Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_sse2_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_sse2_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125     krf              = _mm_set1_ps(fr->ic->k_rf);
126     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
127     crf              = _mm_set1_ps(fr->ic->c_rf);
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
138     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
139     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }  
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
174         
175         fix0             = _mm_setzero_ps();
176         fiy0             = _mm_setzero_ps();
177         fiz0             = _mm_setzero_ps();
178         fix1             = _mm_setzero_ps();
179         fiy1             = _mm_setzero_ps();
180         fiz1             = _mm_setzero_ps();
181         fix2             = _mm_setzero_ps();
182         fiy2             = _mm_setzero_ps();
183         fiz2             = _mm_setzero_ps();
184         fix3             = _mm_setzero_ps();
185         fiy3             = _mm_setzero_ps();
186         fiz3             = _mm_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm_setzero_ps();
190         vvdwsum          = _mm_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               x+j_coord_offsetC,x+j_coord_offsetD,
209                                               &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm_sub_ps(ix0,jx0);
213             dy00             = _mm_sub_ps(iy0,jy0);
214             dz00             = _mm_sub_ps(iz0,jz0);
215             dx10             = _mm_sub_ps(ix1,jx0);
216             dy10             = _mm_sub_ps(iy1,jy0);
217             dz10             = _mm_sub_ps(iz1,jz0);
218             dx20             = _mm_sub_ps(ix2,jx0);
219             dy20             = _mm_sub_ps(iy2,jy0);
220             dz20             = _mm_sub_ps(iz2,jz0);
221             dx30             = _mm_sub_ps(ix3,jx0);
222             dy30             = _mm_sub_ps(iy3,jy0);
223             dz30             = _mm_sub_ps(iz3,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
227             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
228             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
229             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
230
231             rinv00           = sse2_invsqrt_f(rsq00);
232             rinv10           = sse2_invsqrt_f(rsq10);
233             rinv20           = sse2_invsqrt_f(rsq20);
234             rinv30           = sse2_invsqrt_f(rsq30);
235
236             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
237             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
238             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
239
240             /* Load parameters for j particles */
241             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
242                                                               charge+jnrC+0,charge+jnrD+0);
243             vdwjidx0A        = 2*vdwtype[jnrA+0];
244             vdwjidx0B        = 2*vdwtype[jnrB+0];
245             vdwjidx0C        = 2*vdwtype[jnrC+0];
246             vdwjidx0D        = 2*vdwtype[jnrD+0];
247
248             fjx0             = _mm_setzero_ps();
249             fjy0             = _mm_setzero_ps();
250             fjz0             = _mm_setzero_ps();
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             r00              = _mm_mul_ps(rsq00,rinv00);
257
258             /* Compute parameters for interactions between i and j atoms */
259             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
260                                          vdwparam+vdwioffset0+vdwjidx0B,
261                                          vdwparam+vdwioffset0+vdwjidx0C,
262                                          vdwparam+vdwioffset0+vdwjidx0D,
263                                          &c6_00,&c12_00);
264
265             /* Calculate table index by multiplying r with table scale and truncate to integer */
266             rt               = _mm_mul_ps(r00,vftabscale);
267             vfitab           = _mm_cvttps_epi32(rt);
268             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
269             vfitab           = _mm_slli_epi32(vfitab,3);
270
271             /* CUBIC SPLINE TABLE DISPERSION */
272             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
273             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
274             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
275             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
276             _MM_TRANSPOSE4_PS(Y,F,G,H);
277             Heps             = _mm_mul_ps(vfeps,H);
278             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
279             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
280             vvdw6            = _mm_mul_ps(c6_00,VV);
281             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
282             fvdw6            = _mm_mul_ps(c6_00,FF);
283
284             /* CUBIC SPLINE TABLE REPULSION */
285             vfitab           = _mm_add_epi32(vfitab,ifour);
286             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
287             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
288             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
