Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_sse2_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     krf              = _mm_set1_ps(fr->ic->k_rf);
126     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
127     crf              = _mm_set1_ps(fr->ic->c_rf);
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
138     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
139     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }  
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
174         
175         fix0             = _mm_setzero_ps();
176         fiy0             = _mm_setzero_ps();
177         fiz0             = _mm_setzero_ps();
178         fix1             = _mm_setzero_ps();
179         fiy1             = _mm_setzero_ps();
180         fiz1             = _mm_setzero_ps();
181         fix2             = _mm_setzero_ps();
182         fiy2             = _mm_setzero_ps();
183         fiz2             = _mm_setzero_ps();
184
185         /* Reset potential sums */
186         velecsum         = _mm_setzero_ps();
187         vvdwsum          = _mm_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             j_coord_offsetA  = DIM*jnrA;
199             j_coord_offsetB  = DIM*jnrB;
200             j_coord_offsetC  = DIM*jnrC;
201             j_coord_offsetD  = DIM*jnrD;
202
203             /* load j atom coordinates */
204             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
205                                               x+j_coord_offsetC,x+j_coord_offsetD,
206                                               &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm_sub_ps(ix0,jx0);
210             dy00             = _mm_sub_ps(iy0,jy0);
211             dz00             = _mm_sub_ps(iz0,jz0);
212             dx10             = _mm_sub_ps(ix1,jx0);
213             dy10             = _mm_sub_ps(iy1,jy0);
214             dz10             = _mm_sub_ps(iz1,jz0);
215             dx20             = _mm_sub_ps(ix2,jx0);
216             dy20             = _mm_sub_ps(iy2,jy0);
217             dz20             = _mm_sub_ps(iz2,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
221             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
222             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
223
224             rinv00           = gmx_mm_invsqrt_ps(rsq00);
225             rinv10           = gmx_mm_invsqrt_ps(rsq10);
226             rinv20           = gmx_mm_invsqrt_ps(rsq20);
227
228             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
229             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
230             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
234                                                               charge+jnrC+0,charge+jnrD+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237             vdwjidx0C        = 2*vdwtype[jnrC+0];
238             vdwjidx0D        = 2*vdwtype[jnrD+0];
239
240             fjx0             = _mm_setzero_ps();
241             fjy0             = _mm_setzero_ps();
242             fjz0             = _mm_setzero_ps();
243
244             /**************************
245              * CALCULATE INTERACTIONS *
246              **************************/
247
248             r00              = _mm_mul_ps(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _mm_mul_ps(iq0,jq0);
252             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,
254                                          vdwparam+vdwioffset0+vdwjidx0C,
255                                          vdwparam+vdwioffset0+vdwjidx0D,
256                                          &c6_00,&c12_00);
257
258             /* Calculate table index by multiplying r with table scale and truncate to integer */
259             rt               = _mm_mul_ps(r00,vftabscale);
260             vfitab           = _mm_cvttps_epi32(rt);
261             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
262             vfitab           = _mm_slli_epi32(vfitab,3);
263
264             /* REACTION-FIELD ELECTROSTATICS */
265             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
266             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
267
268             /* CUBIC SPLINE TABLE DISPERSION */
269             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
270             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
271             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
272             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
273             _MM_TRANSPOSE4_PS(Y,F,G,H);
274             Heps             = _mm_mul_ps(vfeps,H);
275             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
276             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
277             vvdw6            = _mm_mul_ps(c6_00,VV);
278             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
