);
598
599             /* Calculate squared distance and things based on it */
600             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
601
602             rinv00           = gmx_mm_invsqrt_ps(rsq00);
603
604             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
605
606             /* Load parameters for j particles */
607             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
608                                                               charge+jnrC+0,charge+jnrD+0);
609             vdwjidx0A        = 2*vdwtype[jnrA+0];
610             vdwjidx0B        = 2*vdwtype[jnrB+0];
611             vdwjidx0C        = 2*vdwtype[jnrC+0];
612             vdwjidx0D        = 2*vdwtype[jnrD+0];
613
614             /**************************
615              * CALCULATE INTERACTIONS *
616              **************************/
617
618             /* Compute parameters for interactions between i and j atoms */
619             qq00             = _mm_mul_ps(iq0,jq0);
620             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
621                                          vdwparam+vdwioffset0+vdwjidx0B,
622                                          vdwparam+vdwioffset0+vdwjidx0C,
623                                          vdwparam+vdwioffset0+vdwjidx0D,
624                                          &c6_00,&c12_00);
625
626             /* REACTION-FIELD ELECTROSTATICS */
627             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
628
629             /* LENNARD-JONES DISPERSION/REPULSION */
630
631             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
632             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
633
634             fscal            = _mm_add_ps(felec,fvdw);
635
636             fscal            = _mm_andnot_ps(dummy_mask,fscal);
637
638             /* Calculate temporary vectorial force */
639             tx               = _mm_mul_ps(fscal,dx00);
640             ty               = _mm_mul_ps(fscal,dy00);
641             tz               = _mm_mul_ps(fscal,dz00);
642
643             /* Update vectorial force */
644             fix0             = _mm_add_ps(fix0,tx);
645             fiy0             = _mm_add_ps(fiy0,ty);
646             fiz0             = _mm_add_ps(fiz0,tz);
647
648             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
649             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
650             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
651             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
652             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
653             
654             /* Inner loop uses 34 flops */
655         }
656
657         /* End of innermost loop */
658
659         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
660                                               f+i_coord_offset,fshift+i_shift_offset);
661
662         /* Increment number of inner iterations */
663         inneriter                  += j_index_end - j_index_start;
664
665         /* Outer loop uses 7 flops */
666     }
667
668     /* Increment number of outer iterations */
669     outeriter        += nri;
670
671     /* Update outer/inner flops */
672
673     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*34);
674 }