289             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
290             _MM_TRANSPOSE4_PS(Y,F,G,H);
291             Heps             = _mm_mul_ps(vfeps,H);
292             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
293             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
294             vvdw12           = _mm_mul_ps(c12_00,VV);
295             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
296             fvdw12           = _mm_mul_ps(c12_00,FF);
297             vvdw             = _mm_add_ps(vvdw12,vvdw6);
298             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
302
303             fscal            = fvdw;
304
305             /* Calculate temporary vectorial force */
306             tx               = _mm_mul_ps(fscal,dx00);
307             ty               = _mm_mul_ps(fscal,dy00);
308             tz               = _mm_mul_ps(fscal,dz00);
309
310             /* Update vectorial force */
311             fix0             = _mm_add_ps(fix0,tx);
312             fiy0             = _mm_add_ps(fiy0,ty);
313             fiz0             = _mm_add_ps(fiz0,tz);
314
315             fjx0             = _mm_add_ps(fjx0,tx);
316             fjy0             = _mm_add_ps(fjy0,ty);
317             fjz0             = _mm_add_ps(fjz0,tz);
318             
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq10             = _mm_mul_ps(iq1,jq0);
325
326             /* REACTION-FIELD ELECTROSTATICS */
327             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
328             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velecsum         = _mm_add_ps(velecsum,velec);
332
333             fscal            = felec;
334
335             /* Calculate temporary vectorial force */
336             tx               = _mm_mul_ps(fscal,dx10);
337             ty               = _mm_mul_ps(fscal,dy10);
338             tz               = _mm_mul_ps(fscal,dz10);
339
340             /* Update vectorial force */
341             fix1             = _mm_add_ps(fix1,tx);
342             fiy1             = _mm_add_ps(fiy1,ty);
343             fiz1             = _mm_add_ps(fiz1,tz);
344
345             fjx0             = _mm_add_ps(fjx0,tx);
346             fjy0             = _mm_add_ps(fjy0,ty);
347             fjz0             = _mm_add_ps(fjz0,tz);
348             
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             /* Compute parameters for interactions between i and j atoms */
354             qq20             = _mm_mul_ps(iq2,jq0);
355
356             /* REACTION-FIELD ELECTROSTATICS */
357             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
358             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velecsum         = _mm_add_ps(velecsum,velec);
362
363             fscal            = felec;
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm_mul_ps(fscal,dx20);
367             ty               = _mm_mul_ps(fscal,dy20);
368             tz               = _mm_mul_ps(fscal,dz20);
369
370             /* Update vectorial force */
371             fix2             = _mm_add_ps(fix2,tx);
372             fiy2             = _mm_add_ps(fiy2,ty);
373             fiz2             = _mm_add_ps(fiz2,tz);
374
375             fjx0             = _mm_add_ps(fjx0,tx);
376             fjy0             = _mm_add_ps(fjy0,ty);
377             fjz0             = _mm_add_ps(fjz0,tz);
378             
379             /**************************
380              * CALCULATE INTERACTIONS *
381              **************************/
382
383             /* Compute parameters for interactions between i and j atoms */
384             qq30             = _mm_mul_ps(iq3,jq0);
385
386             /* REACTION-FIELD ELECTROSTATICS */
387             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
388             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velecsum         = _mm_add_ps(velecsum,velec);
392
393             fscal            = felec;
394
395             /* Calculate temporary vectorial force */
396             tx               = _mm_mul_ps(fscal,dx30);
397             ty               = _mm_mul_ps(fscal,dy30);
398             tz               = _mm_mul_ps(fscal,dz30);
399
400             /* Update vectorial force */
401             fix3             = _mm_add_ps(fix3,tx);
402             fiy3             = _mm_add_ps(fiy3,ty);
403             fiz3             = _mm_add_ps(fiz3,tz);
404
405             fjx0             = _mm_add_ps(fjx0,tx);
406             fjy0             = _mm_add_ps(fjy0,ty);
407             fjz0             = _mm_add_ps(fjz0,tz);
408             
409             fjptrA             = f+j_coord_offsetA;
410             fjptrB             = f+j_coord_offsetB;
411             fjptrC             = f+j_coord_offsetC;
412             fjptrD             = f+j_coord_offsetD;
413
414             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
415
416             /* Inner loop uses 152 flops */
417         }
418
419         if(jidx<j_index_end)
420         {
421
422             /* Get j neighbor index, and coordinate index */
423             jnrlistA         = jjnr[jidx];
424             jnrlistB         = jjnr[jidx+1];
425             jnrlistC         = jjnr[jidx+2];
426             jnrlistD         = jjnr[jidx+3];
427             /* Sign of each element will be negative for non-real atoms.
