Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_sse2_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128i          vfitab;
108     __m128i          ifour       = _mm_set1_epi32(4);
109     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
110     real             *vftab;
111     __m128           dummy_mask,cutoff_mask;
112     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
113     __m128           one     = _mm_set1_ps(1.0);
114     __m128           two     = _mm_set1_ps(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_ps(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     krf              = _mm_set1_ps(fr->ic->k_rf);
129     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
130     crf              = _mm_set1_ps(fr->ic->c_rf);
131     nvdwtype         = fr->ntype;
132     vdwparam         = fr->nbfp;
133     vdwtype          = mdatoms->typeA;
134
135     vftab            = kernel_data->table_vdw->data;
136     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
141     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
142     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
143     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = jnrC = jnrD = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149     j_coord_offsetC = 0;
150     j_coord_offsetD = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }  
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
177         
178         fix0             = _mm_setzero_ps();
179         fiy0             = _mm_setzero_ps();
180         fiz0             = _mm_setzero_ps();
181         fix1             = _mm_setzero_ps();
182         fiy1             = _mm_setzero_ps();
183         fiz1             = _mm_setzero_ps();
184         fix2             = _mm_setzero_ps();
185         fiy2             = _mm_setzero_ps();
186         fiz2             = _mm_setzero_ps();
187         fix3             = _mm_setzero_ps();
188         fiy3             = _mm_setzero_ps();
189         fiz3             = _mm_setzero_ps();
190
191         /* Reset potential sums */
192         velecsum         = _mm_setzero_ps();
193         vvdwsum          = _mm_setzero_ps();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             jnrC             = jjnr[jidx+2];
203             jnrD             = jjnr[jidx+3];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208
209             /* load j atom coordinates */
210             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
211                                               x+j_coord_offsetC,x+j_coord_offsetD,
212                                               &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm_sub_ps(ix0,jx0);
216             dy00             = _mm_sub_ps(iy0,jy0);
217             dz00             = _mm_sub_ps(iz0,jz0);
218             dx10             = _mm_sub_ps(ix1,jx0);
219             dy10             = _mm_sub_ps(iy1,jy0);
220             dz10             = _mm_sub_ps(iz1,jz0);
221             dx20             = _mm_sub_ps(ix2,jx0);
222             dy20             = _mm_sub_ps(iy2,jy0);
223             dz20             = _mm_sub_ps(iz2,jz0);
224             dx30             = _mm_sub_ps(ix3,jx0);
225             dy30             = _mm_sub_ps(iy3,jy0);
226             dz30             = _mm_sub_ps(iz3,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
230             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
231             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
232             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
233
234             rinv00           = gmx_mm_invsqrt_ps(rsq00);
235             rinv10           = gmx_mm_invsqrt_ps(rsq10);
236             rinv20           = gmx_mm_invsqrt_ps(rsq20);
237             rinv30           = gmx_mm_invsqrt_ps(rsq30);
238
239             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
240             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
241             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
242
243             /* Load parameters for j particles */
244             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
245                                                               charge+jnrC+0,charge+jnrD+0);
246             vdwjidx0A        = 2*vdwtype[jnrA+0];
247             vdwjidx0B        = 2*vdwtype[jnrB+0];
248             vdwjidx0C        = 2*vdwtype[jnrC+0];
249             vdwjidx0D        = 2*vdwtype[jnrD+0];
250
251             fjx0             = _mm_setzero_ps();
252             fjy0             = _mm_setzero_ps();
253             fjz0             = _mm_setzero_ps();
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             r00              = _mm_mul_ps(rsq00,rinv00);
260
261             /* Compute parameters for interactions between i and j atoms */
262             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
263                                          vdwparam+vdwioffset0+vdwjidx0B,
264                                          vdwparam+vdwioffset0+vdwjidx0C,
265                                          vdwparam+vdwioffset0+vdwjidx0D,
266                                          &c6_00,&c12_00);
267
268             /* Calculate table index by multiplying r with table scale and truncate to integer */
269             rt               = _mm_mul_ps(r00,vftabscale);
270             vfitab           = _mm_cvttps_epi32(rt);
271             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
272             vfitab           = _mm_slli_epi32(vfitab,3);
273
274             /* CUBIC SPLINE TABLE DISPERSION */
275             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
276             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
277             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
278             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
279             _MM_TRANSPOSE4_PS(Y,F,G,H);
