518f413a3d7b3268a5bb5eef605e85671e236713
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRF_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse2_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           dummy_mask,cutoff_mask;
97     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
98     __m128           one     = _mm_set1_ps(1.0);
99     __m128           two     = _mm_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm_set1_ps(fr->epsfac);
112     charge           = mdatoms->chargeA;
113     krf              = _mm_set1_ps(fr->ic->k_rf);
114     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
115     crf              = _mm_set1_ps(fr->ic->c_rf);
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = jnrC = jnrD = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124     j_coord_offsetC = 0;
125     j_coord_offsetD = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     for(iidx=0;iidx<4*DIM;iidx++)
131     {
132         scratch[iidx] = 0.0;
133     }  
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151         
152         fix0             = _mm_setzero_ps();
153         fiy0             = _mm_setzero_ps();
154         fiz0             = _mm_setzero_ps();
155
156         /* Load parameters for i particles */
157         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
158         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
159
160         /* Reset potential sums */
161         velecsum         = _mm_setzero_ps();
162         vvdwsum          = _mm_setzero_ps();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175             j_coord_offsetC  = DIM*jnrC;
176             j_coord_offsetD  = DIM*jnrD;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               x+j_coord_offsetC,x+j_coord_offsetD,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm_sub_ps(ix0,jx0);
185             dy00             = _mm_sub_ps(iy0,jy0);
186             dz00             = _mm_sub_ps(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
190
191             rinv00           = gmx_mm_invsqrt_ps(rsq00);
192
193             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
194
195             /* Load parameters for j particles */
196             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
197                                                               charge+jnrC+0,charge+jnrD+0);
198             vdwjidx0A        = 2*vdwtype[jnrA+0];
199             vdwjidx0B        = 2*vdwtype[jnrB+0];
200             vdwjidx0C        = 2*vdwtype[jnrC+0];
201             vdwjidx0D        = 2*vdwtype[jnrD+0];
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _mm_mul_ps(iq0,jq0);
209             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
210                                          vdwparam+vdwioffset0+vdwjidx0B,
211                                          vdwparam+vdwioffset0+vdwjidx0C,
212                                          vdwparam+vdwioffset0+vdwjidx0D,
213                                          &c6_00,&c12_00);
214
215             /* REACTION-FIELD ELECTROSTATICS */
216             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
217             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
218
219             /* LENNARD-JONES DISPERSION/REPULSION */
220
221             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
222             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
223             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
224             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
225             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
226
227             /* Update potential sum for this i atom from the interaction with this j atom. */
228             velecsum         = _mm_add_ps(velecsum,velec);
229             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
230
231             fscal            = _mm_add_ps(felec,fvdw);
232
233             /* Calculate temporary vectorial force */
234             tx               = _mm_mul_ps(fscal,dx00);
235             ty               = _mm_mul_ps(fscal,dy00);
236             tz               = _mm_mul_ps(fscal,dz00);
237
238             /* Update vectorial force */
239             fix0             = _mm_add_ps(fix0,tx);
240             fiy0             = _mm_add_ps(fiy0,ty);
241             fiz0             = _mm_add_ps(fiz0,tz);
242
243             fjptrA             = f+j_coord_offsetA;
244             fjptrB             = f+j_coord_offsetB;
245             fjptrC             = f+j_coord_offsetC;
246             fjptrD             = f+j_coord_offsetD;
247             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
248             
249             /* Inner loop uses 44 flops */
250         }
251
252         if(jidx<j_index_end)
253         {
254
255             /* Get j neighbor index, and coordinate index */
256             jnrlistA         = jjnr[jidx];
257             jnrlistB         = jjnr[jidx+1];
258             jnrlistC         = jjnr[jidx+2];
259             jnrlistD         = jjnr[jidx+3];
260             /* Sign of each element will be negative for non-real atoms.