428              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
429              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
430              */
431             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
432             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
433             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
434             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
435             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
436             j_coord_offsetA  = DIM*jnrA;
437             j_coord_offsetB  = DIM*jnrB;
438             j_coord_offsetC  = DIM*jnrC;
439             j_coord_offsetD  = DIM*jnrD;
440
441             /* load j atom coordinates */
442             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
443                                               x+j_coord_offsetC,x+j_coord_offsetD,
444                                               &jx0,&jy0,&jz0);
445
446             /* Calculate displacement vector */
447             dx00             = _mm_sub_ps(ix0,jx0);
448             dy00             = _mm_sub_ps(iy0,jy0);
449             dz00             = _mm_sub_ps(iz0,jz0);
450             dx10             = _mm_sub_ps(ix1,jx0);
451             dy10             = _mm_sub_ps(iy1,jy0);
452             dz10             = _mm_sub_ps(iz1,jz0);
453             dx20             = _mm_sub_ps(ix2,jx0);
454             dy20             = _mm_sub_ps(iy2,jy0);
455             dz20             = _mm_sub_ps(iz2,jz0);
456             dx30             = _mm_sub_ps(ix3,jx0);
457             dy30             = _mm_sub_ps(iy3,jy0);
458             dz30             = _mm_sub_ps(iz3,jz0);
459
460             /* Calculate squared distance and things based on it */
461             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
462             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
463             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
464             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
465
466             rinv00           = sse2_invsqrt_f(rsq00);
467             rinv10           = sse2_invsqrt_f(rsq10);
468             rinv20           = sse2_invsqrt_f(rsq20);
469             rinv30           = sse2_invsqrt_f(rsq30);
470
471             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
472             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
473             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
474
475             /* Load parameters for j particles */
476             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
477                                                               charge+jnrC+0,charge+jnrD+0);
478             vdwjidx0A        = 2*vdwtype[jnrA+0];
479             vdwjidx0B        = 2*vdwtype[jnrB+0];
480             vdwjidx0C        = 2*vdwtype[jnrC+0];
481             vdwjidx0D        = 2*vdwtype[jnrD+0];
482
483             fjx0             = _mm_setzero_ps();
484             fjy0             = _mm_setzero_ps();
485             fjz0             = _mm_setzero_ps();
486
487             /**************************
488              * CALCULATE INTERACTIONS *
489              **************************/
490
491             r00              = _mm_mul_ps(rsq00,rinv00);
492             r00              = _mm_andnot_ps(dummy_mask,r00);
493
494             /* Compute parameters for interactions between i and j atoms */
495             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
496                                          vdwparam+vdwioffset0+vdwjidx0B,
497                                          vdwparam+vdwioffset0+vdwjidx0C,
498                                          vdwparam+vdwioffset0+vdwjidx0D,
499                                          &c6_00,&c12_00);
500
501             /* Calculate table index by multiplying r with table scale and truncate to integer */
502             rt               = _mm_mul_ps(r00,vftabscale);
503             vfitab           = _mm_cvttps_epi32(rt);
504             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
505             vfitab           = _mm_slli_epi32(vfitab,3);
506
507             /* CUBIC SPLINE TABLE DISPERSION */
508             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
509             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
510             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
511             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
512             _MM_TRANSPOSE4_PS(Y,F,G,H);
513             Heps             = _mm_mul_ps(vfeps,H);
514             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
515             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
516             vvdw6            = _mm_mul_ps(c6_00,VV);
517             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
518             fvdw6            = _mm_mul_ps(c6_00,FF);
519
520             /* CUBIC SPLINE TABLE REPULSION */
521             vfitab           = _mm_add_epi32(vfitab,ifour);
522             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
523             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
524             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
525             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
526             _MM_TRANSPOSE4_PS(Y,F,G,H);
527             Heps             = _mm_mul_ps(vfeps,H);
528             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
529             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
530             vvdw12           = _mm_mul_ps(c12_00,VV);
531             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
532             fvdw12           = _mm_mul_ps(c12_00,FF);
533             vvdw             = _mm_add_ps(vvdw12,vvdw6);
534             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
535
536             /* Update potential sum for this i atom from the interaction with this j atom. */
537             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
538             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
539
540             fscal            = fvdw;
541
542             fscal            = _mm_andnot_ps(dummy_mask,fscal);
543
544             /* Calculate temporary vectorial force */
545             tx               = _mm_mul_ps(fscal,dx00);
546             ty               = _mm_mul_ps(fscal,dy00);
547             tz               = _mm_mul_ps(fscal,dz00);
548
549             /* Update vectorial force */
550             fix0             = _mm_add_ps(fix0,tx);
551             fiy0             = _mm_add_ps(fiy0,ty);
552             fiz0             = _mm_add_ps(fiz0,tz);
553
554             fjx0             = _mm_add_ps(fjx0,tx);
555             fjy0             = _mm_add_ps(fjy0,ty);
556             fjz0             = _mm_add_ps(fjz0,tz);
