Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
84     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
85     __m128i          vfitab;
86     __m128i          ifour       = _mm_set1_epi32(4);
87     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
88     real             *vftab;
89     __m128           dummy_mask,cutoff_mask;
90     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
91     __m128           one     = _mm_set1_ps(1.0);
92     __m128           two     = _mm_set1_ps(2.0);
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = _mm_set1_ps(fr->epsfac);
105     charge           = mdatoms->chargeA;
106     krf              = _mm_set1_ps(fr->ic->k_rf);
107     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
108     crf              = _mm_set1_ps(fr->ic->c_rf);
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
119     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
120     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = jnrC = jnrD = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127     j_coord_offsetC = 0;
128     j_coord_offsetD = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138         shX              = shiftvec[i_shift_offset+XX];
139         shY              = shiftvec[i_shift_offset+YY];
140         shZ              = shiftvec[i_shift_offset+ZZ];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
152         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
153         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
154         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
155         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
156         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
157         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
158         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
159         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
160
161         fix0             = _mm_setzero_ps();
162         fiy0             = _mm_setzero_ps();
163         fiz0             = _mm_setzero_ps();
164         fix1             = _mm_setzero_ps();
165         fiy1             = _mm_setzero_ps();
166         fiz1             = _mm_setzero_ps();
167         fix2             = _mm_setzero_ps();
168         fiy2             = _mm_setzero_ps();
169         fiz2             = _mm_setzero_ps();
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_ps();
173         vvdwsum          = _mm_setzero_ps();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               x+j_coord_offsetC,x+j_coord_offsetD,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_ps(ix0,jx0);
197             dy00             = _mm_sub_ps(iy0,jy0);
198             dz00             = _mm_sub_ps(iz0,jz0);
199             dx10             = _mm_sub_ps(ix1,jx0);
200             dy10             = _mm_sub_ps(iy1,jy0);
201             dz10             = _mm_sub_ps(iz1,jz0);
202             dx20             = _mm_sub_ps(ix2,jx0);
203             dy20             = _mm_sub_ps(iy2,jy0);
204             dz20             = _mm_sub_ps(iz2,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
208             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
209             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
210
211             rinv00           = gmx_mm_invsqrt_ps(rsq00);
212             rinv10           = gmx_mm_invsqrt_ps(rsq10);
213             rinv20           = gmx_mm_invsqrt_ps(rsq20);
214
215             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
216             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
217             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
221                                                               charge+jnrC+0,charge+jnrD+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224             vdwjidx0C        = 2*vdwtype[jnrC+0];
225             vdwjidx0D        = 2*vdwtype[jnrD+0];
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             r00              = _mm_mul_ps(rsq00,rinv00);
232
233             /* Compute parameters for interactions between i and j atoms */
234             qq00             = _mm_mul_ps(iq0,jq0);
235             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
236                                          vdwparam+vdwioffset0+vdwjidx0B,
237                                          vdwparam+vdwioffset0+vdwjidx0C,
238                                          vdwparam+vdwioffset0+vdwjidx0D,
239                                          &c6_00,&c12_00);
240
241             /* Calculate table index by multiplying r with table scale and truncate to integer */
242             rt               = _mm_mul_ps(r00,vftabscale);
243             vfitab           = _mm_cvttps_epi32(rt);
244             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
245             vfitab           = _mm_slli_epi32(vfitab,3);
246
247             /* REACTION-FIELD ELECTROSTATICS */
248             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
249             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
250
251             /* CUBIC SPLINE TABLE DISPERSION */
252             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
