Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
91     real             *vftab;
92     __m128           dummy_mask,cutoff_mask;
93     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94     __m128           one     = _mm_set1_ps(1.0);
95     __m128           two     = _mm_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_ps(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     krf              = _mm_set1_ps(fr->ic->k_rf);
110     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
111     crf              = _mm_set1_ps(fr->ic->c_rf);
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
122     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
123     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }  
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
158         
159         fix0             = _mm_setzero_ps();
160         fiy0             = _mm_setzero_ps();
161         fiz0             = _mm_setzero_ps();
162         fix1             = _mm_setzero_ps();
163         fiy1             = _mm_setzero_ps();
164         fiz1             = _mm_setzero_ps();
165         fix2             = _mm_setzero_ps();
166         fiy2             = _mm_setzero_ps();
167         fiz2             = _mm_setzero_ps();
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_ps();
171         vvdwsum          = _mm_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184             j_coord_offsetC  = DIM*jnrC;
185             j_coord_offsetD  = DIM*jnrD;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               x+j_coord_offsetC,x+j_coord_offsetD,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_ps(ix0,jx0);
194             dy00             = _mm_sub_ps(iy0,jy0);
195             dz00             = _mm_sub_ps(iz0,jz0);
196             dx10             = _mm_sub_ps(ix1,jx0);
197             dy10             = _mm_sub_ps(iy1,jy0);
198             dz10             = _mm_sub_ps(iz1,jz0);
199             dx20             = _mm_sub_ps(ix2,jx0);
200             dy20             = _mm_sub_ps(iy2,jy0);
201             dz20             = _mm_sub_ps(iz2,jz0);
202
203             /* Calculate squared distance and things based on it */
204             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
205             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
206             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
207
208             rinv00           = gmx_mm_invsqrt_ps(rsq00);
209             rinv10           = gmx_mm_invsqrt_ps(rsq10);
210             rinv20           = gmx_mm_invsqrt_ps(rsq20);
211
212             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
213             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
214             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
218                                                               charge+jnrC+0,charge+jnrD+0);
219             vdwjidx0A        = 2*vdwtype[jnrA+0];
220             vdwjidx0B        = 2*vdwtype[jnrB+0];
221             vdwjidx0C        = 2*vdwtype[jnrC+0];
222             vdwjidx0D        = 2*vdwtype[jnrD+0];
223
224             fjx0             = _mm_setzero_ps();
225             fjy0             = _mm_setzero_ps();
226             fjz0             = _mm_setzero_ps();
227
228             /**************************
229              * CALCULATE INTERACTIONS *
230              **************************/
231
232             r00              = _mm_mul_ps(rsq00,rinv00);
233
234             /* Compute parameters for interactions between i and j atoms */
235             qq00             = _mm_mul_ps(iq0,jq0);
236             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
237                                          vdwparam+vdwioffset0+vdwjidx0B,
238                                          vdwparam+vdwioffset0+vdwjidx0C,
239                                          vdwparam+vdwioffset0+vdwjidx0D,
240                                          &c6_00,&c12_00);
241
242             /* Calculate table index by multiplying r with table scale and truncate to integer */
243             rt               = _mm_mul_ps(r00,vftabscale);
244             vfitab           = _mm_cvttps_epi32(rt);
245             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
246             vfitab           = _mm_slli_epi32(vfitab,3);
247
248             /* REACTION-FIELD ELECTROSTATICS */
249             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
250             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
251
252             /* CUBIC SPLINE TABLE DISPERSION */
253             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
254             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
255             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
256             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
257             _MM_TRANSPOSE4_PS(Y,F,G,H);