557             
558             /**************************
559              * CALCULATE INTERACTIONS *
560              **************************/
561
562             /* Compute parameters for interactions between i and j atoms */
563             qq10             = _mm_mul_ps(iq1,jq0);
564
565             /* REACTION-FIELD ELECTROSTATICS */
566             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
567             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
568
569             /* Update potential sum for this i atom from the interaction with this j atom. */
570             velec            = _mm_andnot_ps(dummy_mask,velec);
571             velecsum         = _mm_add_ps(velecsum,velec);
572
573             fscal            = felec;
574
575             fscal            = _mm_andnot_ps(dummy_mask,fscal);
576
577             /* Calculate temporary vectorial force */
578             tx               = _mm_mul_ps(fscal,dx10);
579             ty               = _mm_mul_ps(fscal,dy10);
580             tz               = _mm_mul_ps(fscal,dz10);
581
582             /* Update vectorial force */
583             fix1             = _mm_add_ps(fix1,tx);
584             fiy1             = _mm_add_ps(fiy1,ty);
585             fiz1             = _mm_add_ps(fiz1,tz);
586
587             fjx0             = _mm_add_ps(fjx0,tx);
588             fjy0             = _mm_add_ps(fjy0,ty);
589             fjz0             = _mm_add_ps(fjz0,tz);
590             
591             /**************************
592              * CALCULATE INTERACTIONS *
593              **************************/
594
595             /* Compute parameters for interactions between i and j atoms */
596             qq20             = _mm_mul_ps(iq2,jq0);
597
598             /* REACTION-FIELD ELECTROSTATICS */
599             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
600             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
601
602             /* Update potential sum for this i atom from the interaction with this j atom. */
603             velec            = _mm_andnot_ps(dummy_mask,velec);
604             velecsum         = _mm_add_ps(velecsum,velec);
605
606             fscal            = felec;
607
608             fscal            = _mm_andnot_ps(dummy_mask,fscal);
609
610             /* Calculate temporary vectorial force */
611             tx               = _mm_mul_ps(fscal,dx20);
612             ty               = _mm_mul_ps(fscal,dy20);
613             tz               = _mm_mul_ps(fscal,dz20);
614
615             /* Update vectorial force */
616             fix2             = _mm_add_ps(fix2,tx);
617             fiy2             = _mm_add_ps(fiy2,ty);
618             fiz2             = _mm_add_ps(fiz2,tz);
619
620             fjx0             = _mm_add_ps(fjx0,tx);
621             fjy0             = _mm_add_ps(fjy0,ty);
622             fjz0             = _mm_add_ps(fjz0,tz);
623             
624             /**************************
625              * CALCULATE INTERACTIONS *
626              **************************/
627
628             /* Compute parameters for interactions between i and j atoms */
629             qq30             = _mm_mul_ps(iq3,jq0);
630
631             /* REACTION-FIELD ELECTROSTATICS */
632             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
633             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
634
635             /* Update potential sum for this i atom from the interaction with this j atom. */
636             velec            = _mm_andnot_ps(dummy_mask,velec);
637             velecsum         = _mm_add_ps(velecsum,velec);
638
639             fscal            = felec;
640
641             fscal            = _mm_andnot_ps(dummy_mask,fscal);
642
643             /* Calculate temporary vectorial force */
644             tx               = _mm_mul_ps(fscal,dx30);
645             ty               = _mm_mul_ps(fscal,dy30);
646             tz               = _mm_mul_ps(fscal,dz30);
647
648             /* Update vectorial force */
649             fix3             = _mm_add_ps(fix3,tx);
650             fiy3             = _mm_add_ps(fiy3,ty);
651             fiz3             = _mm_add_ps(fiz3,tz);
652
653             fjx0             = _mm_add_ps(fjx0,tx);
654             fjy0             = _mm_add_ps(fjy0,ty);
655             fjz0             = _mm_add_ps(fjz0,tz);
656             
657             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
658             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
659             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
660             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
661
662             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
663
664             /* Inner loop uses 153 flops */
665         }
666
667         /* End of innermost loop */
668
669         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
670                                               f+i_coord_offset,fshift+i_shift_offset);
671
672         ggid                        = gid[iidx];
673         /* Update potential energies */
674         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
675         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
676
677         /* Increment number of inner iterations */
678         inneriter                  += j_index_end - j_index_start;
679
680         /* Outer loop uses 26 flops */
681     }
682
683     /* Increment number of outer iterations */
684     outeriter        += nri;
685
686     /* Update outer/inner flops */
687
688     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*153);
689 }
690 /*
691  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_sse2_single
692  * Electrostatics interaction: ReactionField
693  * VdW interaction:            CubicSplineTable
694  * Geometry:                   Water4-Particle
695  * Calculate force/pot:        Force
696  */
697 void
698 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_sse2_single
699                     (t_nblist                    * gmx_restrict       nlist,
700                      rvec                        * gmx_restrict          xx,
701                      rvec                        * gmx_restrict          ff,
702                      struct t_forcerec           * gmx_restrict          fr,
703                      t_mdatoms                   * gmx_restrict     mdatoms,
704                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
705                      t_nrnb                      * gmx_restrict        nrnb)
706 {
707     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
708      * just 0 for non-waters.
709      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
710      * jnr indices corresponding to data put in the four positions in the SIMD register.