261              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
262              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
263              */
264             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
265             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
266             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
267             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
268             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
269             j_coord_offsetA  = DIM*jnrA;
270             j_coord_offsetB  = DIM*jnrB;
271             j_coord_offsetC  = DIM*jnrC;
272             j_coord_offsetD  = DIM*jnrD;
273
274             /* load j atom coordinates */
275             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
276                                               x+j_coord_offsetC,x+j_coord_offsetD,
277                                               &jx0,&jy0,&jz0);
278
279             /* Calculate displacement vector */
280             dx00             = _mm_sub_ps(ix0,jx0);
281             dy00             = _mm_sub_ps(iy0,jy0);
282             dz00             = _mm_sub_ps(iz0,jz0);
283
284             /* Calculate squared distance and things based on it */
285             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
286
287             rinv00           = gmx_mm_invsqrt_ps(rsq00);
288
289             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
290
291             /* Load parameters for j particles */
292             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
293                                                               charge+jnrC+0,charge+jnrD+0);
294             vdwjidx0A        = 2*vdwtype[jnrA+0];
295             vdwjidx0B        = 2*vdwtype[jnrB+0];
296             vdwjidx0C        = 2*vdwtype[jnrC+0];
297             vdwjidx0D        = 2*vdwtype[jnrD+0];
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq00             = _mm_mul_ps(iq0,jq0);
305             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
306                                          vdwparam+vdwioffset0+vdwjidx0B,
307                                          vdwparam+vdwioffset0+vdwjidx0C,
308                                          vdwparam+vdwioffset0+vdwjidx0D,
309                                          &c6_00,&c12_00);
310
311             /* REACTION-FIELD ELECTROSTATICS */
312             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
313             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
314
315             /* LENNARD-JONES DISPERSION/REPULSION */
316
317             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
318             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
319             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
320             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
321             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
322
323             /* Update potential sum for this i atom from the interaction with this j atom. */
324             velec            = _mm_andnot_ps(dummy_mask,velec);
325             velecsum         = _mm_add_ps(velecsum,velec);
326             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
327             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
328
329             fscal            = _mm_add_ps(felec,fvdw);
330
331             fscal            = _mm_andnot_ps(dummy_mask,fscal);
332
333             /* Calculate temporary vectorial force */
334             tx               = _mm_mul_ps(fscal,dx00);
335             ty               = _mm_mul_ps(fscal,dy00);
336             tz               = _mm_mul_ps(fscal,dz00);
337
338             /* Update vectorial force */
339             fix0             = _mm_add_ps(fix0,tx);
340             fiy0             = _mm_add_ps(fiy0,ty);
341             fiz0             = _mm_add_ps(fiz0,tz);
342
343             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
344             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
345             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
346             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
347             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
348             
349             /* Inner loop uses 44 flops */
350         }
351
352         /* End of innermost loop */
353
354         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
355                                               f+i_coord_offset,fshift+i_shift_offset);
356
357         ggid                        = gid[iidx];
358         /* Update potential energies */
359         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
360         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
361
362         /* Increment number of inner iterations */
363         inneriter                  += j_index_end - j_index_start;
364
365         /* Outer loop uses 9 flops */
366     }
367
368     /* Increment number of outer iterations */
369     outeriter        += nri;
370
371     /* Update outer/inner flops */
372
373     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*44);
374 }
375 /*
376  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse2_single
377  * Electrostatics interaction: ReactionField
378  * VdW interaction:            LennardJones
379  * Geometry:                   Particle-Particle
380  * Calculate force/pot:        Force
381  */
382 void
383 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse2_single
384                     (t_nblist                    * gmx_restrict       nlist,
385                      rvec                        * gmx_restrict          xx,
386                      rvec                        * gmx_restrict          ff,
387                      t_forcerec                  * gmx_restrict          fr,
388                      t_mdatoms                   * gmx_restrict     mdatoms,
389                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
390                      t_nrnb                      * gmx_restrict        nrnb)
391 {
392     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
393      * just 0 for non-waters.
394      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
395      * jnr indices corresponding to data put in the four positions in the SIMD register.