258             Heps             = _mm_mul_ps(vfeps,H);
259             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
260             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
261             vvdw6            = _mm_mul_ps(c6_00,VV);
262             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
263             fvdw6            = _mm_mul_ps(c6_00,FF);
264
265             /* CUBIC SPLINE TABLE REPULSION */
266             vfitab           = _mm_add_epi32(vfitab,ifour);
267             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
268             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
269             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
270             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
271             _MM_TRANSPOSE4_PS(Y,F,G,H);
272             Heps             = _mm_mul_ps(vfeps,H);
273             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
274             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
275             vvdw12           = _mm_mul_ps(c12_00,VV);
276             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
277             fvdw12           = _mm_mul_ps(c12_00,FF);
278             vvdw             = _mm_add_ps(vvdw12,vvdw6);
279             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velecsum         = _mm_add_ps(velecsum,velec);
283             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
284
285             fscal            = _mm_add_ps(felec,fvdw);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm_mul_ps(fscal,dx00);
289             ty               = _mm_mul_ps(fscal,dy00);
290             tz               = _mm_mul_ps(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm_add_ps(fix0,tx);
294             fiy0             = _mm_add_ps(fiy0,ty);
295             fiz0             = _mm_add_ps(fiz0,tz);
296
297             fjx0             = _mm_add_ps(fjx0,tx);
298             fjy0             = _mm_add_ps(fjy0,ty);
299             fjz0             = _mm_add_ps(fjz0,tz);
300             
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq10             = _mm_mul_ps(iq1,jq0);
307
308             /* REACTION-FIELD ELECTROSTATICS */
309             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
310             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velecsum         = _mm_add_ps(velecsum,velec);
314
315             fscal            = felec;
316
317             /* Calculate temporary vectorial force */
318             tx               = _mm_mul_ps(fscal,dx10);
319             ty               = _mm_mul_ps(fscal,dy10);
320             tz               = _mm_mul_ps(fscal,dz10);
321
322             /* Update vectorial force */
323             fix1             = _mm_add_ps(fix1,tx);
324             fiy1             = _mm_add_ps(fiy1,ty);
325             fiz1             = _mm_add_ps(fiz1,tz);
326
327             fjx0             = _mm_add_ps(fjx0,tx);
328             fjy0             = _mm_add_ps(fjy0,ty);
329             fjz0             = _mm_add_ps(fjz0,tz);
330             
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq20             = _mm_mul_ps(iq2,jq0);
337
338             /* REACTION-FIELD ELECTROSTATICS */
339             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
340             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velecsum         = _mm_add_ps(velecsum,velec);
344
345             fscal            = felec;
346
347             /* Calculate temporary vectorial force */
348             tx               = _mm_mul_ps(fscal,dx20);
349             ty               = _mm_mul_ps(fscal,dy20);
350             tz               = _mm_mul_ps(fscal,dz20);
351
352             /* Update vectorial force */
353             fix2             = _mm_add_ps(fix2,tx);
354             fiy2             = _mm_add_ps(fiy2,ty);
355             fiz2             = _mm_add_ps(fiz2,tz);
356
357             fjx0             = _mm_add_ps(fjx0,tx);
358             fjy0             = _mm_add_ps(fjy0,ty);
359             fjz0             = _mm_add_ps(fjz0,tz);
360             
361             fjptrA             = f+j_coord_offsetA;
362             fjptrB             = f+j_coord_offsetB;
363             fjptrC             = f+j_coord_offsetC;
364             fjptrD             = f+j_coord_offsetD;
365
366             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
367
368             /* Inner loop uses 131 flops */
369         }
370
371         if(jidx<j_index_end)
372         {
373
374             /* Get j neighbor index, and coordinate index */
375             jnrlistA         = jjnr[jidx];
376             jnrlistB         = jjnr[jidx+1];
377             jnrlistC         = jjnr[jidx+2];
378             jnrlistD         = jjnr[jidx+3];
379             /* Sign of each element will be negative for non-real atoms.