280             Heps             = _mm_mul_ps(vfeps,H);
281             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
282             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
283             vvdw6            = _mm_mul_ps(c6_00,VV);
284             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
285             fvdw6            = _mm_mul_ps(c6_00,FF);
286
287             /* CUBIC SPLINE TABLE REPULSION */
288             vfitab           = _mm_add_epi32(vfitab,ifour);
289             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
290             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
291             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
292             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
293             _MM_TRANSPOSE4_PS(Y,F,G,H);
294             Heps             = _mm_mul_ps(vfeps,H);
295             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
296             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
297             vvdw12           = _mm_mul_ps(c12_00,VV);
298             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
299             fvdw12           = _mm_mul_ps(c12_00,FF);
300             vvdw             = _mm_add_ps(vvdw12,vvdw6);
301             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
305
306             fscal            = fvdw;
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm_mul_ps(fscal,dx00);
310             ty               = _mm_mul_ps(fscal,dy00);
311             tz               = _mm_mul_ps(fscal,dz00);
312
313             /* Update vectorial force */
314             fix0             = _mm_add_ps(fix0,tx);
315             fiy0             = _mm_add_ps(fiy0,ty);
316             fiz0             = _mm_add_ps(fiz0,tz);
317
318             fjx0             = _mm_add_ps(fjx0,tx);
319             fjy0             = _mm_add_ps(fjy0,ty);
320             fjz0             = _mm_add_ps(fjz0,tz);
321             
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _mm_mul_ps(iq1,jq0);
328
329             /* REACTION-FIELD ELECTROSTATICS */
330             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
331             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             velecsum         = _mm_add_ps(velecsum,velec);
335
336             fscal            = felec;
337
338             /* Calculate temporary vectorial force */
339             tx               = _mm_mul_ps(fscal,dx10);
340             ty               = _mm_mul_ps(fscal,dy10);
341             tz               = _mm_mul_ps(fscal,dz10);
342
343             /* Update vectorial force */
344             fix1             = _mm_add_ps(fix1,tx);
345             fiy1             = _mm_add_ps(fiy1,ty);
346             fiz1             = _mm_add_ps(fiz1,tz);
347
348             fjx0             = _mm_add_ps(fjx0,tx);
349             fjy0             = _mm_add_ps(fjy0,ty);
350             fjz0             = _mm_add_ps(fjz0,tz);
351             
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             /* Compute parameters for interactions between i and j atoms */
357             qq20             = _mm_mul_ps(iq2,jq0);
358
359             /* REACTION-FIELD ELECTROSTATICS */
360             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
361             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velecsum         = _mm_add_ps(velecsum,velec);
365
366             fscal            = felec;
367
368             /* Calculate temporary vectorial force */
369             tx               = _mm_mul_ps(fscal,dx20);
370             ty               = _mm_mul_ps(fscal,dy20);
371             tz               = _mm_mul_ps(fscal,dz20);
372
373             /* Update vectorial force */
374             fix2             = _mm_add_ps(fix2,tx);
375             fiy2             = _mm_add_ps(fiy2,ty);
376             fiz2             = _mm_add_ps(fiz2,tz);
377
378             fjx0             = _mm_add_ps(fjx0,tx);
379             fjy0             = _mm_add_ps(fjy0,ty);
380             fjz0             = _mm_add_ps(fjz0,tz);
381             
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             /* Compute parameters for interactions between i and j atoms */
387             qq30             = _mm_mul_ps(iq3,jq0);
388
389             /* REACTION-FIELD ELECTROSTATICS */
390             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
391             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velecsum         = _mm_add_ps(velecsum,velec);
395
396             fscal            = felec;
397
398             /* Calculate temporary vectorial force */
399             tx               = _mm_mul_ps(fscal,dx30);
400             ty               = _mm_mul_ps(fscal,dy30);
401             tz               = _mm_mul_ps(fscal,dz30);
402
403             /* Update vectorial force */
404             fix3             = _mm_add_ps(fix3,tx);
405             fiy3             = _mm_add_ps(fiy3,ty);
406             fiz3             = _mm_add_ps(fiz3,tz);
407
408             fjx0             = _mm_add_ps(fjx0,tx);
409             fjy0             = _mm_add_ps(fjy0,ty);
410             fjz0             = _mm_add_ps(fjz0,tz);
411             
412             fjptrA             = f+j_coord_offsetA;
413             fjptrB             = f+j_coord_offsetB;
414             fjptrC             = f+j_coord_offsetC;
415             fjptrD             = f+j_coord_offsetD;
416
417             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
418
419             /* Inner loop uses 152 flops */
420         }
421
422         if(jidx<j_index_end)
423         {
424
425             /* Get j neighbor index, and coordinate index */
426             jnrlistA         = jjnr[jidx];
427             jnrlistB         = jjnr[jidx+1];
428             jnrlistC         = jjnr[jidx+2];
429             jnrlistD         = jjnr[jidx+3];
430             /* Sign of each element will be negative for non-real atoms.