279             fvdw6            = _mm_mul_ps(c6_00,FF);
280
281             /* CUBIC SPLINE TABLE REPULSION */
282             vfitab           = _mm_add_epi32(vfitab,ifour);
283             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
284             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
285             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
286             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
287             _MM_TRANSPOSE4_PS(Y,F,G,H);
288             Heps             = _mm_mul_ps(vfeps,H);
289             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
290             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
291             vvdw12           = _mm_mul_ps(c12_00,VV);
292             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
293             fvdw12           = _mm_mul_ps(c12_00,FF);
294             vvdw             = _mm_add_ps(vvdw12,vvdw6);
295             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velecsum         = _mm_add_ps(velecsum,velec);
299             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
300
301             fscal            = _mm_add_ps(felec,fvdw);
302
303             /* Calculate temporary vectorial force */
304             tx               = _mm_mul_ps(fscal,dx00);
305             ty               = _mm_mul_ps(fscal,dy00);
306             tz               = _mm_mul_ps(fscal,dz00);
307
308             /* Update vectorial force */
309             fix0             = _mm_add_ps(fix0,tx);
310             fiy0             = _mm_add_ps(fiy0,ty);
311             fiz0             = _mm_add_ps(fiz0,tz);
312
313             fjx0             = _mm_add_ps(fjx0,tx);
314             fjy0             = _mm_add_ps(fjy0,ty);
315             fjz0             = _mm_add_ps(fjz0,tz);
316             
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq10             = _mm_mul_ps(iq1,jq0);
323
324             /* REACTION-FIELD ELECTROSTATICS */
325             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
326             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velecsum         = _mm_add_ps(velecsum,velec);
330
331             fscal            = felec;
332
333             /* Calculate temporary vectorial force */
334             tx               = _mm_mul_ps(fscal,dx10);
335             ty               = _mm_mul_ps(fscal,dy10);
336             tz               = _mm_mul_ps(fscal,dz10);
337
338             /* Update vectorial force */
339             fix1             = _mm_add_ps(fix1,tx);
340             fiy1             = _mm_add_ps(fiy1,ty);
341             fiz1             = _mm_add_ps(fiz1,tz);
342
343             fjx0             = _mm_add_ps(fjx0,tx);
344             fjy0             = _mm_add_ps(fjy0,ty);
345             fjz0             = _mm_add_ps(fjz0,tz);
346             
347             /**************************
348              * CALCULATE INTERACTIONS *
349              **************************/
350
351             /* Compute parameters for interactions between i and j atoms */
352             qq20             = _mm_mul_ps(iq2,jq0);
353
354             /* REACTION-FIELD ELECTROSTATICS */
355             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
356             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
357
358             /* Update potential sum for this i atom from the interaction with this j atom. */
359             velecsum         = _mm_add_ps(velecsum,velec);
360
361             fscal            = felec;
362
363             /* Calculate temporary vectorial force */
364             tx               = _mm_mul_ps(fscal,dx20);
365             ty               = _mm_mul_ps(fscal,dy20);
366             tz               = _mm_mul_ps(fscal,dz20);
367
368             /* Update vectorial force */
369             fix2             = _mm_add_ps(fix2,tx);
370             fiy2             = _mm_add_ps(fiy2,ty);
371             fiz2             = _mm_add_ps(fiz2,tz);
372
373             fjx0             = _mm_add_ps(fjx0,tx);
374             fjy0             = _mm_add_ps(fjy0,ty);
375             fjz0             = _mm_add_ps(fjz0,tz);
376             
377             fjptrA             = f+j_coord_offsetA;
378             fjptrB             = f+j_coord_offsetB;
379             fjptrC             = f+j_coord_offsetC;
380             fjptrD             = f+j_coord_offsetD;
381
382             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
383
384             /* Inner loop uses 131 flops */
385         }
386
387         if(jidx<j_index_end)
388         {
389
390             /* Get j neighbor index, and coordinate index */
391             jnrlistA         = jjnr[jidx];
392             jnrlistB         = jjnr[jidx+1];
393             jnrlistC         = jjnr[jidx+2];
394             jnrlistD         = jjnr[jidx+3];
395             /* Sign of each element will be negative for non-real atoms.