380              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
381              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
382              */
383             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
384             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
385             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
386             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
387             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
388             j_coord_offsetA  = DIM*jnrA;
389             j_coord_offsetB  = DIM*jnrB;
390             j_coord_offsetC  = DIM*jnrC;
391             j_coord_offsetD  = DIM*jnrD;
392
393             /* load j atom coordinates */
394             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
395                                               x+j_coord_offsetC,x+j_coord_offsetD,
396                                               &jx0,&jy0,&jz0);
397
398             /* Calculate displacement vector */
399             dx00             = _mm_sub_ps(ix0,jx0);
400             dy00             = _mm_sub_ps(iy0,jy0);
401             dz00             = _mm_sub_ps(iz0,jz0);
402             dx10             = _mm_sub_ps(ix1,jx0);
403             dy10             = _mm_sub_ps(iy1,jy0);
404             dz10             = _mm_sub_ps(iz1,jz0);
405             dx20             = _mm_sub_ps(ix2,jx0);
406             dy20             = _mm_sub_ps(iy2,jy0);
407             dz20             = _mm_sub_ps(iz2,jz0);
408
409             /* Calculate squared distance and things based on it */
410             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
411             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
412             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
413
414             rinv00           = gmx_mm_invsqrt_ps(rsq00);
415             rinv10           = gmx_mm_invsqrt_ps(rsq10);
416             rinv20           = gmx_mm_invsqrt_ps(rsq20);
417
418             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
419             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
420             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
421
422             /* Load parameters for j particles */
423             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
424                                                               charge+jnrC+0,charge+jnrD+0);
425             vdwjidx0A        = 2*vdwtype[jnrA+0];
426             vdwjidx0B        = 2*vdwtype[jnrB+0];
427             vdwjidx0C        = 2*vdwtype[jnrC+0];
428             vdwjidx0D        = 2*vdwtype[jnrD+0];
429
430             fjx0             = _mm_setzero_ps();
431             fjy0             = _mm_setzero_ps();
432             fjz0             = _mm_setzero_ps();
433
434             /**************************
435              * CALCULATE INTERACTIONS *
436              **************************/
437
438             r00              = _mm_mul_ps(rsq00,rinv00);
439             r00              = _mm_andnot_ps(dummy_mask,r00);
440
441             /* Compute parameters for interactions between i and j atoms */
442             qq00             = _mm_mul_ps(iq0,jq0);
443             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
444                                          vdwparam+vdwioffset0+vdwjidx0B,
445                                          vdwparam+vdwioffset0+vdwjidx0C,
446                                          vdwparam+vdwioffset0+vdwjidx0D,
447                                          &c6_00,&c12_00);
448
449             /* Calculate table index by multiplying r with table scale and truncate to integer */
450             rt               = _mm_mul_ps(r00,vftabscale);
451             vfitab           = _mm_cvttps_epi32(rt);
452             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
453             vfitab           = _mm_slli_epi32(vfitab,3);
454
455             /* REACTION-FIELD ELECTROSTATICS */
456             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
457             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
458
459             /* CUBIC SPLINE TABLE DISPERSION */
460             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
461             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
462             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
463             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
464             _MM_TRANSPOSE4_PS(Y,F,G,H);
465             Heps             = _mm_mul_ps(vfeps,H);
466             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
467             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
468             vvdw6            = _mm_mul_ps(c6_00,VV);
469             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
470             fvdw6            = _mm_mul_ps(c6_00,FF);
471
472             /* CUBIC SPLINE TABLE REPULSION */
473             vfitab           = _mm_add_epi32(vfitab,ifour);
474             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
475             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
476             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
477             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
478             _MM_TRANSPOSE4_PS(Y,F,G,H);
479             Heps             = _mm_mul_ps(vfeps,H);
480             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
481             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
482             vvdw12           = _mm_mul_ps(c12_00,VV);
483             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
484             fvdw12           = _mm_mul_ps(c12_00,FF);
485             vvdw             = _mm_add_ps(vvdw12,vvdw6);
486             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
487
488             /* Update potential sum for this i atom from the interaction with this j atom. */
489             velec            = _mm_andnot_ps(dummy_mask,velec);
490             velecsum         = _mm_add_ps(velecsum,velec);