431              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
432              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
433              */
434             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
435             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
436             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
437             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
438             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
439             j_coord_offsetA  = DIM*jnrA;
440             j_coord_offsetB  = DIM*jnrB;
441             j_coord_offsetC  = DIM*jnrC;
442             j_coord_offsetD  = DIM*jnrD;
443
444             /* load j atom coordinates */
445             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
446                                               x+j_coord_offsetC,x+j_coord_offsetD,
447                                               &jx0,&jy0,&jz0);
448
449             /* Calculate displacement vector */
450             dx00             = _mm_sub_ps(ix0,jx0);
451             dy00             = _mm_sub_ps(iy0,jy0);
452             dz00             = _mm_sub_ps(iz0,jz0);
453             dx10             = _mm_sub_ps(ix1,jx0);
454             dy10             = _mm_sub_ps(iy1,jy0);
455             dz10             = _mm_sub_ps(iz1,jz0);
456             dx20             = _mm_sub_ps(ix2,jx0);
457             dy20             = _mm_sub_ps(iy2,jy0);
458             dz20             = _mm_sub_ps(iz2,jz0);
459             dx30             = _mm_sub_ps(ix3,jx0);
460             dy30             = _mm_sub_ps(iy3,jy0);
461             dz30             = _mm_sub_ps(iz3,jz0);
462
463             /* Calculate squared distance and things based on it */
464             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
465             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
466             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
467             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
468
469             rinv00           = gmx_mm_invsqrt_ps(rsq00);
470             rinv10           = gmx_mm_invsqrt_ps(rsq10);
471             rinv20           = gmx_mm_invsqrt_ps(rsq20);
472             rinv30           = gmx_mm_invsqrt_ps(rsq30);
473
474             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
475             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
476             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
477
478             /* Load parameters for j particles */
479             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
480                                                               charge+jnrC+0,charge+jnrD+0);
481             vdwjidx0A        = 2*vdwtype[jnrA+0];
482             vdwjidx0B        = 2*vdwtype[jnrB+0];
483             vdwjidx0C        = 2*vdwtype[jnrC+0];
484             vdwjidx0D        = 2*vdwtype[jnrD+0];
485
486             fjx0             = _mm_setzero_ps();
487             fjy0             = _mm_setzero_ps();
488             fjz0             = _mm_setzero_ps();
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             r00              = _mm_mul_ps(rsq00,rinv00);
495             r00              = _mm_andnot_ps(dummy_mask,r00);
496
497             /* Compute parameters for interactions between i and j atoms */
498             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
499                                          vdwparam+vdwioffset0+vdwjidx0B,
500                                          vdwparam+vdwioffset0+vdwjidx0C,
501                                          vdwparam+vdwioffset0+vdwjidx0D,
502                                          &c6_00,&c12_00);
503
504             /* Calculate table index by multiplying r with table scale and truncate to integer */
505             rt               = _mm_mul_ps(r00,vftabscale);
506             vfitab           = _mm_cvttps_epi32(rt);
507             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
508             vfitab           = _mm_slli_epi32(vfitab,3);
509
510             /* CUBIC SPLINE TABLE DISPERSION */
511             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
512             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
513             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
514             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
515             _MM_TRANSPOSE4_PS(Y,F,G,H);
516             Heps             = _mm_mul_ps(vfeps,H);
517             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
518             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
519             vvdw6            = _mm_mul_ps(c6_00,VV);
520             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
521             fvdw6            = _mm_mul_ps(c6_00,FF);
522
523             /* CUBIC SPLINE TABLE REPULSION */
524             vfitab           = _mm_add_epi32(vfitab,ifour);
525             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
526             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
527             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
528             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
529             _MM_TRANSPOSE4_PS(Y,F,G,H);
530             Heps             = _mm_mul_ps(vfeps,H);
531             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
532             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
533             vvdw12           = _mm_mul_ps(c12_00,VV);
534             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
535             fvdw12           = _mm_mul_ps(c12_00,FF);
536             vvdw             = _mm_add_ps(vvdw12,vvdw6);
537             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
538
539             /* Update potential sum for this i atom from the interaction with this j atom. */
540             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
541             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
542
543             fscal            = fvdw;
544
545             fscal            = _mm_andnot_ps(dummy_mask,fscal);
546
547             /* Calculate temporary vectorial force */
548             tx               = _mm_mul_ps(fscal,dx00);
549             ty               = _mm_mul_ps(fscal,dy00);
550             tz               = _mm_mul_ps(fscal,dz00);
551
552             /* Update vectorial force */
553             fix0             = _mm_add_ps(fix0,tx);
554             fiy0             = _mm_add_ps(fiy0,ty);
555             fiz0             = _mm_add_ps(fiz0,tz);
556
557             fjx0             = _mm_add_ps(fjx0,tx);
558             fjy0             = _mm_add_ps(fjy0,ty);