711      */
712     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
713     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
714     int              jnrA,jnrB,jnrC,jnrD;
715     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
716     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
717     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
718     real             rcutoff_scalar;
719     real             *shiftvec,*fshift,*x,*f;
720     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
721     real             scratch[4*DIM];
722     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
723     int              vdwioffset0;
724     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
725     int              vdwioffset1;
726     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
727     int              vdwioffset2;
728     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
729     int              vdwioffset3;
730     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
731     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
732     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
733     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
734     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
735     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
736     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
737     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
738     real             *charge;
739     int              nvdwtype;
740     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
741     int              *vdwtype;
742     real             *vdwparam;
743     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
744     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
745     __m128i          vfitab;
746     __m128i          ifour       = _mm_set1_epi32(4);
747     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
748     real             *vftab;
749     __m128           dummy_mask,cutoff_mask;
750     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
751     __m128           one     = _mm_set1_ps(1.0);
752     __m128           two     = _mm_set1_ps(2.0);
753     x                = xx[0];
754     f                = ff[0];
755
756     nri              = nlist->nri;
757     iinr             = nlist->iinr;
758     jindex           = nlist->jindex;
759     jjnr             = nlist->jjnr;
760     shiftidx         = nlist->shift;
761     gid              = nlist->gid;
762     shiftvec         = fr->shift_vec[0];
763     fshift           = fr->fshift[0];
764     facel            = _mm_set1_ps(fr->ic->epsfac);
765     charge           = mdatoms->chargeA;
766     krf              = _mm_set1_ps(fr->ic->k_rf);
767     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
768     crf              = _mm_set1_ps(fr->ic->c_rf);
769     nvdwtype         = fr->ntype;
770     vdwparam         = fr->nbfp;
771     vdwtype          = mdatoms->typeA;
772
773     vftab            = kernel_data->table_vdw->data;
774     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
775
776     /* Setup water-specific parameters */
777     inr              = nlist->iinr[0];
778     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
779     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
780     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
781     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
782
783     /* Avoid stupid compiler warnings */
784     jnrA = jnrB = jnrC = jnrD = 0;
785     j_coord_offsetA = 0;
786     j_coord_offsetB = 0;
787     j_coord_offsetC = 0;
788     j_coord_offsetD = 0;
789
790     outeriter        = 0;
791     inneriter        = 0;
792
793     for(iidx=0;iidx<4*DIM;iidx++)
794     {
795         scratch[iidx] = 0.0;
796     }  
797
798     /* Start outer loop over neighborlists */
799     for(iidx=0; iidx<nri; iidx++)
800     {
801         /* Load shift vector for this list */
802         i_shift_offset   = DIM*shiftidx[iidx];
803
804         /* Load limits for loop over neighbors */
805         j_index_start    = jindex[iidx];
806         j_index_end      = jindex[iidx+1];
807
808         /* Get outer coordinate index */
809         inr              = iinr[iidx];
810         i_coord_offset   = DIM*inr;
811
812         /* Load i particle coords and add shift vector */
813         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
814                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
815         
816         fix0             = _mm_setzero_ps();
817         fiy0             = _mm_setzero_ps();
818         fiz0             = _mm_setzero_ps();
819         fix1             = _mm_setzero_ps();
820         fiy1             = _mm_setzero_ps();
821         fiz1             = _mm_setzero_ps();
822         fix2             = _mm_setzero_ps();
823         fiy2             = _mm_setzero_ps();
824         fiz2             = _mm_setzero_ps();
825         fix3             = _mm_setzero_ps();
826         fiy3             = _mm_setzero_ps();
827         fiz3             = _mm_setzero_ps();
828
829         /* Start inner kernel loop */
830         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
831         {
832
833             /* Get j neighbor index, and coordinate index */
834             jnrA             = jjnr[jidx];
835             jnrB             = jjnr[jidx+1];
836             jnrC             = jjnr[jidx+2];
837             jnrD             = jjnr[jidx+3];
838             j_coord_offsetA  = DIM*jnrA;
839             j_coord_offsetB  = DIM*jnrB;
840             j_coord_offsetC  = DIM*jnrC;
841             j_coord_offsetD  = DIM*jnrD;
842
843             /* load j atom coordinates */
844             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
845                                               x+j_coord_offsetC,x+j_coord_offsetD,
846                                               &jx0,&jy0,&jz0);
847
848             /* Calculate displacement vector */
849             dx00             = _mm_sub_ps(ix0,jx0);
850             dy00             = _mm_sub_ps(iy0,jy0);
851             dz00             = _mm_sub_ps(iz0,jz0);
852             dx10             = _mm_sub_ps(ix1,jx0);
853             dy10             = _mm_sub_ps(iy1,jy0);
854             dz10             = _mm_sub_ps(iz1,jz0);
855             dx20             = _mm_sub_ps(ix2,jx0);
856             dy20             = _mm_sub_ps(iy2,jy0);
857             dz20             = _mm_sub_ps(iz2,jz0);
858             dx30             = _mm_sub_ps(ix3,jx0);
859             dy30             = _mm_sub_ps(iy3,jy0);
860             dz30             = _mm_sub_ps(iz3,jz0);
861
862             /* Calculate squared distance and things based on it */
863             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
864             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
865             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
866             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
867
868             rinv00           = sse2_invsqrt_f(rsq00);
869             rinv10           = sse2_invsqrt_f(rsq10);
870             rinv20           = sse2_invsqrt_f(rsq20);
871             rinv30           = sse2_invsqrt_f(rsq30);
872
873             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
874             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
875             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
876
877             /* Load parameters for j particles */
878             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