491             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
492             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
493
494             fscal            = _mm_add_ps(felec,fvdw);
495
496             fscal            = _mm_andnot_ps(dummy_mask,fscal);
497
498             /* Calculate temporary vectorial force */
499             tx               = _mm_mul_ps(fscal,dx00);
500             ty               = _mm_mul_ps(fscal,dy00);
501             tz               = _mm_mul_ps(fscal,dz00);
502
503             /* Update vectorial force */
504             fix0             = _mm_add_ps(fix0,tx);
505             fiy0             = _mm_add_ps(fiy0,ty);
506             fiz0             = _mm_add_ps(fiz0,tz);
507
508             fjx0             = _mm_add_ps(fjx0,tx);
509             fjy0             = _mm_add_ps(fjy0,ty);
510             fjz0             = _mm_add_ps(fjz0,tz);
511             
512             /**************************
513              * CALCULATE INTERACTIONS *
514              **************************/
515
516             /* Compute parameters for interactions between i and j atoms */
517             qq10             = _mm_mul_ps(iq1,jq0);
518
519             /* REACTION-FIELD ELECTROSTATICS */
520             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
521             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
522
523             /* Update potential sum for this i atom from the interaction with this j atom. */
524             velec            = _mm_andnot_ps(dummy_mask,velec);
525             velecsum         = _mm_add_ps(velecsum,velec);
526
527             fscal            = felec;
528
529             fscal            = _mm_andnot_ps(dummy_mask,fscal);
530
531             /* Calculate temporary vectorial force */
532             tx               = _mm_mul_ps(fscal,dx10);
533             ty               = _mm_mul_ps(fscal,dy10);
534             tz               = _mm_mul_ps(fscal,dz10);
535
536             /* Update vectorial force */
537             fix1             = _mm_add_ps(fix1,tx);
538             fiy1             = _mm_add_ps(fiy1,ty);
539             fiz1             = _mm_add_ps(fiz1,tz);
540
541             fjx0             = _mm_add_ps(fjx0,tx);
542             fjy0             = _mm_add_ps(fjy0,ty);
543             fjz0             = _mm_add_ps(fjz0,tz);
544             
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             /* Compute parameters for interactions between i and j atoms */
550             qq20             = _mm_mul_ps(iq2,jq0);
551
552             /* REACTION-FIELD ELECTROSTATICS */
553             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
554             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
555
556             /* Update potential sum for this i atom from the interaction with this j atom. */
557             velec            = _mm_andnot_ps(dummy_mask,velec);
558             velecsum         = _mm_add_ps(velecsum,velec);
559
560             fscal            = felec;
561
562             fscal            = _mm_andnot_ps(dummy_mask,fscal);
563
564             /* Calculate temporary vectorial force */
565             tx               = _mm_mul_ps(fscal,dx20);
566             ty               = _mm_mul_ps(fscal,dy20);
567             tz               = _mm_mul_ps(fscal,dz20);
568
569             /* Update vectorial force */
570             fix2             = _mm_add_ps(fix2,tx);
571             fiy2             = _mm_add_ps(fiy2,ty);
572             fiz2             = _mm_add_ps(fiz2,tz);
573
574             fjx0             = _mm_add_ps(fjx0,tx);
575             fjy0             = _mm_add_ps(fjy0,ty);
576             fjz0             = _mm_add_ps(fjz0,tz);
577             
578             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
579             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
580             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
581             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
582
583             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
584
585             /* Inner loop uses 132 flops */
586         }
587
588         /* End of innermost loop */
589
590         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
591                                               f+i_coord_offset,fshift+i_shift_offset);
592
593         ggid                        = gid[iidx];
594         /* Update potential energies */
595         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
596         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
597
598         /* Increment number of inner iterations */
599         inneriter                  += j_index_end - j_index_start;
600
601         /* Outer loop uses 20 flops */
602     }
603
604     /* Increment number of outer iterations */
605     outeriter        += nri;
606
607     /* Update outer/inner flops */
608
609     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*132);
610 }
611 /*
612  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_sse2_single
613  * Electrostatics interaction: ReactionField
614  * VdW interaction:            CubicSplineTable
615  * Geometry:                   Water3-Particle
616  * Calculate force/pot:        Force
617  */
618 void
619 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_sse2_single
620                     (t_nblist * gmx_restrict                nlist,
621                      rvec * gmx_restrict                    xx,
622                      rvec * gmx_restrict                    ff,
623                      t_forcerec * gmx_restrict              fr,
624                      t_mdatoms * gmx_restrict               mdatoms,
625                      nb_kernel_data_t * gmx_restrict        kernel_data,
626                      t_nrnb * gmx_restrict                  nrnb)
627 {
628     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
629      * just 0 for non-waters.
630      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
631      * jnr indices corresponding to data put in the four positions in the SIMD register.