559             fjz0             = _mm_add_ps(fjz0,tz);
560             
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             /* Compute parameters for interactions between i and j atoms */
566             qq10             = _mm_mul_ps(iq1,jq0);
567
568             /* REACTION-FIELD ELECTROSTATICS */
569             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
570             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
571
572             /* Update potential sum for this i atom from the interaction with this j atom. */
573             velec            = _mm_andnot_ps(dummy_mask,velec);
574             velecsum         = _mm_add_ps(velecsum,velec);
575
576             fscal            = felec;
577
578             fscal            = _mm_andnot_ps(dummy_mask,fscal);
579
580             /* Calculate temporary vectorial force */
581             tx               = _mm_mul_ps(fscal,dx10);
582             ty               = _mm_mul_ps(fscal,dy10);
583             tz               = _mm_mul_ps(fscal,dz10);
584
585             /* Update vectorial force */
586             fix1             = _mm_add_ps(fix1,tx);
587             fiy1             = _mm_add_ps(fiy1,ty);
588             fiz1             = _mm_add_ps(fiz1,tz);
589
590             fjx0             = _mm_add_ps(fjx0,tx);
591             fjy0             = _mm_add_ps(fjy0,ty);
592             fjz0             = _mm_add_ps(fjz0,tz);
593             
594             /**************************
595              * CALCULATE INTERACTIONS *
596              **************************/
597
598             /* Compute parameters for interactions between i and j atoms */
599             qq20             = _mm_mul_ps(iq2,jq0);
600
601             /* REACTION-FIELD ELECTROSTATICS */
602             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
603             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
604
605             /* Update potential sum for this i atom from the interaction with this j atom. */
606             velec            = _mm_andnot_ps(dummy_mask,velec);
607             velecsum         = _mm_add_ps(velecsum,velec);
608
609             fscal            = felec;
610
611             fscal            = _mm_andnot_ps(dummy_mask,fscal);
612
613             /* Calculate temporary vectorial force */
614             tx               = _mm_mul_ps(fscal,dx20);
615             ty               = _mm_mul_ps(fscal,dy20);
616             tz               = _mm_mul_ps(fscal,dz20);
617
618             /* Update vectorial force */
619             fix2             = _mm_add_ps(fix2,tx);
620             fiy2             = _mm_add_ps(fiy2,ty);
621             fiz2             = _mm_add_ps(fiz2,tz);
622
623             fjx0             = _mm_add_ps(fjx0,tx);
624             fjy0             = _mm_add_ps(fjy0,ty);
625             fjz0             = _mm_add_ps(fjz0,tz);
626             
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             /* Compute parameters for interactions between i and j atoms */
632             qq30             = _mm_mul_ps(iq3,jq0);
633
634             /* REACTION-FIELD ELECTROSTATICS */
635             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
636             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
637
638             /* Update potential sum for this i atom from the interaction with this j atom. */
639             velec            = _mm_andnot_ps(dummy_mask,velec);
640             velecsum         = _mm_add_ps(velecsum,velec);
641
642             fscal            = felec;
643
644             fscal            = _mm_andnot_ps(dummy_mask,fscal);
645
646             /* Calculate temporary vectorial force */
647             tx               = _mm_mul_ps(fscal,dx30);
648             ty               = _mm_mul_ps(fscal,dy30);
649             tz               = _mm_mul_ps(fscal,dz30);
650
651             /* Update vectorial force */
652             fix3             = _mm_add_ps(fix3,tx);
653             fiy3             = _mm_add_ps(fiy3,ty);
654             fiz3             = _mm_add_ps(fiz3,tz);
655
656             fjx0             = _mm_add_ps(fjx0,tx);
657             fjy0             = _mm_add_ps(fjy0,ty);
658             fjz0             = _mm_add_ps(fjz0,tz);
659             
660             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
661             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
662             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
663             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
664
665             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
666
667             /* Inner loop uses 153 flops */
668         }
669
670         /* End of innermost loop */
671
672         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
673                                               f+i_coord_offset,fshift+i_shift_offset);
674
675         ggid                        = gid[iidx];
676         /* Update potential energies */
677         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
678         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
679
680         /* Increment number of inner iterations */
681         inneriter                  += j_index_end - j_index_start;
682
683         /* Outer loop uses 26 flops */
684     }
685
686     /* Increment number of outer iterations */
687     outeriter        += nri;
688
689     /* Update outer/inner flops */
690
691     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*153);
692 }
693 /*
694  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_sse2_single
695  * Electrostatics interaction: ReactionField
696  * VdW interaction:            CubicSplineTable
697  * Geometry:                   Water4-Particle
698  * Calculate force/pot:        Force
699  */
700 void
701 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_sse2_single
702                     (t_nblist                    * gmx_restrict       nlist,
703                      rvec                        * gmx_restrict          xx,
704                      rvec                        * gmx_restrict          ff,
705                      t_forcerec                  * gmx_restrict          fr,
706                      t_mdatoms                   * gmx_restrict     mdatoms,
707                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
708                      t_nrnb                      * gmx_restrict        nrnb)
709 {
710     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
711      * just 0 for non-waters.
712      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
713      * jnr indices corresponding to data put in the four positions in the SIMD register.