396              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
397              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
398              */
399             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
400             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
401             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
402             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
403             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
404             j_coord_offsetA  = DIM*jnrA;
405             j_coord_offsetB  = DIM*jnrB;
406             j_coord_offsetC  = DIM*jnrC;
407             j_coord_offsetD  = DIM*jnrD;
408
409             /* load j atom coordinates */
410             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
411                                               x+j_coord_offsetC,x+j_coord_offsetD,
412                                               &jx0,&jy0,&jz0);
413
414             /* Calculate displacement vector */
415             dx00             = _mm_sub_ps(ix0,jx0);
416             dy00             = _mm_sub_ps(iy0,jy0);
417             dz00             = _mm_sub_ps(iz0,jz0);
418             dx10             = _mm_sub_ps(ix1,jx0);
419             dy10             = _mm_sub_ps(iy1,jy0);
420             dz10             = _mm_sub_ps(iz1,jz0);
421             dx20             = _mm_sub_ps(ix2,jx0);
422             dy20             = _mm_sub_ps(iy2,jy0);
423             dz20             = _mm_sub_ps(iz2,jz0);
424
425             /* Calculate squared distance and things based on it */
426             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
427             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
428             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
429
430             rinv00           = gmx_mm_invsqrt_ps(rsq00);
431             rinv10           = gmx_mm_invsqrt_ps(rsq10);
432             rinv20           = gmx_mm_invsqrt_ps(rsq20);
433
434             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
435             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
436             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
437
438             /* Load parameters for j particles */
439             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
440                                                               charge+jnrC+0,charge+jnrD+0);
441             vdwjidx0A        = 2*vdwtype[jnrA+0];
442             vdwjidx0B        = 2*vdwtype[jnrB+0];
443             vdwjidx0C        = 2*vdwtype[jnrC+0];
444             vdwjidx0D        = 2*vdwtype[jnrD+0];
445
446             fjx0             = _mm_setzero_ps();
447             fjy0             = _mm_setzero_ps();
448             fjz0             = _mm_setzero_ps();
449
450             /**************************
451              * CALCULATE INTERACTIONS *
452              **************************/
453
454             r00              = _mm_mul_ps(rsq00,rinv00);
455             r00              = _mm_andnot_ps(dummy_mask,r00);
456
457             /* Compute parameters for interactions between i and j atoms */
458             qq00             = _mm_mul_ps(iq0,jq0);
459             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
460                                          vdwparam+vdwioffset0+vdwjidx0B,
461                                          vdwparam+vdwioffset0+vdwjidx0C,
462                                          vdwparam+vdwioffset0+vdwjidx0D,
463                                          &c6_00,&c12_00);
464
465             /* Calculate table index by multiplying r with table scale and truncate to integer */
466             rt               = _mm_mul_ps(r00,vftabscale);
467             vfitab           = _mm_cvttps_epi32(rt);
468             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
469             vfitab           = _mm_slli_epi32(vfitab,3);
470
471             /* REACTION-FIELD ELECTROSTATICS */
472             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
473             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
474
475             /* CUBIC SPLINE TABLE DISPERSION */
476             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
477             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
478             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
479             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
480             _MM_TRANSPOSE4_PS(Y,F,G,H);
481             Heps             = _mm_mul_ps(vfeps,H);
482             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
483             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
484             vvdw6            = _mm_mul_ps(c6_00,VV);
485             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
486             fvdw6            = _mm_mul_ps(c6_00,FF);
487
488             /* CUBIC SPLINE TABLE REPULSION */
489             vfitab           = _mm_add_epi32(vfitab,ifour);
490             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
491             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
492             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
493             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
494             _MM_TRANSPOSE4_PS(Y,F,G,H);
495             Heps             = _mm_mul_ps(vfeps,H);
496             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
497             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
498             vvdw12           = _mm_mul_ps(c12_00,VV);
499             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
500             fvdw12           = _mm_mul_ps(c12_00,FF);
501             vvdw             = _mm_add_ps(vvdw12,vvdw6);
502             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
503
504             /* Update potential sum for this i atom from the interaction with this j atom. */
505             velec            = _mm_andnot_ps(dummy_mask,velec);
506             velecsum         = _mm_add_ps(velecsum,velec);