632      */
633     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
634     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
635     int              jnrA,jnrB,jnrC,jnrD;
636     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
637     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
638     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
639     real             rcutoff_scalar;
640     real             *shiftvec,*fshift,*x,*f;
641     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
642     real             scratch[4*DIM];
643     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
644     int              vdwioffset0;
645     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
646     int              vdwioffset1;
647     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
648     int              vdwioffset2;
649     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
650     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
651     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
652     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
653     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
654     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
655     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
656     real             *charge;
657     int              nvdwtype;
658     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
659     int              *vdwtype;
660     real             *vdwparam;
661     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
662     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
663     __m128i          vfitab;
664     __m128i          ifour       = _mm_set1_epi32(4);
665     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
666     real             *vftab;
667     __m128           dummy_mask,cutoff_mask;
668     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
669     __m128           one     = _mm_set1_ps(1.0);
670     __m128           two     = _mm_set1_ps(2.0);
671     x                = xx[0];
672     f                = ff[0];
673
674     nri              = nlist->nri;
675     iinr             = nlist->iinr;
676     jindex           = nlist->jindex;
677     jjnr             = nlist->jjnr;
678     shiftidx         = nlist->shift;
679     gid              = nlist->gid;
680     shiftvec         = fr->shift_vec[0];
681     fshift           = fr->fshift[0];
682     facel            = _mm_set1_ps(fr->epsfac);
683     charge           = mdatoms->chargeA;
684     krf              = _mm_set1_ps(fr->ic->k_rf);
685     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
686     crf              = _mm_set1_ps(fr->ic->c_rf);
687     nvdwtype         = fr->ntype;
688     vdwparam         = fr->nbfp;
689     vdwtype          = mdatoms->typeA;
690
691     vftab            = kernel_data->table_vdw->data;
692     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
693
694     /* Setup water-specific parameters */
695     inr              = nlist->iinr[0];
696     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
697     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
698     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
699     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
700
701     /* Avoid stupid compiler warnings */
702     jnrA = jnrB = jnrC = jnrD = 0;
703     j_coord_offsetA = 0;
704     j_coord_offsetB = 0;
705     j_coord_offsetC = 0;
706     j_coord_offsetD = 0;
707
708     outeriter        = 0;
709     inneriter        = 0;
710
711     for(iidx=0;iidx<4*DIM;iidx++)
712     {
713         scratch[iidx] = 0.0;
714     }  
715
716     /* Start outer loop over neighborlists */
717     for(iidx=0; iidx<nri; iidx++)
718     {
719         /* Load shift vector for this list */
720         i_shift_offset   = DIM*shiftidx[iidx];
721
722         /* Load limits for loop over neighbors */
723         j_index_start    = jindex[iidx];
724         j_index_end      = jindex[iidx+1];
725
726         /* Get outer coordinate index */
727         inr              = iinr[iidx];
728         i_coord_offset   = DIM*inr;
729
730         /* Load i particle coords and add shift vector */
731         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
732                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
733         
734         fix0             = _mm_setzero_ps();
735         fiy0             = _mm_setzero_ps();
736         fiz0             = _mm_setzero_ps();
737         fix1             = _mm_setzero_ps();
738         fiy1             = _mm_setzero_ps();
739         fiz1             = _mm_setzero_ps();
740         fix2             = _mm_setzero_ps();
741         fiy2             = _mm_setzero_ps();
742         fiz2             = _mm_setzero_ps();
743
744         /* Start inner kernel loop */
745         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
746         {
747
748             /* Get j neighbor index, and coordinate index */
749             jnrA             = jjnr[jidx];
750             jnrB             = jjnr[jidx+1];
751             jnrC             = jjnr[jidx+2];
752             jnrD             = jjnr[jidx+3];
753             j_coord_offsetA  = DIM*jnrA;
754             j_coord_offsetB  = DIM*jnrB;
755             j_coord_offsetC  = DIM*jnrC;
756             j_coord_offsetD  = DIM*jnrD;
757
758             /* load j atom coordinates */
759             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
760                                               x+j_coord_offsetC,x+j_coord_offsetD,
761                                               &jx0,&jy0,&jz0);
762
763             /* Calculate displacement vector */
764             dx00             = _mm_sub_ps(ix0,jx0);
765             dy00             = _mm_sub_ps(iy0,jy0);
766             dz00             = _mm_sub_ps(iz0,jz0);