714      */
715     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
716     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
717     int              jnrA,jnrB,jnrC,jnrD;
718     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
719     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
720     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
721     real             rcutoff_scalar;
722     real             *shiftvec,*fshift,*x,*f;
723     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
724     real             scratch[4*DIM];
725     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
726     int              vdwioffset0;
727     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
728     int              vdwioffset1;
729     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
730     int              vdwioffset2;
731     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
732     int              vdwioffset3;
733     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
734     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
735     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
736     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
737     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
738     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
739     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
740     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
741     real             *charge;
742     int              nvdwtype;
743     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
744     int              *vdwtype;
745     real             *vdwparam;
746     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
747     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
748     __m128i          vfitab;
749     __m128i          ifour       = _mm_set1_epi32(4);
750     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
751     real             *vftab;
752     __m128           dummy_mask,cutoff_mask;
753     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
754     __m128           one     = _mm_set1_ps(1.0);
755     __m128           two     = _mm_set1_ps(2.0);
756     x                = xx[0];
757     f                = ff[0];
758
759     nri              = nlist->nri;
760     iinr             = nlist->iinr;
761     jindex           = nlist->jindex;
762     jjnr             = nlist->jjnr;
763     shiftidx         = nlist->shift;
764     gid              = nlist->gid;
765     shiftvec         = fr->shift_vec[0];
766     fshift           = fr->fshift[0];
767     facel            = _mm_set1_ps(fr->epsfac);
768     charge           = mdatoms->chargeA;
769     krf              = _mm_set1_ps(fr->ic->k_rf);
770     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
771     crf              = _mm_set1_ps(fr->ic->c_rf);
772     nvdwtype         = fr->ntype;
773     vdwparam         = fr->nbfp;
774     vdwtype          = mdatoms->typeA;
775
776     vftab            = kernel_data->table_vdw->data;
777     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
778
779     /* Setup water-specific parameters */
780     inr              = nlist->iinr[0];
781     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
782     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
783     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
784     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
785
786     /* Avoid stupid compiler warnings */
787     jnrA = jnrB = jnrC = jnrD = 0;
788     j_coord_offsetA = 0;
789     j_coord_offsetB = 0;
790     j_coord_offsetC = 0;
791     j_coord_offsetD = 0;
792
793     outeriter        = 0;
794     inneriter        = 0;
795
796     for(iidx=0;iidx<4*DIM;iidx++)
797     {
798         scratch[iidx] = 0.0;
799     }  
800
801     /* Start outer loop over neighborlists */
802     for(iidx=0; iidx<nri; iidx++)
803     {
804         /* Load shift vector for this list */
805         i_shift_offset   = DIM*shiftidx[iidx];
806
807         /* Load limits for loop over neighbors */
808         j_index_start    = jindex[iidx];
809         j_index_end      = jindex[iidx+1];
810
811         /* Get outer coordinate index */
812         inr              = iinr[iidx];
813         i_coord_offset   = DIM*inr;
814
815         /* Load i particle coords and add shift vector */
816         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
817                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
818         
819         fix0             = _mm_setzero_ps();
820         fiy0             = _mm_setzero_ps();
821         fiz0             = _mm_setzero_ps();
822         fix1             = _mm_setzero_ps();
823         fiy1             = _mm_setzero_ps();
824         fiz1             = _mm_setzero_ps();
825         fix2             = _mm_setzero_ps();
826         fiy2             = _mm_setzero_ps();
827         fiz2             = _mm_setzero_ps();
828         fix3             = _mm_setzero_ps();
829         fiy3             = _mm_setzero_ps();
830         fiz3             = _mm_setzero_ps();
831
832         /* Start inner kernel loop */
833         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
834         {
835
836             /* Get j neighbor index, and coordinate index */
837             jnrA             = jjnr[jidx];
838             jnrB             = jjnr[jidx+1];
839             jnrC             = jjnr[jidx+2];
840             jnrD             = jjnr[jidx+3];
841             j_coord_offsetA  = DIM*jnrA;
842             j_coord_offsetB  = DIM*jnrB;
843             j_coord_offsetC  = DIM*jnrC;
844             j_coord_offsetD  = DIM*jnrD;
845
846             /* load j atom coordinates */
847             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
848                                               x+j_coord_offsetC,x+j_coord_offsetD,
849                                               &jx0,&jy0,&jz0);
850
851             /* Calculate displacement vector */
852             dx00             = _mm_sub_ps(ix0,jx0);
853             dy00             = _mm_sub_ps(iy0,jy0);
854             dz00             = _mm_sub_ps(iz0,jz0);
855             dx10             = _mm_sub_ps(ix1,jx0);
856             dy10             = _mm_sub_ps(iy1,jy0);
857             dz10             = _mm_sub_ps(iz1,jz0);
858             dx20             = _mm_sub_ps(ix2,jx0);
859             dy20             = _mm_sub_ps(iy2,jy0);
860             dz20             = _mm_sub_ps(iz2,jz0);