253             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
254             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
255             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
256             _MM_TRANSPOSE4_PS(Y,F,G,H);
257             Heps             = _mm_mul_ps(vfeps,H);
258             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
259             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
260             vvdw6            = _mm_mul_ps(c6_00,VV);
261             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
262             fvdw6            = _mm_mul_ps(c6_00,FF);
263
264             /* CUBIC SPLINE TABLE REPULSION */
265             vfitab           = _mm_add_epi32(vfitab,ifour);
266             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
267             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
268             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
269             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
270             _MM_TRANSPOSE4_PS(Y,F,G,H);
271             Heps             = _mm_mul_ps(vfeps,H);
272             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
273             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
274             vvdw12           = _mm_mul_ps(c12_00,VV);
275             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
276             fvdw12           = _mm_mul_ps(c12_00,FF);
277             vvdw             = _mm_add_ps(vvdw12,vvdw6);
278             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm_add_ps(velecsum,velec);
282             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
283
284             fscal            = _mm_add_ps(felec,fvdw);
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm_mul_ps(fscal,dx00);
288             ty               = _mm_mul_ps(fscal,dy00);
289             tz               = _mm_mul_ps(fscal,dz00);
290
291             /* Update vectorial force */
292             fix0             = _mm_add_ps(fix0,tx);
293             fiy0             = _mm_add_ps(fiy0,ty);
294             fiz0             = _mm_add_ps(fiz0,tz);
295
296             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
297                                                    f+j_coord_offsetC,f+j_coord_offsetD,
298                                                    tx,ty,tz);
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq10             = _mm_mul_ps(iq1,jq0);
306
307             /* REACTION-FIELD ELECTROSTATICS */
308             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
309             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
310
311             /* Update potential sum for this i atom from the interaction with this j atom. */
312             velecsum         = _mm_add_ps(velecsum,velec);
313
314             fscal            = felec;
315
316             /* Calculate temporary vectorial force */
317             tx               = _mm_mul_ps(fscal,dx10);
318             ty               = _mm_mul_ps(fscal,dy10);
319             tz               = _mm_mul_ps(fscal,dz10);
320
321             /* Update vectorial force */
322             fix1             = _mm_add_ps(fix1,tx);
323             fiy1             = _mm_add_ps(fiy1,ty);
324             fiz1             = _mm_add_ps(fiz1,tz);
325
326             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
327                                                    f+j_coord_offsetC,f+j_coord_offsetD,
328                                                    tx,ty,tz);
329
330             /**************************
331              * CALCULATE INTERACTIONS *
332              **************************/
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq20             = _mm_mul_ps(iq2,jq0);
336
337             /* REACTION-FIELD ELECTROSTATICS */
338             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
339             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velecsum         = _mm_add_ps(velecsum,velec);
343
344             fscal            = felec;
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm_mul_ps(fscal,dx20);
348             ty               = _mm_mul_ps(fscal,dy20);
349             tz               = _mm_mul_ps(fscal,dz20);
350
351             /* Update vectorial force */
352             fix2             = _mm_add_ps(fix2,tx);
353             fiy2             = _mm_add_ps(fiy2,ty);
354             fiz2             = _mm_add_ps(fiz2,tz);
355
356             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
357                                                    f+j_coord_offsetC,f+j_coord_offsetD,
358                                                    tx,ty,tz);
359
360             /* Inner loop uses 131 flops */
361         }
362
363         if(jidx<j_index_end)
364         {
365
366             /* Get j neighbor index, and coordinate index */
367             jnrA             = jjnr[jidx];
368             jnrB             = jjnr[jidx+1];
369             jnrC             = jjnr[jidx+2];
370             jnrD             = jjnr[jidx+3];
371
372             /* Sign of each element will be negative for non-real atoms.