507             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
508             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
509
510             fscal            = _mm_add_ps(felec,fvdw);
511
512             fscal            = _mm_andnot_ps(dummy_mask,fscal);
513
514             /* Calculate temporary vectorial force */
515             tx               = _mm_mul_ps(fscal,dx00);
516             ty               = _mm_mul_ps(fscal,dy00);
517             tz               = _mm_mul_ps(fscal,dz00);
518
519             /* Update vectorial force */
520             fix0             = _mm_add_ps(fix0,tx);
521             fiy0             = _mm_add_ps(fiy0,ty);
522             fiz0             = _mm_add_ps(fiz0,tz);
523
524             fjx0             = _mm_add_ps(fjx0,tx);
525             fjy0             = _mm_add_ps(fjy0,ty);
526             fjz0             = _mm_add_ps(fjz0,tz);
527             
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             /* Compute parameters for interactions between i and j atoms */
533             qq10             = _mm_mul_ps(iq1,jq0);
534
535             /* REACTION-FIELD ELECTROSTATICS */
536             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
537             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
538
539             /* Update potential sum for this i atom from the interaction with this j atom. */
540             velec            = _mm_andnot_ps(dummy_mask,velec);
541             velecsum         = _mm_add_ps(velecsum,velec);
542
543             fscal            = felec;
544
545             fscal            = _mm_andnot_ps(dummy_mask,fscal);
546
547             /* Calculate temporary vectorial force */
548             tx               = _mm_mul_ps(fscal,dx10);
549             ty               = _mm_mul_ps(fscal,dy10);
550             tz               = _mm_mul_ps(fscal,dz10);
551
552             /* Update vectorial force */
553             fix1             = _mm_add_ps(fix1,tx);
554             fiy1             = _mm_add_ps(fiy1,ty);
555             fiz1             = _mm_add_ps(fiz1,tz);
556
557             fjx0             = _mm_add_ps(fjx0,tx);
558             fjy0             = _mm_add_ps(fjy0,ty);
559             fjz0             = _mm_add_ps(fjz0,tz);
560             
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             /* Compute parameters for interactions between i and j atoms */
566             qq20             = _mm_mul_ps(iq2,jq0);
567
568             /* REACTION-FIELD ELECTROSTATICS */
569             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
570             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
571
572             /* Update potential sum for this i atom from the interaction with this j atom. */
573             velec            = _mm_andnot_ps(dummy_mask,velec);
574             velecsum         = _mm_add_ps(velecsum,velec);
575
576             fscal            = felec;
577
578             fscal            = _mm_andnot_ps(dummy_mask,fscal);
579
580             /* Calculate temporary vectorial force */
581             tx               = _mm_mul_ps(fscal,dx20);
582             ty               = _mm_mul_ps(fscal,dy20);
583             tz               = _mm_mul_ps(fscal,dz20);
584
585             /* Update vectorial force */
586             fix2             = _mm_add_ps(fix2,tx);
587             fiy2             = _mm_add_ps(fiy2,ty);
588             fiz2             = _mm_add_ps(fiz2,tz);
589
590             fjx0             = _mm_add_ps(fjx0,tx);
591             fjy0             = _mm_add_ps(fjy0,ty);
592             fjz0             = _mm_add_ps(fjz0,tz);
593             
594             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
595             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
596             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
597             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
598
599             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
600
601             /* Inner loop uses 132 flops */
602         }
603
604         /* End of innermost loop */
605
606         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
607                                               f+i_coord_offset,fshift+i_shift_offset);
608
609         ggid                        = gid[iidx];
610         /* Update potential energies */
611         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
612         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
613
614         /* Increment number of inner iterations */
615         inneriter                  += j_index_end - j_index_start;
616
617         /* Outer loop uses 20 flops */
618     }
619
620     /* Increment number of outer iterations */
621     outeriter        += nri;
622
623     /* Update outer/inner flops */
624
625     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*132);
626 }
627 /*
628  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_sse2_single
629  * Electrostatics interaction: ReactionField
630  * VdW interaction:            CubicSplineTable
631  * Geometry:                   Water3-Particle
632  * Calculate force/pot:        Force
633  */
634 void
635 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_sse2_single
636                     (t_nblist                    * gmx_restrict       nlist,
637                      rvec                        * gmx_restrict          xx,
638                      rvec                        * gmx_restrict          ff,
639                      t_forcerec                  * gmx_restrict          fr,
640                      t_mdatoms                   * gmx_restrict     mdatoms,
641                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
642                      t_nrnb                      * gmx_restrict        nrnb)
643 {
644     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
645      * just 0 for non-waters.
646      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
647      * jnr indices corresponding to data put in the four positions in the SIMD register.