879                                                               charge+jnrC+0,charge+jnrD+0);
880             vdwjidx0A        = 2*vdwtype[jnrA+0];
881             vdwjidx0B        = 2*vdwtype[jnrB+0];
882             vdwjidx0C        = 2*vdwtype[jnrC+0];
883             vdwjidx0D        = 2*vdwtype[jnrD+0];
884
885             fjx0             = _mm_setzero_ps();
886             fjy0             = _mm_setzero_ps();
887             fjz0             = _mm_setzero_ps();
888
889             /**************************
890              * CALCULATE INTERACTIONS *
891              **************************/
892
893             r00              = _mm_mul_ps(rsq00,rinv00);
894
895             /* Compute parameters for interactions between i and j atoms */
896             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
897                                          vdwparam+vdwioffset0+vdwjidx0B,
898                                          vdwparam+vdwioffset0+vdwjidx0C,
899                                          vdwparam+vdwioffset0+vdwjidx0D,
900                                          &c6_00,&c12_00);
901
902             /* Calculate table index by multiplying r with table scale and truncate to integer */
903             rt               = _mm_mul_ps(r00,vftabscale);
904             vfitab           = _mm_cvttps_epi32(rt);
905             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
906             vfitab           = _mm_slli_epi32(vfitab,3);
907
908             /* CUBIC SPLINE TABLE DISPERSION */
909             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
910             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
911             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
912             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
913             _MM_TRANSPOSE4_PS(Y,F,G,H);
914             Heps             = _mm_mul_ps(vfeps,H);
915             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
916             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
917             fvdw6            = _mm_mul_ps(c6_00,FF);
918
919             /* CUBIC SPLINE TABLE REPULSION */
920             vfitab           = _mm_add_epi32(vfitab,ifour);
921             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
922             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
923             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
924             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
925             _MM_TRANSPOSE4_PS(Y,F,G,H);
926             Heps             = _mm_mul_ps(vfeps,H);
927             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
928             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
929             fvdw12           = _mm_mul_ps(c12_00,FF);
930             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
931
932             fscal            = fvdw;
933
934             /* Calculate temporary vectorial force */
935             tx               = _mm_mul_ps(fscal,dx00);
936             ty               = _mm_mul_ps(fscal,dy00);
937             tz               = _mm_mul_ps(fscal,dz00);
938
939             /* Update vectorial force */
940             fix0             = _mm_add_ps(fix0,tx);
941             fiy0             = _mm_add_ps(fiy0,ty);
942             fiz0             = _mm_add_ps(fiz0,tz);
943
944             fjx0             = _mm_add_ps(fjx0,tx);
945             fjy0             = _mm_add_ps(fjy0,ty);
946             fjz0             = _mm_add_ps(fjz0,tz);
947             
948             /**************************
949              * CALCULATE INTERACTIONS *
950              **************************/
951
952             /* Compute parameters for interactions between i and j atoms */
953             qq10             = _mm_mul_ps(iq1,jq0);
954
955             /* REACTION-FIELD ELECTROSTATICS */
956             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
957
958             fscal            = felec;
959
960             /* Calculate temporary vectorial force */
961             tx               = _mm_mul_ps(fscal,dx10);
962             ty               = _mm_mul_ps(fscal,dy10);
963             tz               = _mm_mul_ps(fscal,dz10);
964
965             /* Update vectorial force */
966             fix1             = _mm_add_ps(fix1,tx);
967             fiy1             = _mm_add_ps(fiy1,ty);
968             fiz1             = _mm_add_ps(fiz1,tz);
969
970             fjx0             = _mm_add_ps(fjx0,tx);
971             fjy0             = _mm_add_ps(fjy0,ty);
972             fjz0             = _mm_add_ps(fjz0,tz);
973             
974             /**************************
975              * CALCULATE INTERACTIONS *
976              **************************/
977
978             /* Compute parameters for interactions between i and j atoms */
979             qq20             = _mm_mul_ps(iq2,jq0);
980
981             /* REACTION-FIELD ELECTROSTATICS */
982             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
983
984             fscal            = felec;
985
986             /* Calculate temporary vectorial force */
987             tx               = _mm_mul_ps(fscal,dx20);
988             ty               = _mm_mul_ps(fscal,dy20);
989             tz               = _mm_mul_ps(fscal,dz20);
990
991             /* Update vectorial force */
992             fix2             = _mm_add_ps(fix2,tx);
993             fiy2             = _mm_add_ps(fiy2,ty);
994             fiz2             = _mm_add_ps(fiz2,tz);
995
996             fjx0             = _mm_add_ps(fjx0,tx);
997             fjy0             = _mm_add_ps(fjy0,ty);
998             fjz0             = _mm_add_ps(fjz0,tz);
999             
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             /* Compute parameters for interactions between i and j atoms */
1005             qq30             = _mm_mul_ps(iq3,jq0);
1006
1007             /* REACTION-FIELD ELECTROSTATICS */
1008             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1009
1010             fscal            = felec;
1011
1012             /* Calculate temporary vectorial force */
1013             tx               = _mm_mul_ps(fscal,dx30);
1014             ty               = _mm_mul_ps(fscal,dy30);
1015             tz               = _mm_mul_ps(fscal,dz30);
1016
1017             /* Update vectorial force */
1018             fix3             = _mm_add_ps(fix3,tx);
1019             fiy3             = _mm_add_ps(fiy3,ty);
1020             fiz3             = _mm_add_ps(fiz3,tz);
1021
1022             fjx0             = _mm_add_ps(fjx0,tx);
1023             fjy0             = _mm_add_ps(fjy0,ty);
1024             fjz0             = _mm_add_ps(fjz0,tz);
1025             
1026             fjptrA             = f+j_coord_offsetA;
1027             fjptrB             = f+j_coord_offsetB;
1028             fjptrC             = f+j_coord_offsetC;
1029             fjptrD             = f+j_coord_offsetD;
1030
1031             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1032
1033             /* Inner loop uses 129 flops */
1034         }
1035
1036         if(jidx<j_index_end)
1037         {
1038
1039             /* Get j neighbor index, and coordinate index */
1040             jnrlistA         = jjnr[jidx];
1041             jnrlistB         = jjnr[jidx+1];
1042             jnrlistC         = jjnr[jidx+2];
1043             jnrlistD         = jjnr[jidx+3];
1044             /* Sign of each element will be negative for non-real atoms.