373              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
374              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
375              */
376             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
377             jnrA       = (jnrA>=0) ? jnrA : 0;
378             jnrB       = (jnrB>=0) ? jnrB : 0;
379             jnrC       = (jnrC>=0) ? jnrC : 0;
380             jnrD       = (jnrD>=0) ? jnrD : 0;
381
382             j_coord_offsetA  = DIM*jnrA;
383             j_coord_offsetB  = DIM*jnrB;
384             j_coord_offsetC  = DIM*jnrC;
385             j_coord_offsetD  = DIM*jnrD;
386
387             /* load j atom coordinates */
388             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
389                                               x+j_coord_offsetC,x+j_coord_offsetD,
390                                               &jx0,&jy0,&jz0);
391
392             /* Calculate displacement vector */
393             dx00             = _mm_sub_ps(ix0,jx0);
394             dy00             = _mm_sub_ps(iy0,jy0);
395             dz00             = _mm_sub_ps(iz0,jz0);
396             dx10             = _mm_sub_ps(ix1,jx0);
397             dy10             = _mm_sub_ps(iy1,jy0);
398             dz10             = _mm_sub_ps(iz1,jz0);
399             dx20             = _mm_sub_ps(ix2,jx0);
400             dy20             = _mm_sub_ps(iy2,jy0);
401             dz20             = _mm_sub_ps(iz2,jz0);
402
403             /* Calculate squared distance and things based on it */
404             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
405             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
406             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
407
408             rinv00           = gmx_mm_invsqrt_ps(rsq00);
409             rinv10           = gmx_mm_invsqrt_ps(rsq10);
410             rinv20           = gmx_mm_invsqrt_ps(rsq20);
411
412             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
413             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
414             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
415
416             /* Load parameters for j particles */
417             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
418                                                               charge+jnrC+0,charge+jnrD+0);
419             vdwjidx0A        = 2*vdwtype[jnrA+0];
420             vdwjidx0B        = 2*vdwtype[jnrB+0];
421             vdwjidx0C        = 2*vdwtype[jnrC+0];
422             vdwjidx0D        = 2*vdwtype[jnrD+0];
423
424             /**************************
425              * CALCULATE INTERACTIONS *
426              **************************/
427
428             r00              = _mm_mul_ps(rsq00,rinv00);
429             r00              = _mm_andnot_ps(dummy_mask,r00);
430
431             /* Compute parameters for interactions between i and j atoms */
432             qq00             = _mm_mul_ps(iq0,jq0);
433             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
434                                          vdwparam+vdwioffset0+vdwjidx0B,
435                                          vdwparam+vdwioffset0+vdwjidx0C,
436                                          vdwparam+vdwioffset0+vdwjidx0D,
437                                          &c6_00,&c12_00);
438
439             /* Calculate table index by multiplying r with table scale and truncate to integer */
440             rt               = _mm_mul_ps(r00,vftabscale);
441             vfitab           = _mm_cvttps_epi32(rt);
442             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
443             vfitab           = _mm_slli_epi32(vfitab,3);
444
445             /* REACTION-FIELD ELECTROSTATICS */
446             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
447             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
448
449             /* CUBIC SPLINE TABLE DISPERSION */
450             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
451             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
452             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
453             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
454             _MM_TRANSPOSE4_PS(Y,F,G,H);
455             Heps             = _mm_mul_ps(vfeps,H);
456             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
457             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
458             vvdw6            = _mm_mul_ps(c6_00,VV);
459             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
460             fvdw6            = _mm_mul_ps(c6_00,FF);
461
462             /* CUBIC SPLINE TABLE REPULSION */
463             vfitab           = _mm_add_epi32(vfitab,ifour);
464             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
465             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
466             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
467             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
468             _MM_TRANSPOSE4_PS(Y,F,G,H);
469             Heps             = _mm_mul_ps(vfeps,H);
470             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
471             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
472             vvdw12           = _mm_mul_ps(c12_00,VV);
473             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
474             fvdw12           = _mm_mul_ps(c12_00,FF);
475             vvdw             = _mm_add_ps(vvdw12,vvdw6);
476             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
477
478             /* Update potential sum for this i atom from the interaction with this j atom. */
479             velec            = _mm_andnot_ps(dummy_mask,velec);
480             velecsum         = _mm_add_ps(velecsum,velec);