648      */
649     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
650     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
651     int              jnrA,jnrB,jnrC,jnrD;
652     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
653     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
654     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
655     real             rcutoff_scalar;
656     real             *shiftvec,*fshift,*x,*f;
657     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
658     real             scratch[4*DIM];
659     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
660     int              vdwioffset0;
661     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
662     int              vdwioffset1;
663     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
664     int              vdwioffset2;
665     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
666     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
667     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
668     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
669     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
670     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
671     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
672     real             *charge;
673     int              nvdwtype;
674     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
675     int              *vdwtype;
676     real             *vdwparam;
677     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
678     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
679     __m128i          vfitab;
680     __m128i          ifour       = _mm_set1_epi32(4);
681     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
682     real             *vftab;
683     __m128           dummy_mask,cutoff_mask;
684     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
685     __m128           one     = _mm_set1_ps(1.0);
686     __m128           two     = _mm_set1_ps(2.0);
687     x                = xx[0];
688     f                = ff[0];
689
690     nri              = nlist->nri;
691     iinr             = nlist->iinr;
692     jindex           = nlist->jindex;
693     jjnr             = nlist->jjnr;
694     shiftidx         = nlist->shift;
695     gid              = nlist->gid;
696     shiftvec         = fr->shift_vec[0];
697     fshift           = fr->fshift[0];
698     facel            = _mm_set1_ps(fr->epsfac);
699     charge           = mdatoms->chargeA;
700     krf              = _mm_set1_ps(fr->ic->k_rf);
701     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
702     crf              = _mm_set1_ps(fr->ic->c_rf);
703     nvdwtype         = fr->ntype;
704     vdwparam         = fr->nbfp;
705     vdwtype          = mdatoms->typeA;
706
707     vftab            = kernel_data->table_vdw->data;
708     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
709
710     /* Setup water-specific parameters */
711     inr              = nlist->iinr[0];
712     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
713     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
714     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
715     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
716
717     /* Avoid stupid compiler warnings */
718     jnrA = jnrB = jnrC = jnrD = 0;
719     j_coord_offsetA = 0;
720     j_coord_offsetB = 0;
721     j_coord_offsetC = 0;
722     j_coord_offsetD = 0;
723
724     outeriter        = 0;
725     inneriter        = 0;
726
727     for(iidx=0;iidx<4*DIM;iidx++)
728     {
729         scratch[iidx] = 0.0;
730     }  
731
732     /* Start outer loop over neighborlists */
733     for(iidx=0; iidx<nri; iidx++)
734     {
735         /* Load shift vector for this list */
736         i_shift_offset   = DIM*shiftidx[iidx];
737
738         /* Load limits for loop over neighbors */
739         j_index_start    = jindex[iidx];
740         j_index_end      = jindex[iidx+1];
741
742         /* Get outer coordinate index */
743         inr              = iinr[iidx];
744         i_coord_offset   = DIM*inr;
745
746         /* Load i particle coords and add shift vector */
747         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
748                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
749         
750         fix0             = _mm_setzero_ps();
751         fiy0             = _mm_setzero_ps();
752         fiz0             = _mm_setzero_ps();
753         fix1             = _mm_setzero_ps();
754         fiy1             = _mm_setzero_ps();
755         fiz1             = _mm_setzero_ps();
756         fix2             = _mm_setzero_ps();
757         fiy2             = _mm_setzero_ps();
758         fiz2             = _mm_setzero_ps();
759
760         /* Start inner kernel loop */
761         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
762         {
763
764             /* Get j neighbor index, and coordinate index */
765             jnrA             = jjnr[jidx];
766             jnrB             = jjnr[jidx+1];
767             jnrC             = jjnr[jidx+2];
768             jnrD             = jjnr[jidx+3];
769             j_coord_offsetA  = DIM*jnrA;
770             j_coord_offsetB  = DIM*jnrB;
771             j_coord_offsetC  = DIM*jnrC;
772             j_coord_offsetD  = DIM*jnrD;
773
774             /* load j atom coordinates */
775             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
776                                               x+j_coord_offsetC,x+j_coord_offsetD,
777                                               &jx0,&jy0,&jz0);
778
779             /* Calculate displacement vector */
780             dx00             = _mm_sub_ps(ix0,jx0);
781             dy00             = _mm_sub_ps(iy0,jy0);