767             dx10             = _mm_sub_ps(ix1,jx0);
768             dy10             = _mm_sub_ps(iy1,jy0);
769             dz10             = _mm_sub_ps(iz1,jz0);
770             dx20             = _mm_sub_ps(ix2,jx0);
771             dy20             = _mm_sub_ps(iy2,jy0);
772             dz20             = _mm_sub_ps(iz2,jz0);
773
774             /* Calculate squared distance and things based on it */
775             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
776             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
777             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
778
779             rinv00           = gmx_mm_invsqrt_ps(rsq00);
780             rinv10           = gmx_mm_invsqrt_ps(rsq10);
781             rinv20           = gmx_mm_invsqrt_ps(rsq20);
782
783             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
784             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
785             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
786
787             /* Load parameters for j particles */
788             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
789                                                               charge+jnrC+0,charge+jnrD+0);
790             vdwjidx0A        = 2*vdwtype[jnrA+0];
791             vdwjidx0B        = 2*vdwtype[jnrB+0];
792             vdwjidx0C        = 2*vdwtype[jnrC+0];
793             vdwjidx0D        = 2*vdwtype[jnrD+0];
794
795             fjx0             = _mm_setzero_ps();
796             fjy0             = _mm_setzero_ps();
797             fjz0             = _mm_setzero_ps();
798
799             /**************************
800              * CALCULATE INTERACTIONS *
801              **************************/
802
803             r00              = _mm_mul_ps(rsq00,rinv00);
804
805             /* Compute parameters for interactions between i and j atoms */
806             qq00             = _mm_mul_ps(iq0,jq0);
807             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
808                                          vdwparam+vdwioffset0+vdwjidx0B,
809                                          vdwparam+vdwioffset0+vdwjidx0C,
810                                          vdwparam+vdwioffset0+vdwjidx0D,
811                                          &c6_00,&c12_00);
812
813             /* Calculate table index by multiplying r with table scale and truncate to integer */
814             rt               = _mm_mul_ps(r00,vftabscale);
815             vfitab           = _mm_cvttps_epi32(rt);
816             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
817             vfitab           = _mm_slli_epi32(vfitab,3);
818
819             /* REACTION-FIELD ELECTROSTATICS */
820             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
821
822             /* CUBIC SPLINE TABLE DISPERSION */
823             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
824             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
825             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
826             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
827             _MM_TRANSPOSE4_PS(Y,F,G,H);
828             Heps             = _mm_mul_ps(vfeps,H);
829             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
830             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
831             fvdw6            = _mm_mul_ps(c6_00,FF);
832
833             /* CUBIC SPLINE TABLE REPULSION */
834             vfitab           = _mm_add_epi32(vfitab,ifour);
835             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
836             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
837             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
838             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
839             _MM_TRANSPOSE4_PS(Y,F,G,H);
840             Heps             = _mm_mul_ps(vfeps,H);
841             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
842             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
843             fvdw12           = _mm_mul_ps(c12_00,FF);
844             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
845
846             fscal            = _mm_add_ps(felec,fvdw);
847
848             /* Calculate temporary vectorial force */
849             tx               = _mm_mul_ps(fscal,dx00);
850             ty               = _mm_mul_ps(fscal,dy00);
851             tz               = _mm_mul_ps(fscal,dz00);
852
853             /* Update vectorial force */
854             fix0             = _mm_add_ps(fix0,tx);
855             fiy0             = _mm_add_ps(fiy0,ty);
856             fiz0             = _mm_add_ps(fiz0,tz);
857
858             fjx0             = _mm_add_ps(fjx0,tx);
859             fjy0             = _mm_add_ps(fjy0,ty);
860             fjz0             = _mm_add_ps(fjz0,tz);
861             
862             /**************************
863              * CALCULATE INTERACTIONS *
864              **************************/
865
866             /* Compute parameters for interactions between i and j atoms */
867             qq10             = _mm_mul_ps(iq1,jq0);
868
869             /* REACTION-FIELD ELECTROSTATICS */
870             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
871
872             fscal            = felec;
873
874             /* Calculate temporary vectorial force */
875             tx               = _mm_mul_ps(fscal,dx10);
876             ty               = _mm_mul_ps(fscal,dy10);
877             tz               = _mm_mul_ps(fscal,dz10);
878
879             /* Update vectorial force */
880             fix1             = _mm_add_ps(fix1,tx);
881             fiy1             = _mm_add_ps(fiy1,ty);
882             fiz1             = _mm_add_ps(fiz1,tz);
883
884             fjx0             = _mm_add_ps(fjx0,tx);