481             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
482             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
483
484             fscal            = _mm_add_ps(felec,fvdw);
485
486             fscal            = _mm_andnot_ps(dummy_mask,fscal);
487
488             /* Calculate temporary vectorial force */
489             tx               = _mm_mul_ps(fscal,dx00);
490             ty               = _mm_mul_ps(fscal,dy00);
491             tz               = _mm_mul_ps(fscal,dz00);
492
493             /* Update vectorial force */
494             fix0             = _mm_add_ps(fix0,tx);
495             fiy0             = _mm_add_ps(fiy0,ty);
496             fiz0             = _mm_add_ps(fiz0,tz);
497
498             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
499                                                    f+j_coord_offsetC,f+j_coord_offsetD,
500                                                    tx,ty,tz);
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             /* Compute parameters for interactions between i and j atoms */
507             qq10             = _mm_mul_ps(iq1,jq0);
508
509             /* REACTION-FIELD ELECTROSTATICS */
510             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
511             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
512
513             /* Update potential sum for this i atom from the interaction with this j atom. */
514             velec            = _mm_andnot_ps(dummy_mask,velec);
515             velecsum         = _mm_add_ps(velecsum,velec);
516
517             fscal            = felec;
518
519             fscal            = _mm_andnot_ps(dummy_mask,fscal);
520
521             /* Calculate temporary vectorial force */
522             tx               = _mm_mul_ps(fscal,dx10);
523             ty               = _mm_mul_ps(fscal,dy10);
524             tz               = _mm_mul_ps(fscal,dz10);
525
526             /* Update vectorial force */
527             fix1             = _mm_add_ps(fix1,tx);
528             fiy1             = _mm_add_ps(fiy1,ty);
529             fiz1             = _mm_add_ps(fiz1,tz);
530
531             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
532                                                    f+j_coord_offsetC,f+j_coord_offsetD,
533                                                    tx,ty,tz);
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             /* Compute parameters for interactions between i and j atoms */
540             qq20             = _mm_mul_ps(iq2,jq0);
541
542             /* REACTION-FIELD ELECTROSTATICS */
543             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
544             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
545
546             /* Update potential sum for this i atom from the interaction with this j atom. */
547             velec            = _mm_andnot_ps(dummy_mask,velec);
548             velecsum         = _mm_add_ps(velecsum,velec);
549
550             fscal            = felec;
551
552             fscal            = _mm_andnot_ps(dummy_mask,fscal);
553
554             /* Calculate temporary vectorial force */
555             tx               = _mm_mul_ps(fscal,dx20);
556             ty               = _mm_mul_ps(fscal,dy20);
557             tz               = _mm_mul_ps(fscal,dz20);
558
559             /* Update vectorial force */
560             fix2             = _mm_add_ps(fix2,tx);
561             fiy2             = _mm_add_ps(fiy2,ty);
562             fiz2             = _mm_add_ps(fiz2,tz);
563
564             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
565                                                    f+j_coord_offsetC,f+j_coord_offsetD,
566                                                    tx,ty,tz);
567
568             /* Inner loop uses 132 flops */
569         }
570
571         /* End of innermost loop */
572
573         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
574                                               f+i_coord_offset,fshift+i_shift_offset);
575
576         ggid                        = gid[iidx];
577         /* Update potential energies */
578         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
579         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
580
581         /* Increment number of inner iterations */
582         inneriter                  += j_index_end - j_index_start;
583
584         /* Outer loop uses 29 flops */
585     }
586
587     /* Increment number of outer iterations */
588     outeriter        += nri;
589
590     /* Update outer/inner flops */
591
592     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*29 + inneriter*132);
593 }
594 /*
595  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_sse2_single
596  * Electrostatics interaction: ReactionField
597  * VdW interaction:            CubicSplineTable
598  * Geometry:                   Water3-Particle
599  * Calculate force/pot:        Force
600  */
601 void
602 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_sse2_single
603                     (t_nblist * gmx_restrict                nlist,
604                      rvec * gmx_restrict                    xx,
605                      rvec * gmx_restrict                    ff,
606                      t_forcerec * gmx_restrict              fr,
607                      t_mdatoms * gmx_restrict               mdatoms,
608                      nb_kernel_data_t * gmx_restrict        kernel_data,
609                      t_nrnb * gmx_restrict                  nrnb)
610 {
611     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
612      * just 0 for non-waters.
613      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
614      * jnr indices corresponding to data put in the four positions in the SIMD register.