861             dx30             = _mm_sub_ps(ix3,jx0);
862             dy30             = _mm_sub_ps(iy3,jy0);
863             dz30             = _mm_sub_ps(iz3,jz0);
864
865             /* Calculate squared distance and things based on it */
866             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
867             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
868             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
869             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
870
871             rinv00           = gmx_mm_invsqrt_ps(rsq00);
872             rinv10           = gmx_mm_invsqrt_ps(rsq10);
873             rinv20           = gmx_mm_invsqrt_ps(rsq20);
874             rinv30           = gmx_mm_invsqrt_ps(rsq30);
875
876             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
877             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
878             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
879
880             /* Load parameters for j particles */
881             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
882                                                               charge+jnrC+0,charge+jnrD+0);
883             vdwjidx0A        = 2*vdwtype[jnrA+0];
884             vdwjidx0B        = 2*vdwtype[jnrB+0];
885             vdwjidx0C        = 2*vdwtype[jnrC+0];
886             vdwjidx0D        = 2*vdwtype[jnrD+0];
887
888             fjx0             = _mm_setzero_ps();
889             fjy0             = _mm_setzero_ps();
890             fjz0             = _mm_setzero_ps();
891
892             /**************************
893              * CALCULATE INTERACTIONS *
894              **************************/
895
896             r00              = _mm_mul_ps(rsq00,rinv00);
897
898             /* Compute parameters for interactions between i and j atoms */
899             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
900                                          vdwparam+vdwioffset0+vdwjidx0B,
901                                          vdwparam+vdwioffset0+vdwjidx0C,
902                                          vdwparam+vdwioffset0+vdwjidx0D,
903                                          &c6_00,&c12_00);
904
905             /* Calculate table index by multiplying r with table scale and truncate to integer */
906             rt               = _mm_mul_ps(r00,vftabscale);
907             vfitab           = _mm_cvttps_epi32(rt);
908             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
909             vfitab           = _mm_slli_epi32(vfitab,3);
910
911             /* CUBIC SPLINE TABLE DISPERSION */
912             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
913             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
914             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
915             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
916             _MM_TRANSPOSE4_PS(Y,F,G,H);
917             Heps             = _mm_mul_ps(vfeps,H);
918             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
919             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
920             fvdw6            = _mm_mul_ps(c6_00,FF);
921
922             /* CUBIC SPLINE TABLE REPULSION */
923             vfitab           = _mm_add_epi32(vfitab,ifour);
924             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
925             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
926             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
927             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
928             _MM_TRANSPOSE4_PS(Y,F,G,H);
929             Heps             = _mm_mul_ps(vfeps,H);
930             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
931             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
932             fvdw12           = _mm_mul_ps(c12_00,FF);
933             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
934
935             fscal            = fvdw;
936
937             /* Calculate temporary vectorial force */
938             tx               = _mm_mul_ps(fscal,dx00);
939             ty               = _mm_mul_ps(fscal,dy00);
940             tz               = _mm_mul_ps(fscal,dz00);
941
942             /* Update vectorial force */
943             fix0             = _mm_add_ps(fix0,tx);
944             fiy0             = _mm_add_ps(fiy0,ty);
945             fiz0             = _mm_add_ps(fiz0,tz);
946
947             fjx0             = _mm_add_ps(fjx0,tx);
948             fjy0             = _mm_add_ps(fjy0,ty);
949             fjz0             = _mm_add_ps(fjz0,tz);
950             
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq10             = _mm_mul_ps(iq1,jq0);
957
958             /* REACTION-FIELD ELECTROSTATICS */
959             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
960
961             fscal            = felec;
962
963             /* Calculate temporary vectorial force */
964             tx               = _mm_mul_ps(fscal,dx10);
965             ty               = _mm_mul_ps(fscal,dy10);
966             tz               = _mm_mul_ps(fscal,dz10);
967
968             /* Update vectorial force */
969             fix1             = _mm_add_ps(fix1,tx);
970             fiy1             = _mm_add_ps(fiy1,ty);
971             fiz1             = _mm_add_ps(fiz1,tz);
972
973             fjx0             = _mm_add_ps(fjx0,tx);
974             fjy0             = _mm_add_ps(fjy0,ty);
975             fjz0             = _mm_add_ps(fjz0,tz);
976             
977             /**************************
978              * CALCULATE INTERACTIONS *
979              **************************/
980
981             /* Compute parameters for interactions between i and j atoms */
982             qq20             = _mm_mul_ps(iq2,jq0);
983
984             /* REACTION-FIELD ELECTROSTATICS */
985             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
986
987             fscal            = felec;
988
989             /* Calculate temporary vectorial force */
990             tx               = _mm_mul_ps(fscal,dx20);
991             ty               = _mm_mul_ps(fscal,dy20);
992             tz               = _mm_mul_ps(fscal,dz20);
993
994             /* Update vectorial force */
995             fix2             = _mm_add_ps(fix2,tx);
996             fiy2             = _mm_add_ps(fiy2,ty);
997             fiz2             = _mm_add_ps(fiz2,tz);
998
999             fjx0             = _mm_add_ps(fjx0,tx);