396      */
397     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
398     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
399     int              jnrA,jnrB,jnrC,jnrD;
400     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
401     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
402     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
403     real             rcutoff_scalar;
404     real             *shiftvec,*fshift,*x,*f;
405     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
406     real             scratch[4*DIM];
407     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
408     int              vdwioffset0;
409     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
410     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
411     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
412     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
413     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
414     real             *charge;
415     int              nvdwtype;
416     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
417     int              *vdwtype;
418     real             *vdwparam;
419     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
420     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
421     __m128           dummy_mask,cutoff_mask;
422     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
423     __m128           one     = _mm_set1_ps(1.0);
424     __m128           two     = _mm_set1_ps(2.0);
425     x                = xx[0];
426     f                = ff[0];
427
428     nri              = nlist->nri;
429     iinr             = nlist->iinr;
430     jindex           = nlist->jindex;
431     jjnr             = nlist->jjnr;
432     shiftidx         = nlist->shift;
433     gid              = nlist->gid;
434     shiftvec         = fr->shift_vec[0];
435     fshift           = fr->fshift[0];
436     facel            = _mm_set1_ps(fr->epsfac);
437     charge           = mdatoms->chargeA;
438     krf              = _mm_set1_ps(fr->ic->k_rf);
439     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
440     crf              = _mm_set1_ps(fr->ic->c_rf);
441     nvdwtype         = fr->ntype;
442     vdwparam         = fr->nbfp;
443     vdwtype          = mdatoms->typeA;
444
445     /* Avoid stupid compiler warnings */
446     jnrA = jnrB = jnrC = jnrD = 0;
447     j_coord_offsetA = 0;
448     j_coord_offsetB = 0;
449     j_coord_offsetC = 0;
450     j_coord_offsetD = 0;
451
452     outeriter        = 0;
453     inneriter        = 0;
454
455     for(iidx=0;iidx<4*DIM;iidx++)
456     {
457         scratch[iidx] = 0.0;
458     }  
459
460     /* Start outer loop over neighborlists */
461     for(iidx=0; iidx<nri; iidx++)
462     {
463         /* Load shift vector for this list */
464         i_shift_offset   = DIM*shiftidx[iidx];
465
466         /* Load limits for loop over neighbors */
467         j_index_start    = jindex[iidx];
468         j_index_end      = jindex[iidx+1];
469
470         /* Get outer coordinate index */
471         inr              = iinr[iidx];
472         i_coord_offset   = DIM*inr;
473
474         /* Load i particle coords and add shift vector */
475         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
476         
477         fix0             = _mm_setzero_ps();
478         fiy0             = _mm_setzero_ps();
479         fiz0             = _mm_setzero_ps();
480
481         /* Load parameters for i particles */
482         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
483         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
484
485         /* Start inner kernel loop */
486         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
487         {
488
489             /* Get j neighbor index, and coordinate index */
490             jnrA             = jjnr[jidx];
491             jnrB             = jjnr[jidx+1];
492             jnrC             = jjnr[jidx+2];
493             jnrD             = jjnr[jidx+3];
494             j_coord_offsetA  = DIM*jnrA;
495             j_coord_offsetB  = DIM*jnrB;
496             j_coord_offsetC  = DIM*jnrC;
497             j_coord_offsetD  = DIM*jnrD;
498
499             /* load j atom coordinates */
500             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
501                                               x+j_coord_offsetC,x+j_coord_offsetD,
502                                               &jx0,&jy0,&jz0);
503
504             /* Calculate displacement vector */
505             dx00             = _mm_sub_ps(ix0,jx0);
506             dy00             = _mm_sub_ps(iy0,jy0);
507             dz00             = _mm_sub_ps(iz0,jz0);
508
509             /* Calculate squared distance and things based on it */
510             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
511
512             rinv00           = gmx_mm_invsqrt_ps(rsq00);
513
514             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
515
516             /* Load parameters for j particles */
517             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
518                                                               charge+jnrC+0,charge+jnrD+0);
519             vdwjidx0A        = 2*vdwtype[jnrA+0];
520             vdwjidx0B        = 2*vdwtype[jnrB+0];
521             vdwjidx0C        = 2*vdwtype[jnrC+0];
522             vdwjidx0D        = 2*vdwtype[jnrD+0];
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             /* Compute parameters for interactions between i and j atoms */
529             qq00             = _mm_mul_ps(iq0,jq0);
530             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
531                                          vdwparam+vdwioffset0+vdwjidx0B,
532                                          vdwparam+vdwioffset0+vdwjidx0C,
533                                          vdwparam+vdwioffset0+vdwjidx0D,
534                                          &c6_00,&c12_00);
535
536             /* REACTION-FIELD ELECTROSTATICS */
537             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
538
539             /* LENNARD-JONES DISPERSION/REPULSION */
540
541             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
542             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
543
544             fscal            = _mm_add_ps(felec,fvdw);
545
546             /* Calculate temporary vectorial force */
547             tx               = _mm_mul_ps(fscal,dx00);
548             ty               = _mm_mul_ps(fscal,dy00);
549             tz               = _mm_mul_ps(fscal,dz00);
550
551             /* Update vectorial force */
552             fix0             = _mm_add_ps(fix0,tx);
553             fiy0             = _mm_add_ps(fiy0,ty);
554             fiz0             = _mm_add_ps(fiz0,tz);
555
556             fjptrA             = f+j_coord_offsetA;
557             fjptrB             = f+j_coord_offsetB;
558             fjptrC             = f+j_coord_offsetC;
559             fjptrD             = f+j_coord_offsetD;
560             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
561             
562             /* Inner loop uses 34 flops */
563         }
564
565         if(jidx<j_index_end)
566         {
567
568             /* Get j neighbor index, and coordinate index */
569             jnrlistA         = jjnr[jidx];
570             jnrlistB         = jjnr[jidx+1];
571             jnrlistC         = jjnr[jidx+2];
572             jnrlistD         = jjnr[jidx+3];
573             /* Sign of each element will be negative for non-real atoms.