615      */
616     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
617     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
618     int              jnrA,jnrB,jnrC,jnrD;
619     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
620     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
621     real             shX,shY,shZ,rcutoff_scalar;
622     real             *shiftvec,*fshift,*x,*f;
623     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
624     int              vdwioffset0;
625     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
626     int              vdwioffset1;
627     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
628     int              vdwioffset2;
629     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
630     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
631     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
632     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
633     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
634     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
635     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
636     real             *charge;
637     int              nvdwtype;
638     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
639     int              *vdwtype;
640     real             *vdwparam;
641     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
642     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
643     __m128i          vfitab;
644     __m128i          ifour       = _mm_set1_epi32(4);
645     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
646     real             *vftab;
647     __m128           dummy_mask,cutoff_mask;
648     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
649     __m128           one     = _mm_set1_ps(1.0);
650     __m128           two     = _mm_set1_ps(2.0);
651     x                = xx[0];
652     f                = ff[0];
653
654     nri              = nlist->nri;
655     iinr             = nlist->iinr;
656     jindex           = nlist->jindex;
657     jjnr             = nlist->jjnr;
658     shiftidx         = nlist->shift;
659     gid              = nlist->gid;
660     shiftvec         = fr->shift_vec[0];
661     fshift           = fr->fshift[0];
662     facel            = _mm_set1_ps(fr->epsfac);
663     charge           = mdatoms->chargeA;
664     krf              = _mm_set1_ps(fr->ic->k_rf);
665     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
666     crf              = _mm_set1_ps(fr->ic->c_rf);
667     nvdwtype         = fr->ntype;
668     vdwparam         = fr->nbfp;
669     vdwtype          = mdatoms->typeA;
670
671     vftab            = kernel_data->table_vdw->data;
672     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
673
674     /* Setup water-specific parameters */
675     inr              = nlist->iinr[0];
676     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
677     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
678     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
679     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
680
681     /* Avoid stupid compiler warnings */
682     jnrA = jnrB = jnrC = jnrD = 0;
683     j_coord_offsetA = 0;
684     j_coord_offsetB = 0;
685     j_coord_offsetC = 0;
686     j_coord_offsetD = 0;
687
688     outeriter        = 0;
689     inneriter        = 0;
690
691     /* Start outer loop over neighborlists */
692     for(iidx=0; iidx<nri; iidx++)
693     {
694         /* Load shift vector for this list */
695         i_shift_offset   = DIM*shiftidx[iidx];
696         shX              = shiftvec[i_shift_offset+XX];
697         shY              = shiftvec[i_shift_offset+YY];
698         shZ              = shiftvec[i_shift_offset+ZZ];
699
700         /* Load limits for loop over neighbors */
701         j_index_start    = jindex[iidx];
702         j_index_end      = jindex[iidx+1];
703
704         /* Get outer coordinate index */
705         inr              = iinr[iidx];
706         i_coord_offset   = DIM*inr;
707
708         /* Load i particle coords and add shift vector */
709         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
710         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
711         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
712         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
713         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
714         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
715         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
716         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
717         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
718
719         fix0             = _mm_setzero_ps();
720         fiy0             = _mm_setzero_ps();
721         fiz0             = _mm_setzero_ps();
722         fix1             = _mm_setzero_ps();
723         fiy1             = _mm_setzero_ps();
724         fiz1             = _mm_setzero_ps();
725         fix2             = _mm_setzero_ps();
726         fiy2             = _mm_setzero_ps();
727         fiz2             = _mm_setzero_ps();
728
729         /* Start inner kernel loop */
730         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
731         {
732
733             /* Get j neighbor index, and coordinate index */
734             jnrA             = jjnr[jidx];
735             jnrB             = jjnr[jidx+1];
736             jnrC             = jjnr[jidx+2];
737             jnrD             = jjnr[jidx+3];
738
739             j_coord_offsetA  = DIM*jnrA;
740             j_coord_offsetB  = DIM*jnrB;
741             j_coord_offsetC  = DIM*jnrC;