782             dz00             = _mm_sub_ps(iz0,jz0);
783             dx10             = _mm_sub_ps(ix1,jx0);
784             dy10             = _mm_sub_ps(iy1,jy0);
785             dz10             = _mm_sub_ps(iz1,jz0);
786             dx20             = _mm_sub_ps(ix2,jx0);
787             dy20             = _mm_sub_ps(iy2,jy0);
788             dz20             = _mm_sub_ps(iz2,jz0);
789
790             /* Calculate squared distance and things based on it */
791             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
792             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
793             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
794
795             rinv00           = gmx_mm_invsqrt_ps(rsq00);
796             rinv10           = gmx_mm_invsqrt_ps(rsq10);
797             rinv20           = gmx_mm_invsqrt_ps(rsq20);
798
799             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
800             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
801             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
802
803             /* Load parameters for j particles */
804             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
805                                                               charge+jnrC+0,charge+jnrD+0);
806             vdwjidx0A        = 2*vdwtype[jnrA+0];
807             vdwjidx0B        = 2*vdwtype[jnrB+0];
808             vdwjidx0C        = 2*vdwtype[jnrC+0];
809             vdwjidx0D        = 2*vdwtype[jnrD+0];
810
811             fjx0             = _mm_setzero_ps();
812             fjy0             = _mm_setzero_ps();
813             fjz0             = _mm_setzero_ps();
814
815             /**************************
816              * CALCULATE INTERACTIONS *
817              **************************/
818
819             r00              = _mm_mul_ps(rsq00,rinv00);
820
821             /* Compute parameters for interactions between i and j atoms */
822             qq00             = _mm_mul_ps(iq0,jq0);
823             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
824                                          vdwparam+vdwioffset0+vdwjidx0B,
825                                          vdwparam+vdwioffset0+vdwjidx0C,
826                                          vdwparam+vdwioffset0+vdwjidx0D,
827                                          &c6_00,&c12_00);
828
829             /* Calculate table index by multiplying r with table scale and truncate to integer */
830             rt               = _mm_mul_ps(r00,vftabscale);
831             vfitab           = _mm_cvttps_epi32(rt);
832             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
833             vfitab           = _mm_slli_epi32(vfitab,3);
834
835             /* REACTION-FIELD ELECTROSTATICS */
836             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
837
838             /* CUBIC SPLINE TABLE DISPERSION */
839             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
840             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
841             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
842             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
843             _MM_TRANSPOSE4_PS(Y,F,G,H);
844             Heps             = _mm_mul_ps(vfeps,H);
845             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
846             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
847             fvdw6            = _mm_mul_ps(c6_00,FF);
848
849             /* CUBIC SPLINE TABLE REPULSION */
850             vfitab           = _mm_add_epi32(vfitab,ifour);
851             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
852             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
853             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
854             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
855             _MM_TRANSPOSE4_PS(Y,F,G,H);
856             Heps             = _mm_mul_ps(vfeps,H);
857             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
858             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
859             fvdw12           = _mm_mul_ps(c12_00,FF);
860             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
861
862             fscal            = _mm_add_ps(felec,fvdw);
863
864             /* Calculate temporary vectorial force */
865             tx               = _mm_mul_ps(fscal,dx00);
866             ty               = _mm_mul_ps(fscal,dy00);
867             tz               = _mm_mul_ps(fscal,dz00);
868
869             /* Update vectorial force */
870             fix0             = _mm_add_ps(fix0,tx);
871             fiy0             = _mm_add_ps(fiy0,ty);
872             fiz0             = _mm_add_ps(fiz0,tz);
873
874             fjx0             = _mm_add_ps(fjx0,tx);
875             fjy0             = _mm_add_ps(fjy0,ty);
876             fjz0             = _mm_add_ps(fjz0,tz);
877             
878             /**************************
879              * CALCULATE INTERACTIONS *
880              **************************/
881
882             /* Compute parameters for interactions between i and j atoms */
883             qq10             = _mm_mul_ps(iq1,jq0);
884
885             /* REACTION-FIELD ELECTROSTATICS */
886             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
887
888             fscal            = felec;
889
890             /* Calculate temporary vectorial force */
891             tx               = _mm_mul_ps(fscal,dx10);
892             ty               = _mm_mul_ps(fscal,dy10);
893             tz               = _mm_mul_ps(fscal,dz10);
894
895             /* Update vectorial force */
896             fix1             = _mm_add_ps(fix1,tx);