1000             fjy0             = _mm_add_ps(fjy0,ty);
1001             fjz0             = _mm_add_ps(fjz0,tz);
1002             
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             /* Compute parameters for interactions between i and j atoms */
1008             qq30             = _mm_mul_ps(iq3,jq0);
1009
1010             /* REACTION-FIELD ELECTROSTATICS */
1011             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1012
1013             fscal            = felec;
1014
1015             /* Calculate temporary vectorial force */
1016             tx               = _mm_mul_ps(fscal,dx30);
1017             ty               = _mm_mul_ps(fscal,dy30);
1018             tz               = _mm_mul_ps(fscal,dz30);
1019
1020             /* Update vectorial force */
1021             fix3             = _mm_add_ps(fix3,tx);
1022             fiy3             = _mm_add_ps(fiy3,ty);
1023             fiz3             = _mm_add_ps(fiz3,tz);
1024
1025             fjx0             = _mm_add_ps(fjx0,tx);
1026             fjy0             = _mm_add_ps(fjy0,ty);
1027             fjz0             = _mm_add_ps(fjz0,tz);
1028             
1029             fjptrA             = f+j_coord_offsetA;
1030             fjptrB             = f+j_coord_offsetB;
1031             fjptrC             = f+j_coord_offsetC;
1032             fjptrD             = f+j_coord_offsetD;
1033
1034             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1035
1036             /* Inner loop uses 129 flops */
1037         }
1038
1039         if(jidx<j_index_end)
1040         {
1041
1042             /* Get j neighbor index, and coordinate index */
1043             jnrlistA         = jjnr[jidx];
1044             jnrlistB         = jjnr[jidx+1];
1045             jnrlistC         = jjnr[jidx+2];
1046             jnrlistD         = jjnr[jidx+3];
1047             /* Sign of each element will be negative for non-real atoms.
1048              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1049              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1050              */
1051             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1052             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1053             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1054             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1055             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1056             j_coord_offsetA  = DIM*jnrA;
1057             j_coord_offsetB  = DIM*jnrB;
1058             j_coord_offsetC  = DIM*jnrC;
1059             j_coord_offsetD  = DIM*jnrD;
1060
1061             /* load j atom coordinates */
1062             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1063                                               x+j_coord_offsetC,x+j_coord_offsetD,
1064                                               &jx0,&jy0,&jz0);
1065
1066             /* Calculate displacement vector */
1067             dx00             = _mm_sub_ps(ix0,jx0);
1068             dy00             = _mm_sub_ps(iy0,jy0);
1069             dz00             = _mm_sub_ps(iz0,jz0);
1070             dx10             = _mm_sub_ps(ix1,jx0);
1071             dy10             = _mm_sub_ps(iy1,jy0);
1072             dz10             = _mm_sub_ps(iz1,jz0);
1073             dx20             = _mm_sub_ps(ix2,jx0);
1074             dy20             = _mm_sub_ps(iy2,jy0);
1075             dz20             = _mm_sub_ps(iz2,jz0);
1076             dx30             = _mm_sub_ps(ix3,jx0);
1077             dy30             = _mm_sub_ps(iy3,jy0);
1078             dz30             = _mm_sub_ps(iz3,jz0);
1079
1080             /* Calculate squared distance and things based on it */
1081             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1082             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1083             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1084             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1085
1086             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1087             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1088             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1089             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1090
1091             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1092             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1093             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1094
1095             /* Load parameters for j particles */
1096             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1097                                                               charge+jnrC+0,charge+jnrD+0);
1098             vdwjidx0A        = 2*vdwtype[jnrA+0];
1099             vdwjidx0B        = 2*vdwtype[jnrB+0];
1100             vdwjidx0C        = 2*vdwtype[jnrC+0];
1101             vdwjidx0D        = 2*vdwtype[jnrD+0];
1102
1103             fjx0             = _mm_setzero_ps();
1104             fjy0             = _mm_setzero_ps();
1105             fjz0             = _mm_setzero_ps();
1106
1107             /**************************
1108              * CALCULATE INTERACTIONS *
1109              **************************/
1110
1111             r00              = _mm_mul_ps(rsq00,rinv00);
1112             r00              = _mm_andnot_ps(dummy_mask,r00);
1113
1114             /* Compute parameters for interactions between i and j atoms */
1115             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1116                                          vdwparam+vdwioffset0+vdwjidx0B,
1117                                          vdwparam+vdwioffset0+vdwjidx0C,
1118                                          vdwparam+vdwioffset0+vdwjidx0D,
1119                                          &c6_00,&c12_00);
1120
1121             /* Calculate table index by multiplying r with table scale and truncate to integer */
1122             rt               = _mm_mul_ps(r00,vftabscale);
1123             vfitab           = _mm_cvttps_epi32(rt);
1124             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1125             vfitab           = _mm_slli_epi32(vfitab,3);
1126
1127             /* CUBIC SPLINE TABLE DISPERSION */
1128             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1129             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1130             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1131             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1132             _MM_TRANSPOSE4_PS(Y,F,G,H);