742             j_coord_offsetD  = DIM*jnrD;
743
744             /* load j atom coordinates */
745             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
746                                               x+j_coord_offsetC,x+j_coord_offsetD,
747                                               &jx0,&jy0,&jz0);
748
749             /* Calculate displacement vector */
750             dx00             = _mm_sub_ps(ix0,jx0);
751             dy00             = _mm_sub_ps(iy0,jy0);
752             dz00             = _mm_sub_ps(iz0,jz0);
753             dx10             = _mm_sub_ps(ix1,jx0);
754             dy10             = _mm_sub_ps(iy1,jy0);
755             dz10             = _mm_sub_ps(iz1,jz0);
756             dx20             = _mm_sub_ps(ix2,jx0);
757             dy20             = _mm_sub_ps(iy2,jy0);
758             dz20             = _mm_sub_ps(iz2,jz0);
759
760             /* Calculate squared distance and things based on it */
761             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
762             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
763             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
764
765             rinv00           = gmx_mm_invsqrt_ps(rsq00);
766             rinv10           = gmx_mm_invsqrt_ps(rsq10);
767             rinv20           = gmx_mm_invsqrt_ps(rsq20);
768
769             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
770             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
771             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
772
773             /* Load parameters for j particles */
774             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
775                                                               charge+jnrC+0,charge+jnrD+0);
776             vdwjidx0A        = 2*vdwtype[jnrA+0];
777             vdwjidx0B        = 2*vdwtype[jnrB+0];
778             vdwjidx0C        = 2*vdwtype[jnrC+0];
779             vdwjidx0D        = 2*vdwtype[jnrD+0];
780
781             /**************************
782              * CALCULATE INTERACTIONS *
783              **************************/
784
785             r00              = _mm_mul_ps(rsq00,rinv00);
786
787             /* Compute parameters for interactions between i and j atoms */
788             qq00             = _mm_mul_ps(iq0,jq0);
789             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
790                                          vdwparam+vdwioffset0+vdwjidx0B,
791                                          vdwparam+vdwioffset0+vdwjidx0C,
792                                          vdwparam+vdwioffset0+vdwjidx0D,
793                                          &c6_00,&c12_00);
794
795             /* Calculate table index by multiplying r with table scale and truncate to integer */
796             rt               = _mm_mul_ps(r00,vftabscale);
797             vfitab           = _mm_cvttps_epi32(rt);
798             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
799             vfitab           = _mm_slli_epi32(vfitab,3);
800
801             /* REACTION-FIELD ELECTROSTATICS */
802             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
803
804             /* CUBIC SPLINE TABLE DISPERSION */
805             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
806             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
807             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
808             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
809             _MM_TRANSPOSE4_PS(Y,F,G,H);
810             Heps             = _mm_mul_ps(vfeps,H);
811             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
812             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
813             fvdw6            = _mm_mul_ps(c6_00,FF);
814
815             /* CUBIC SPLINE TABLE REPULSION */
816             vfitab           = _mm_add_epi32(vfitab,ifour);
817             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
818             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
819             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
820             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
821             _MM_TRANSPOSE4_PS(Y,F,G,H);
822             Heps             = _mm_mul_ps(vfeps,H);
823             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
824             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
825             fvdw12           = _mm_mul_ps(c12_00,FF);
826             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
827
828             fscal            = _mm_add_ps(felec,fvdw);
829
830             /* Calculate temporary vectorial force */
831             tx               = _mm_mul_ps(fscal,dx00);
832             ty               = _mm_mul_ps(fscal,dy00);
833             tz               = _mm_mul_ps(fscal,dz00);
834
835             /* Update vectorial force */
836             fix0             = _mm_add_ps(fix0,tx);
837             fiy0             = _mm_add_ps(fiy0,ty);
838             fiz0             = _mm_add_ps(fiz0,tz);
839
840             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
841                                                    f+j_coord_offsetC,f+j_coord_offsetD,
842                                                    tx,ty,tz);
843
844             /**************************
845              * CALCULATE INTERACTIONS *
846              **************************/
847
848             /* Compute parameters for interactions between i and j atoms */
849             qq10             = _mm_mul_ps(iq1,jq0);
850
851             /* REACTION-FIELD ELECTROSTATICS */