897             fiy1             = _mm_add_ps(fiy1,ty);
898             fiz1             = _mm_add_ps(fiz1,tz);
899
900             fjx0             = _mm_add_ps(fjx0,tx);
901             fjy0             = _mm_add_ps(fjy0,ty);
902             fjz0             = _mm_add_ps(fjz0,tz);
903             
904             /**************************
905              * CALCULATE INTERACTIONS *
906              **************************/
907
908             /* Compute parameters for interactions between i and j atoms */
909             qq20             = _mm_mul_ps(iq2,jq0);
910
911             /* REACTION-FIELD ELECTROSTATICS */
912             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
913
914             fscal            = felec;
915
916             /* Calculate temporary vectorial force */
917             tx               = _mm_mul_ps(fscal,dx20);
918             ty               = _mm_mul_ps(fscal,dy20);
919             tz               = _mm_mul_ps(fscal,dz20);
920
921             /* Update vectorial force */
922             fix2             = _mm_add_ps(fix2,tx);
923             fiy2             = _mm_add_ps(fiy2,ty);
924             fiz2             = _mm_add_ps(fiz2,tz);
925
926             fjx0             = _mm_add_ps(fjx0,tx);
927             fjy0             = _mm_add_ps(fjy0,ty);
928             fjz0             = _mm_add_ps(fjz0,tz);
929             
930             fjptrA             = f+j_coord_offsetA;
931             fjptrB             = f+j_coord_offsetB;
932             fjptrC             = f+j_coord_offsetC;
933             fjptrD             = f+j_coord_offsetD;
934
935             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
936
937             /* Inner loop uses 108 flops */
938         }
939
940         if(jidx<j_index_end)
941         {
942
943             /* Get j neighbor index, and coordinate index */
944             jnrlistA         = jjnr[jidx];
945             jnrlistB         = jjnr[jidx+1];
946             jnrlistC         = jjnr[jidx+2];
947             jnrlistD         = jjnr[jidx+3];
948             /* Sign of each element will be negative for non-real atoms.
949              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
950              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
951              */
952             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
953             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
954             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
955             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
956             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
957             j_coord_offsetA  = DIM*jnrA;
958             j_coord_offsetB  = DIM*jnrB;
959             j_coord_offsetC  = DIM*jnrC;
960             j_coord_offsetD  = DIM*jnrD;
961
962             /* load j atom coordinates */
963             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
964                                               x+j_coord_offsetC,x+j_coord_offsetD,
965                                               &jx0,&jy0,&jz0);
966
967             /* Calculate displacement vector */
968             dx00             = _mm_sub_ps(ix0,jx0);
969             dy00             = _mm_sub_ps(iy0,jy0);
970             dz00             = _mm_sub_ps(iz0,jz0);
971             dx10             = _mm_sub_ps(ix1,jx0);
972             dy10             = _mm_sub_ps(iy1,jy0);
973             dz10             = _mm_sub_ps(iz1,jz0);
974             dx20             = _mm_sub_ps(ix2,jx0);
975             dy20             = _mm_sub_ps(iy2,jy0);
976             dz20             = _mm_sub_ps(iz2,jz0);
977
978             /* Calculate squared distance and things based on it */
979             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
980             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
981             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
982
983             rinv00           = gmx_mm_invsqrt_ps(rsq00);
984             rinv10           = gmx_mm_invsqrt_ps(rsq10);
985             rinv20           = gmx_mm_invsqrt_ps(rsq20);
986
987             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
988             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
989             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
990
991             /* Load parameters for j particles */
992             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
993                                                               charge+jnrC+0,charge+jnrD+0);
994             vdwjidx0A        = 2*vdwtype[jnrA+0];
995             vdwjidx0B        = 2*vdwtype[jnrB+0];
996             vdwjidx0C        = 2*vdwtype[jnrC+0];
997             vdwjidx0D        = 2*vdwtype[jnrD+0];
998
999             fjx0             = _mm_setzero_ps();
1000             fjy0             = _mm_setzero_ps();
1001             fjz0             = _mm_setzero_ps();
1002
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             r00              = _mm_mul_ps(rsq00,rinv00);
1008             r00              = _mm_andnot_ps(dummy_mask,r00);
1009
1010             /* Compute parameters for interactions between i and j atoms */
1011             qq00             = _mm_mul_ps(iq0,jq0);
1012             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1013                                          vdwparam+vdwioffset0+vdwjidx0B,
1014                                          vdwparam+vdwioffset0+vdwjidx0C,
1015                                          vdwparam+vdwioffset0+vdwjidx0D,
1016                                          &c6_00,&c12_00);
1017
1018             /* Calculate table index by multiplying r with table scale and truncate to integer */
1019             rt               = _mm_mul_ps(r00,vftabscale);