885             fjy0             = _mm_add_ps(fjy0,ty);
886             fjz0             = _mm_add_ps(fjz0,tz);
887             
888             /**************************
889              * CALCULATE INTERACTIONS *
890              **************************/
891
892             /* Compute parameters for interactions between i and j atoms */
893             qq20             = _mm_mul_ps(iq2,jq0);
894
895             /* REACTION-FIELD ELECTROSTATICS */
896             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
897
898             fscal            = felec;
899
900             /* Calculate temporary vectorial force */
901             tx               = _mm_mul_ps(fscal,dx20);
902             ty               = _mm_mul_ps(fscal,dy20);
903             tz               = _mm_mul_ps(fscal,dz20);
904
905             /* Update vectorial force */
906             fix2             = _mm_add_ps(fix2,tx);
907             fiy2             = _mm_add_ps(fiy2,ty);
908             fiz2             = _mm_add_ps(fiz2,tz);
909
910             fjx0             = _mm_add_ps(fjx0,tx);
911             fjy0             = _mm_add_ps(fjy0,ty);
912             fjz0             = _mm_add_ps(fjz0,tz);
913             
914             fjptrA             = f+j_coord_offsetA;
915             fjptrB             = f+j_coord_offsetB;
916             fjptrC             = f+j_coord_offsetC;
917             fjptrD             = f+j_coord_offsetD;
918
919             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
920
921             /* Inner loop uses 108 flops */
922         }
923
924         if(jidx<j_index_end)
925         {
926
927             /* Get j neighbor index, and coordinate index */
928             jnrlistA         = jjnr[jidx];
929             jnrlistB         = jjnr[jidx+1];
930             jnrlistC         = jjnr[jidx+2];
931             jnrlistD         = jjnr[jidx+3];
932             /* Sign of each element will be negative for non-real atoms.
933              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
934              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
935              */
936             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
937             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
938             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
939             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
940             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
941             j_coord_offsetA  = DIM*jnrA;
942             j_coord_offsetB  = DIM*jnrB;
943             j_coord_offsetC  = DIM*jnrC;
944             j_coord_offsetD  = DIM*jnrD;
945
946             /* load j atom coordinates */
947             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
948                                               x+j_coord_offsetC,x+j_coord_offsetD,
949                                               &jx0,&jy0,&jz0);
950
951             /* Calculate displacement vector */
952             dx00             = _mm_sub_ps(ix0,jx0);
953             dy00             = _mm_sub_ps(iy0,jy0);
954             dz00             = _mm_sub_ps(iz0,jz0);
955             dx10             = _mm_sub_ps(ix1,jx0);
956             dy10             = _mm_sub_ps(iy1,jy0);
957             dz10             = _mm_sub_ps(iz1,jz0);
958             dx20             = _mm_sub_ps(ix2,jx0);
959             dy20             = _mm_sub_ps(iy2,jy0);
960             dz20             = _mm_sub_ps(iz2,jz0);
961
962             /* Calculate squared distance and things based on it */
963             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
964             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
965             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
966
967             rinv00           = gmx_mm_invsqrt_ps(rsq00);
968             rinv10           = gmx_mm_invsqrt_ps(rsq10);
969             rinv20           = gmx_mm_invsqrt_ps(rsq20);
970
971             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
972             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
973             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
974
975             /* Load parameters for j particles */
976             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
977                                                               charge+jnrC+0,charge+jnrD+0);
978             vdwjidx0A        = 2*vdwtype[jnrA+0];
979             vdwjidx0B        = 2*vdwtype[jnrB+0];
980             vdwjidx0C        = 2*vdwtype[jnrC+0];
981             vdwjidx0D        = 2*vdwtype[jnrD+0];
982
983             fjx0             = _mm_setzero_ps();
984             fjy0             = _mm_setzero_ps();
985             fjz0             = _mm_setzero_ps();
986
987             /**************************
988              * CALCULATE INTERACTIONS *
989              **************************/
990
991             r00              = _mm_mul_ps(rsq00,rinv00);
992             r00              = _mm_andnot_ps(dummy_mask,r00);
993
994             /* Compute parameters for interactions between i and j atoms */
995             qq00             = _mm_mul_ps(iq0,jq0);
996             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
997                                          vdwparam+vdwioffset0+vdwjidx0B,
998                                          vdwparam+vdwioffset0+vdwjidx0C,
999                                          vdwparam+vdwioffset0+vdwjidx0D,
1000                                          &c6_00,&c12_00);
1001
1002             /* Calculate table index by multiplying r with table scale and truncate to integer */
1003             rt               = _mm_mul_ps(r00,vftabscale);
1004             vfitab           = _mm_cvttps_epi32(rt);