852             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
853
854             fscal            = felec;
855
856             /* Calculate temporary vectorial force */
857             tx               = _mm_mul_ps(fscal,dx10);
858             ty               = _mm_mul_ps(fscal,dy10);
859             tz               = _mm_mul_ps(fscal,dz10);
860
861             /* Update vectorial force */
862             fix1             = _mm_add_ps(fix1,tx);
863             fiy1             = _mm_add_ps(fiy1,ty);
864             fiz1             = _mm_add_ps(fiz1,tz);
865
866             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
867                                                    f+j_coord_offsetC,f+j_coord_offsetD,
868                                                    tx,ty,tz);
869
870             /**************************
871              * CALCULATE INTERACTIONS *
872              **************************/
873
874             /* Compute parameters for interactions between i and j atoms */
875             qq20             = _mm_mul_ps(iq2,jq0);
876
877             /* REACTION-FIELD ELECTROSTATICS */
878             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
879
880             fscal            = felec;
881
882             /* Calculate temporary vectorial force */
883             tx               = _mm_mul_ps(fscal,dx20);
884             ty               = _mm_mul_ps(fscal,dy20);
885             tz               = _mm_mul_ps(fscal,dz20);
886
887             /* Update vectorial force */
888             fix2             = _mm_add_ps(fix2,tx);
889             fiy2             = _mm_add_ps(fiy2,ty);
890             fiz2             = _mm_add_ps(fiz2,tz);
891
892             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
893                                                    f+j_coord_offsetC,f+j_coord_offsetD,
894                                                    tx,ty,tz);
895
896             /* Inner loop uses 108 flops */
897         }
898
899         if(jidx<j_index_end)
900         {
901
902             /* Get j neighbor index, and coordinate index */
903             jnrA             = jjnr[jidx];
904             jnrB             = jjnr[jidx+1];
905             jnrC             = jjnr[jidx+2];
906             jnrD             = jjnr[jidx+3];
907
908             /* Sign of each element will be negative for non-real atoms.
909              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
910              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
911              */
912             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
913             jnrA       = (jnrA>=0) ? jnrA : 0;
914             jnrB       = (jnrB>=0) ? jnrB : 0;
915             jnrC       = (jnrC>=0) ? jnrC : 0;
916             jnrD       = (jnrD>=0) ? jnrD : 0;
917
918             j_coord_offsetA  = DIM*jnrA;
919             j_coord_offsetB  = DIM*jnrB;
920             j_coord_offsetC  = DIM*jnrC;
921             j_coord_offsetD  = DIM*jnrD;
922
923             /* load j atom coordinates */
924             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
925                                               x+j_coord_offsetC,x+j_coord_offsetD,
926                                               &jx0,&jy0,&jz0);
927
928             /* Calculate displacement vector */
929             dx00             = _mm_sub_ps(ix0,jx0);
930             dy00             = _mm_sub_ps(iy0,jy0);
931             dz00             = _mm_sub_ps(iz0,jz0);
932             dx10             = _mm_sub_ps(ix1,jx0);
933             dy10             = _mm_sub_ps(iy1,jy0);
934             dz10             = _mm_sub_ps(iz1,jz0);
935             dx20             = _mm_sub_ps(ix2,jx0);
936             dy20             = _mm_sub_ps(iy2,jy0);
937             dz20             = _mm_sub_ps(iz2,jz0);
938
939             /* Calculate squared distance and things based on it */
940             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
941             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
942             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
943
944             rinv00           = gmx_mm_invsqrt_ps(rsq00);
945             rinv10           = gmx_mm_invsqrt_ps(rsq10);
946             rinv20           = gmx_mm_invsqrt_ps(rsq20);
947
948             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
949             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
950             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
951
952             /* Load parameters for j particles */
953             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
954                                                               charge+jnrC+0,charge+jnrD+0);
955             vdwjidx0A        = 2*vdwtype[jnrA+0];
956             vdwjidx0B        = 2*vdwtype[jnrB+0];
957             vdwjidx0C        = 2*vdwtype[jnrC+0];
958             vdwjidx0D        = 2*vdwtype[jnrD+0];
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             r00              = _mm_mul_ps(rsq00,rinv00);
965             r00              = _mm_andnot_ps(dummy_mask,r00);
966
967             /* Compute parameters for interactions between i and j atoms */
968             qq00             = _mm_mul_ps(iq0,jq0);
969             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
970                                          vdwparam+vdwioffset0+vdwjidx0B,
971                                          vdwparam+vdwioffset0+vdwjidx0C,
972                                          vdwparam+vdwioffset0+vdwjidx0D,
973                                          &c6_00,&c12_00);
974