1133             Heps             = _mm_mul_ps(vfeps,H);
1134             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1135             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1136             fvdw6            = _mm_mul_ps(c6_00,FF);
1137
1138             /* CUBIC SPLINE TABLE REPULSION */
1139             vfitab           = _mm_add_epi32(vfitab,ifour);
1140             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1141             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1142             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1143             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1144             _MM_TRANSPOSE4_PS(Y,F,G,H);
1145             Heps             = _mm_mul_ps(vfeps,H);
1146             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1147             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1148             fvdw12           = _mm_mul_ps(c12_00,FF);
1149             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1150
1151             fscal            = fvdw;
1152
1153             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1154
1155             /* Calculate temporary vectorial force */
1156             tx               = _mm_mul_ps(fscal,dx00);
1157             ty               = _mm_mul_ps(fscal,dy00);
1158             tz               = _mm_mul_ps(fscal,dz00);
1159
1160             /* Update vectorial force */
1161             fix0             = _mm_add_ps(fix0,tx);
1162             fiy0             = _mm_add_ps(fiy0,ty);
1163             fiz0             = _mm_add_ps(fiz0,tz);
1164
1165             fjx0             = _mm_add_ps(fjx0,tx);
1166             fjy0             = _mm_add_ps(fjy0,ty);
1167             fjz0             = _mm_add_ps(fjz0,tz);
1168             
1169             /**************************
1170              * CALCULATE INTERACTIONS *
1171              **************************/
1172
1173             /* Compute parameters for interactions between i and j atoms */
1174             qq10             = _mm_mul_ps(iq1,jq0);
1175
1176             /* REACTION-FIELD ELECTROSTATICS */
1177             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1178
1179             fscal            = felec;
1180
1181             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1182
1183             /* Calculate temporary vectorial force */
1184             tx               = _mm_mul_ps(fscal,dx10);
1185             ty               = _mm_mul_ps(fscal,dy10);
1186             tz               = _mm_mul_ps(fscal,dz10);
1187
1188             /* Update vectorial force */
1189             fix1             = _mm_add_ps(fix1,tx);
1190             fiy1             = _mm_add_ps(fiy1,ty);
1191             fiz1             = _mm_add_ps(fiz1,tz);
1192
1193             fjx0             = _mm_add_ps(fjx0,tx);
1194             fjy0             = _mm_add_ps(fjy0,ty);
1195             fjz0             = _mm_add_ps(fjz0,tz);
1196             
1197             /**************************
1198              * CALCULATE INTERACTIONS *
1199              **************************/
1200
1201             /* Compute parameters for interactions between i and j atoms */
1202             qq20             = _mm_mul_ps(iq2,jq0);
1203
1204             /* REACTION-FIELD ELECTROSTATICS */
1205             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1206
1207             fscal            = felec;
1208
1209             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1210
1211             /* Calculate temporary vectorial force */
1212             tx               = _mm_mul_ps(fscal,dx20);
1213             ty               = _mm_mul_ps(fscal,dy20);
1214             tz               = _mm_mul_ps(fscal,dz20);
1215
1216             /* Update vectorial force */
1217             fix2             = _mm_add_ps(fix2,tx);
1218             fiy2             = _mm_add_ps(fiy2,ty);
1219             fiz2             = _mm_add_ps(fiz2,tz);
1220
1221             fjx0             = _mm_add_ps(fjx0,tx);
1222             fjy0             = _mm_add_ps(fjy0,ty);
1223             fjz0             = _mm_add_ps(fjz0,tz);
1224             
1225             /**************************
1226              * CALCULATE INTERACTIONS *
1227              **************************/
1228
1229             /* Compute parameters for interactions between i and j atoms */
1230             qq30             = _mm_mul_ps(iq3,jq0);
1231
1232             /* REACTION-FIELD ELECTROSTATICS */
1233             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1234
1235             fscal            = felec;
1236
1237             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1238
1239             /* Calculate temporary vectorial force */
1240             tx               = _mm_mul_ps(fscal,dx30);
1241             ty               = _mm_mul_ps(fscal,dy30);
1242             tz               = _mm_mul_ps(fscal,dz30);
1243
1244             /* Update vectorial force */
1245             fix3             = _mm_add_ps(fix3,tx);
1246             fiy3             = _mm_add_ps(fiy3,ty);
1247             fiz3             = _mm_add_ps(fiz3,tz);
1248
1249             fjx0             = _mm_add_ps(fjx0,tx);
1250             fjy0             = _mm_add_ps(fjy0,ty);
1251             fjz0             = _mm_add_ps(fjz0,tz);
1252             
1253             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1254             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1255             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1256             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1257
1258             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1259
1260             /* Inner loop uses 130 flops */
1261         }
1262
1263         /* End of innermost loop */
1264
1265         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1266                                               f+i_coord_offset,fshift+i_shift_offset);
1267
1268         /* Increment number of inner iterations */
1269         inneriter                  += j_index_end - j_index_start;
1270
1271         /* Outer loop uses 24 flops */
1272     }
1273
1274     /* Increment number of outer iterations */
1275     outeriter        += nri;
1276
1277     /* Update outer/inner flops */
1278
1279     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*130);
1280 }