1045              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1046              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1047              */
1048             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1049             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1050             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1051             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1052             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1053             j_coord_offsetA  = DIM*jnrA;
1054             j_coord_offsetB  = DIM*jnrB;
1055             j_coord_offsetC  = DIM*jnrC;
1056             j_coord_offsetD  = DIM*jnrD;
1057
1058             /* load j atom coordinates */
1059             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1060                                               x+j_coord_offsetC,x+j_coord_offsetD,
1061                                               &jx0,&jy0,&jz0);
1062
1063             /* Calculate displacement vector */
1064             dx00             = _mm_sub_ps(ix0,jx0);
1065             dy00             = _mm_sub_ps(iy0,jy0);
1066             dz00             = _mm_sub_ps(iz0,jz0);
1067             dx10             = _mm_sub_ps(ix1,jx0);
1068             dy10             = _mm_sub_ps(iy1,jy0);
1069             dz10             = _mm_sub_ps(iz1,jz0);
1070             dx20             = _mm_sub_ps(ix2,jx0);
1071             dy20             = _mm_sub_ps(iy2,jy0);
1072             dz20             = _mm_sub_ps(iz2,jz0);
1073             dx30             = _mm_sub_ps(ix3,jx0);
1074             dy30             = _mm_sub_ps(iy3,jy0);
1075             dz30             = _mm_sub_ps(iz3,jz0);
1076
1077             /* Calculate squared distance and things based on it */
1078             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1079             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1080             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1081             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1082
1083             rinv00           = sse2_invsqrt_f(rsq00);
1084             rinv10           = sse2_invsqrt_f(rsq10);
1085             rinv20           = sse2_invsqrt_f(rsq20);
1086             rinv30           = sse2_invsqrt_f(rsq30);
1087
1088             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1089             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1090             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1091
1092             /* Load parameters for j particles */
1093             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1094                                                               charge+jnrC+0,charge+jnrD+0);
1095             vdwjidx0A        = 2*vdwtype[jnrA+0];
1096             vdwjidx0B        = 2*vdwtype[jnrB+0];
1097             vdwjidx0C        = 2*vdwtype[jnrC+0];
1098             vdwjidx0D        = 2*vdwtype[jnrD+0];
1099
1100             fjx0             = _mm_setzero_ps();
1101             fjy0             = _mm_setzero_ps();
1102             fjz0             = _mm_setzero_ps();
1103
1104             /**************************
1105              * CALCULATE INTERACTIONS *
1106              **************************/
1107
1108             r00              = _mm_mul_ps(rsq00,rinv00);
1109             r00              = _mm_andnot_ps(dummy_mask,r00);
1110
1111             /* Compute parameters for interactions between i and j atoms */
1112             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1113                                          vdwparam+vdwioffset0+vdwjidx0B,
1114                                          vdwparam+vdwioffset0+vdwjidx0C,
1115                                          vdwparam+vdwioffset0+vdwjidx0D,
1116                                          &c6_00,&c12_00);
1117
1118             /* Calculate table index by multiplying r with table scale and truncate to integer */
1119             rt               = _mm_mul_ps(r00,vftabscale);
1120             vfitab           = _mm_cvttps_epi32(rt);
1121             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1122             vfitab           = _mm_slli_epi32(vfitab,3);
1123
1124             /* CUBIC SPLINE TABLE DISPERSION */
1125             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1126             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1127             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1128             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1129             _MM_TRANSPOSE4_PS(Y,F,G,H);
1130             Heps             = _mm_mul_ps(vfeps,H);
1131             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1132             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1133             fvdw6            = _mm_mul_ps(c6_00,FF);
1134
1135             /* CUBIC SPLINE TABLE REPULSION */
1136             vfitab           = _mm_add_epi32(vfitab,ifour);
1137             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1138             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1139             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1140             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1141             _MM_TRANSPOSE4_PS(Y,F,G,H);
1142             Heps             = _mm_mul_ps(vfeps,H);
1143             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1144             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1145             fvdw12           = _mm_mul_ps(c12_00,FF);