975             /* Calculate table index by multiplying r with table scale and truncate to integer */
976             rt               = _mm_mul_ps(r00,vftabscale);
977             vfitab           = _mm_cvttps_epi32(rt);
978             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
979             vfitab           = _mm_slli_epi32(vfitab,3);
980
981             /* REACTION-FIELD ELECTROSTATICS */
982             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
983
984             /* CUBIC SPLINE TABLE DISPERSION */
985             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
986             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
987             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
988             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
989             _MM_TRANSPOSE4_PS(Y,F,G,H);
990             Heps             = _mm_mul_ps(vfeps,H);
991             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
992             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
993             fvdw6            = _mm_mul_ps(c6_00,FF);
994
995             /* CUBIC SPLINE TABLE REPULSION */
996             vfitab           = _mm_add_epi32(vfitab,ifour);
997             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
998             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
999             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1000             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1001             _MM_TRANSPOSE4_PS(Y,F,G,H);
1002             Heps             = _mm_mul_ps(vfeps,H);
1003             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1004             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1005             fvdw12           = _mm_mul_ps(c12_00,FF);
1006             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1007
1008             fscal            = _mm_add_ps(felec,fvdw);
1009
1010             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1011
1012             /* Calculate temporary vectorial force */
1013             tx               = _mm_mul_ps(fscal,dx00);
1014             ty               = _mm_mul_ps(fscal,dy00);
1015             tz               = _mm_mul_ps(fscal,dz00);
1016
1017             /* Update vectorial force */
1018             fix0             = _mm_add_ps(fix0,tx);
1019             fiy0             = _mm_add_ps(fiy0,ty);
1020             fiz0             = _mm_add_ps(fiz0,tz);
1021
1022             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1023                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1024                                                    tx,ty,tz);
1025
1026             /**************************
1027              * CALCULATE INTERACTIONS *
1028              **************************/
1029
1030             /* Compute parameters for interactions between i and j atoms */
1031             qq10             = _mm_mul_ps(iq1,jq0);
1032
1033             /* REACTION-FIELD ELECTROSTATICS */
1034             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1035
1036             fscal            = felec;
1037
1038             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1039
1040             /* Calculate temporary vectorial force */
1041             tx               = _mm_mul_ps(fscal,dx10);
1042             ty               = _mm_mul_ps(fscal,dy10);
1043             tz               = _mm_mul_ps(fscal,dz10);
1044
1045             /* Update vectorial force */
1046             fix1             = _mm_add_ps(fix1,tx);
1047             fiy1             = _mm_add_ps(fiy1,ty);
1048             fiz1             = _mm_add_ps(fiz1,tz);
1049
1050             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1051                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1052                                                    tx,ty,tz);
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             /* Compute parameters for interactions between i and j atoms */
1059             qq20             = _mm_mul_ps(iq2,jq0);
1060
1061             /* REACTION-FIELD ELECTROSTATICS */
1062             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1063
1064             fscal            = felec;
1065
1066             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1067
1068             /* Calculate temporary vectorial force */
1069             tx               = _mm_mul_ps(fscal,dx20);
1070             ty               = _mm_mul_ps(fscal,dy20);
1071             tz               = _mm_mul_ps(fscal,dz20);
1072
1073             /* Update vectorial force */
1074             fix2             = _mm_add_ps(fix2,tx);
1075             fiy2             = _mm_add_ps(fiy2,ty);
1076             fiz2             = _mm_add_ps(fiz2,tz);
1077
1078             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1079                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1080                                                    tx,ty,tz);
1081
1082             /* Inner loop uses 109 flops */
1083         }
1084
1085         /* End of innermost loop */
1086
1087         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1088                                               f+i_coord_offset,fshift+i_shift_offset);
1089
1090         /* Increment number of inner iterations */
1091         inneriter                  += j_index_end - j_index_start;
1092
1093         /* Outer loop uses 27 flops */
1094     }
1095
1096     /* Increment number of outer iterations */
1097     outeriter        += nri;
1098
1099     /* Update outer/inner flops */
1100
1101     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*27 + inneriter*109);
1102 }