574              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
575              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
576              */
577             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
578             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
579             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
580             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
581             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
582             j_coord_offsetA  = DIM*jnrA;
583             j_coord_offsetB  = DIM*jnrB;
584             j_coord_offsetC  = DIM*jnrC;
585             j_coord_offsetD  = DIM*jnrD;
586
587             /* load j atom coordinates */
588             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
589                                               x+j_coord_offsetC,x+j_coord_offsetD,
590                                               &jx0,&jy0,&jz0);
591
592             /* Calculate displacement vector */
593             dx00             = _mm_sub_ps(ix0,jx0);
594             dy00             = _mm_sub_ps(iy0,jy0);
595             dz00             = _mm_sub_ps(iz0,jz0);
596
597             /* Calculate squared distance and things based on it */
598             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
599
600             rinv00           = gmx_mm_invsqrt_ps(rsq00);
601
602             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
603
604             /* Load parameters for j particles */
605             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
606                                                               charge+jnrC+0,charge+jnrD+0);
607             vdwjidx0A        = 2*vdwtype[jnrA+0];
608             vdwjidx0B        = 2*vdwtype[jnrB+0];
609             vdwjidx0C        = 2*vdwtype[jnrC+0];
610             vdwjidx0D        = 2*vdwtype[jnrD+0];
611
612             /**************************
613              * CALCULATE INTERACTIONS *
614              **************************/
615
616             /* Compute parameters for interactions between i and j atoms */
617             qq00             = _mm_mul_ps(iq0,jq0);
618             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
619                                          vdwparam+vdwioffset0+vdwjidx0B,
620                                          vdwparam+vdwioffset0+vdwjidx0C,
621                                          vdwparam+vdwioffset0+vdwjidx0D,
622                                          &c6_00,&c12_00);
623
624             /* REACTION-FIELD ELECTROSTATICS */
625             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
626
627             /* LENNARD-JONES DISPERSION/REPULSION */
628
629             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
630             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
631
632             fscal            = _mm_add_ps(felec,fvdw);
633
634             fscal            = _mm_andnot_ps(dummy_mask,fscal);
635
636             /* Calculate temporary vectorial force */
637             tx               = _mm_mul_ps(fscal,dx00);
638             ty               = _mm_mul_ps(fscal,dy00);
639             tz               = _mm_mul_ps(fscal,dz00);
640
641             /* Update vectorial force */
642             fix0             = _mm_add_ps(fix0,tx);
643             fiy0             = _mm_add_ps(fiy0,ty);
644             fiz0             = _mm_add_ps(fiz0,tz);
645
646             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
647             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
648             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
649             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
650             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
651             
652             /* Inner loop uses 34 flops */
653         }
654
655         /* End of innermost loop */
656
657         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
658                                               f+i_coord_offset,fshift+i_shift_offset);
659
660         /* Increment number of inner iterations */
661         inneriter                  += j_index_end - j_index_start;
662
663         /* Outer loop uses 7 flops */
664     }
665
666     /* Increment number of outer iterations */
667     outeriter        += nri;
668
669     /* Update outer/inner flops */
670
671     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*34);
672 }