1146             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1147
1148             fscal            = fvdw;
1149
1150             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1151
1152             /* Calculate temporary vectorial force */
1153             tx               = _mm_mul_ps(fscal,dx00);
1154             ty               = _mm_mul_ps(fscal,dy00);
1155             tz               = _mm_mul_ps(fscal,dz00);
1156
1157             /* Update vectorial force */
1158             fix0             = _mm_add_ps(fix0,tx);
1159             fiy0             = _mm_add_ps(fiy0,ty);
1160             fiz0             = _mm_add_ps(fiz0,tz);
1161
1162             fjx0             = _mm_add_ps(fjx0,tx);
1163             fjy0             = _mm_add_ps(fjy0,ty);
1164             fjz0             = _mm_add_ps(fjz0,tz);
1165             
1166             /**************************
1167              * CALCULATE INTERACTIONS *
1168              **************************/
1169
1170             /* Compute parameters for interactions between i and j atoms */
1171             qq10             = _mm_mul_ps(iq1,jq0);
1172
1173             /* REACTION-FIELD ELECTROSTATICS */
1174             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1175
1176             fscal            = felec;
1177
1178             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1179
1180             /* Calculate temporary vectorial force */
1181             tx               = _mm_mul_ps(fscal,dx10);
1182             ty               = _mm_mul_ps(fscal,dy10);
1183             tz               = _mm_mul_ps(fscal,dz10);
1184
1185             /* Update vectorial force */
1186             fix1             = _mm_add_ps(fix1,tx);
1187             fiy1             = _mm_add_ps(fiy1,ty);
1188             fiz1             = _mm_add_ps(fiz1,tz);
1189
1190             fjx0             = _mm_add_ps(fjx0,tx);
1191             fjy0             = _mm_add_ps(fjy0,ty);
1192             fjz0             = _mm_add_ps(fjz0,tz);
1193             
1194             /**************************
1195              * CALCULATE INTERACTIONS *
1196              **************************/
1197
1198             /* Compute parameters for interactions between i and j atoms */
1199             qq20             = _mm_mul_ps(iq2,jq0);
1200
1201             /* REACTION-FIELD ELECTROSTATICS */
1202             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1203
1204             fscal            = felec;
1205
1206             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1207
1208             /* Calculate temporary vectorial force */
1209             tx               = _mm_mul_ps(fscal,dx20);
1210             ty               = _mm_mul_ps(fscal,dy20);
1211             tz               = _mm_mul_ps(fscal,dz20);
1212
1213             /* Update vectorial force */
1214             fix2             = _mm_add_ps(fix2,tx);
1215             fiy2             = _mm_add_ps(fiy2,ty);
1216             fiz2             = _mm_add_ps(fiz2,tz);
1217
1218             fjx0             = _mm_add_ps(fjx0,tx);
1219             fjy0             = _mm_add_ps(fjy0,ty);
1220             fjz0             = _mm_add_ps(fjz0,tz);
1221             
1222             /**************************
1223              * CALCULATE INTERACTIONS *
1224              **************************/
1225
1226             /* Compute parameters for interactions between i and j atoms */
1227             qq30             = _mm_mul_ps(iq3,jq0);
1228
1229             /* REACTION-FIELD ELECTROSTATICS */
1230             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1231
1232             fscal            = felec;
1233
1234             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1235
1236             /* Calculate temporary vectorial force */
1237             tx               = _mm_mul_ps(fscal,dx30);
1238             ty               = _mm_mul_ps(fscal,dy30);
1239             tz               = _mm_mul_ps(fscal,dz30);
1240
1241             /* Update vectorial force */
1242             fix3             = _mm_add_ps(fix3,tx);
1243             fiy3             = _mm_add_ps(fiy3,ty);
1244             fiz3             = _mm_add_ps(fiz3,tz);
1245
1246             fjx0             = _mm_add_ps(fjx0,tx);
1247             fjy0             = _mm_add_ps(fjy0,ty);
1248             fjz0             = _mm_add_ps(fjz0,tz);
1249             
1250             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1251             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1252             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1253             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1254
1255             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1256
1257             /* Inner loop uses 130 flops */
1258         }
1259
1260         /* End of innermost loop */
1261
1262         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1263                                               f+i_coord_offset,fshift+i_shift_offset);
1264
1265         /* Increment number of inner iterations */
1266         inneriter                  += j_index_end - j_index_start;
1267
1268         /* Outer loop uses 24 flops */
1269     }
1270
1271     /* Increment number of outer iterations */
1272     outeriter        += nri;
1273
1274     /* Update outer/inner flops */
1275
1276     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*130);
1277 }