1020             vfitab           = _mm_cvttps_epi32(rt);
1021             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1022             vfitab           = _mm_slli_epi32(vfitab,3);
1023
1024             /* REACTION-FIELD ELECTROSTATICS */
1025             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1026
1027             /* CUBIC SPLINE TABLE DISPERSION */
1028             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1029             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1030             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1031             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1032             _MM_TRANSPOSE4_PS(Y,F,G,H);
1033             Heps             = _mm_mul_ps(vfeps,H);
1034             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1035             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1036             fvdw6            = _mm_mul_ps(c6_00,FF);
1037
1038             /* CUBIC SPLINE TABLE REPULSION */
1039             vfitab           = _mm_add_epi32(vfitab,ifour);
1040             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1041             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1042             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1043             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1044             _MM_TRANSPOSE4_PS(Y,F,G,H);
1045             Heps             = _mm_mul_ps(vfeps,H);
1046             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1047             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1048             fvdw12           = _mm_mul_ps(c12_00,FF);
1049             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1050
1051             fscal            = _mm_add_ps(felec,fvdw);
1052
1053             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1054
1055             /* Calculate temporary vectorial force */
1056             tx               = _mm_mul_ps(fscal,dx00);
1057             ty               = _mm_mul_ps(fscal,dy00);
1058             tz               = _mm_mul_ps(fscal,dz00);
1059
1060             /* Update vectorial force */
1061             fix0             = _mm_add_ps(fix0,tx);
1062             fiy0             = _mm_add_ps(fiy0,ty);
1063             fiz0             = _mm_add_ps(fiz0,tz);
1064
1065             fjx0             = _mm_add_ps(fjx0,tx);
1066             fjy0             = _mm_add_ps(fjy0,ty);
1067             fjz0             = _mm_add_ps(fjz0,tz);
1068             
1069             /**************************
1070              * CALCULATE INTERACTIONS *
1071              **************************/
1072
1073             /* Compute parameters for interactions between i and j atoms */
1074             qq10             = _mm_mul_ps(iq1,jq0);
1075
1076             /* REACTION-FIELD ELECTROSTATICS */
1077             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1078
1079             fscal            = felec;
1080
1081             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1082
1083             /* Calculate temporary vectorial force */
1084             tx               = _mm_mul_ps(fscal,dx10);
1085             ty               = _mm_mul_ps(fscal,dy10);
1086             tz               = _mm_mul_ps(fscal,dz10);
1087
1088             /* Update vectorial force */
1089             fix1             = _mm_add_ps(fix1,tx);
1090             fiy1             = _mm_add_ps(fiy1,ty);
1091             fiz1             = _mm_add_ps(fiz1,tz);
1092
1093             fjx0             = _mm_add_ps(fjx0,tx);
1094             fjy0             = _mm_add_ps(fjy0,ty);
1095             fjz0             = _mm_add_ps(fjz0,tz);
1096             
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             qq20             = _mm_mul_ps(iq2,jq0);
1103
1104             /* REACTION-FIELD ELECTROSTATICS */
1105             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1106
1107             fscal            = felec;
1108
1109             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1110
1111             /* Calculate temporary vectorial force */
1112             tx               = _mm_mul_ps(fscal,dx20);
1113             ty               = _mm_mul_ps(fscal,dy20);
1114             tz               = _mm_mul_ps(fscal,dz20);
1115
1116             /* Update vectorial force */
1117             fix2             = _mm_add_ps(fix2,tx);
1118             fiy2             = _mm_add_ps(fiy2,ty);
1119             fiz2             = _mm_add_ps(fiz2,tz);
1120
1121             fjx0             = _mm_add_ps(fjx0,tx);
1122             fjy0             = _mm_add_ps(fjy0,ty);
1123             fjz0             = _mm_add_ps(fjz0,tz);
1124             
1125             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1126             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1127             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1128             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1129
1130             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1131
1132             /* Inner loop uses 109 flops */
1133         }
1134
1135         /* End of innermost loop */
1136
1137         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1138                                               f+i_coord_offset,fshift+i_shift_offset);
1139
1140         /* Increment number of inner iterations */
1141         inneriter                  += j_index_end - j_index_start;
1142
1143         /* Outer loop uses 18 flops */
1144     }
1145
1146     /* Increment number of outer iterations */
1147     outeriter        += nri;
1148
1149     /* Update outer/inner flops */
1150
1151     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*109);
1152 }