1005             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1006             vfitab           = _mm_slli_epi32(vfitab,3);
1007
1008             /* REACTION-FIELD ELECTROSTATICS */
1009             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1010
1011             /* CUBIC SPLINE TABLE DISPERSION */
1012             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1013             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1014             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1015             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1016             _MM_TRANSPOSE4_PS(Y,F,G,H);
1017             Heps             = _mm_mul_ps(vfeps,H);
1018             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1019             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1020             fvdw6            = _mm_mul_ps(c6_00,FF);
1021
1022             /* CUBIC SPLINE TABLE REPULSION */
1023             vfitab           = _mm_add_epi32(vfitab,ifour);
1024             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1025             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1026             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1027             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1028             _MM_TRANSPOSE4_PS(Y,F,G,H);
1029             Heps             = _mm_mul_ps(vfeps,H);
1030             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1031             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1032             fvdw12           = _mm_mul_ps(c12_00,FF);
1033             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1034
1035             fscal            = _mm_add_ps(felec,fvdw);
1036
1037             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1038
1039             /* Calculate temporary vectorial force */
1040             tx               = _mm_mul_ps(fscal,dx00);
1041             ty               = _mm_mul_ps(fscal,dy00);
1042             tz               = _mm_mul_ps(fscal,dz00);
1043
1044             /* Update vectorial force */
1045             fix0             = _mm_add_ps(fix0,tx);
1046             fiy0             = _mm_add_ps(fiy0,ty);
1047             fiz0             = _mm_add_ps(fiz0,tz);
1048
1049             fjx0             = _mm_add_ps(fjx0,tx);
1050             fjy0             = _mm_add_ps(fjy0,ty);
1051             fjz0             = _mm_add_ps(fjz0,tz);
1052             
1053             /**************************
1054              * CALCULATE INTERACTIONS *
1055              **************************/
1056
1057             /* Compute parameters for interactions between i and j atoms */
1058             qq10             = _mm_mul_ps(iq1,jq0);
1059
1060             /* REACTION-FIELD ELECTROSTATICS */
1061             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1062
1063             fscal            = felec;
1064
1065             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1066
1067             /* Calculate temporary vectorial force */
1068             tx               = _mm_mul_ps(fscal,dx10);
1069             ty               = _mm_mul_ps(fscal,dy10);
1070             tz               = _mm_mul_ps(fscal,dz10);
1071
1072             /* Update vectorial force */
1073             fix1             = _mm_add_ps(fix1,tx);
1074             fiy1             = _mm_add_ps(fiy1,ty);
1075             fiz1             = _mm_add_ps(fiz1,tz);
1076
1077             fjx0             = _mm_add_ps(fjx0,tx);
1078             fjy0             = _mm_add_ps(fjy0,ty);
1079             fjz0             = _mm_add_ps(fjz0,tz);
1080             
1081             /**************************
1082              * CALCULATE INTERACTIONS *
1083              **************************/
1084
1085             /* Compute parameters for interactions between i and j atoms */
1086             qq20             = _mm_mul_ps(iq2,jq0);
1087
1088             /* REACTION-FIELD ELECTROSTATICS */
1089             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1090
1091             fscal            = felec;
1092
1093             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1094
1095             /* Calculate temporary vectorial force */
1096             tx               = _mm_mul_ps(fscal,dx20);
1097             ty               = _mm_mul_ps(fscal,dy20);
1098             tz               = _mm_mul_ps(fscal,dz20);
1099
1100             /* Update vectorial force */
1101             fix2             = _mm_add_ps(fix2,tx);
1102             fiy2             = _mm_add_ps(fiy2,ty);
1103             fiz2             = _mm_add_ps(fiz2,tz);
1104
1105             fjx0             = _mm_add_ps(fjx0,tx);
1106             fjy0             = _mm_add_ps(fjy0,ty);
1107             fjz0             = _mm_add_ps(fjz0,tz);
1108             
1109             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1110             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1111             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1112             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1113
1114             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1115
1116             /* Inner loop uses 109 flops */
1117         }
1118
1119         /* End of innermost loop */
1120
1121         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1122                                               f+i_coord_offset,fshift+i_shift_offset);
1123
1124         /* Increment number of inner iterations */
1125         inneriter                  += j_index_end - j_index_start;
1126
1127         /* Outer loop uses 18 flops */
1128     }
1129
1130     /* Increment number of outer iterations */
1131     outeriter        += nri;
1132
1133     /* Update outer/inner flops */
1134
1135     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*109);
1136 }