41afff444c7a4bc7ca36d6afebf8ac404d3b5a50
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_sse2_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm_set1_ps(fr->ic->k_rf);
124     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
125     crf              = _mm_set1_ps(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
136     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
137     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }  
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
172         
173         fix0             = _mm_setzero_ps();
174         fiy0             = _mm_setzero_ps();
175         fiz0             = _mm_setzero_ps();
176         fix1             = _mm_setzero_ps();
177         fiy1             = _mm_setzero_ps();
178         fiz1             = _mm_setzero_ps();
179         fix2             = _mm_setzero_ps();
180         fiy2             = _mm_setzero_ps();
181         fiz2             = _mm_setzero_ps();
182
183         /* Reset potential sums */
184         velecsum         = _mm_setzero_ps();
185         vvdwsum          = _mm_setzero_ps();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198             j_coord_offsetC  = DIM*jnrC;
199             j_coord_offsetD  = DIM*jnrD;
200
201             /* load j atom coordinates */
202             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
203                                               x+j_coord_offsetC,x+j_coord_offsetD,
204                                               &jx0,&jy0,&jz0);
205
206             /* Calculate displacement vector */
207             dx00             = _mm_sub_ps(ix0,jx0);
208             dy00             = _mm_sub_ps(iy0,jy0);
209             dz00             = _mm_sub_ps(iz0,jz0);
210             dx10             = _mm_sub_ps(ix1,jx0);
211             dy10             = _mm_sub_ps(iy1,jy0);
212             dz10             = _mm_sub_ps(iz1,jz0);
213             dx20             = _mm_sub_ps(ix2,jx0);
214             dy20             = _mm_sub_ps(iy2,jy0);
215             dz20             = _mm_sub_ps(iz2,jz0);
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
219             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
220             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
221
222             rinv00           = gmx_mm_invsqrt_ps(rsq00);
223             rinv10           = gmx_mm_invsqrt_ps(rsq10);
224             rinv20           = gmx_mm_invsqrt_ps(rsq20);
225
226             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
227             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
228             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
232                                                               charge+jnrC+0,charge+jnrD+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235             vdwjidx0C        = 2*vdwtype[jnrC+0];
236             vdwjidx0D        = 2*vdwtype[jnrD+0];
237
238             fjx0             = _mm_setzero_ps();
239             fjy0             = _mm_setzero_ps();
240             fjz0             = _mm_setzero_ps();
241
242             /**************************
243              * CALCULATE INTERACTIONS *
244              **************************/
245
246             r00              = _mm_mul_ps(rsq00,rinv00);
247
248             /* Compute parameters for interactions between i and j atoms */
249             qq00             = _mm_mul_ps(iq0,jq0);
250             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
251                                          vdwparam+vdwioffset0+vdwjidx0B,
252                                          vdwparam+vdwioffset0+vdwjidx0C,
253                                          vdwparam+vdwioffset0+vdwjidx0D,
254                                          &c6_00,&c12_00);
255
256             /* Calculate table index by multiplying r with table scale and truncate to integer */
257             rt               = _mm_mul_ps(r00,vftabscale);
258             vfitab           = _mm_cvttps_epi32(rt);
259             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
260             vfitab           = _mm_slli_epi32(vfitab,3);
261
262             /* REACTION-FIELD ELECTROSTATICS */
263             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
264             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
265
266             /* CUBIC SPLINE TABLE DISPERSION */
267             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
268             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
269             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
270             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
271             _MM_TRANSPOSE4_PS(Y,F,G,H);
272             Heps             = _mm_mul_ps(vfeps,H);
273             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
274             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
275             vvdw6            = _mm_mul_ps(c6_00,VV);
276             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
277             fvdw6            = _mm_mul_ps(c6_00,FF);
278
279             /* CUBIC SPLINE TABLE REPULSION */
280             vfitab           = _mm_add_epi32(vfitab,ifour);
281             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
282             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
283             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
284             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
285             _MM_TRANSPOSE4_PS(Y,F,G,H);
286             Heps             = _mm_mul_ps(vfeps,H);
287             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
288             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
289             vvdw12           = _mm_mul_ps(c12_00,VV);
290             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
291             fvdw12           = _mm_mul_ps(c12_00,FF);
292             vvdw             = _mm_add_ps(vvdw12,vvdw6);
293             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _mm_add_ps(velecsum,velec);
297             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
298
299             fscal            = _mm_add_ps(felec,fvdw);
300
301             /* Calculate temporary vectorial force */
302             tx               = _mm_mul_ps(fscal,dx00);
303             ty               = _mm_mul_ps(fscal,dy00);
304             tz               = _mm_mul_ps(fscal,dz00);
305
306             /* Update vectorial force */
307             fix0             = _mm_add_ps(fix0,tx);
308             fiy0             = _mm_add_ps(fiy0,ty);
309             fiz0             = _mm_add_ps(fiz0,tz);
310
311             fjx0             = _mm_add_ps(fjx0,tx);
312             fjy0             = _mm_add_ps(fjy0,ty);
313             fjz0             = _mm_add_ps(fjz0,tz);
314             
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq10             = _mm_mul_ps(iq1,jq0);
321
322             /* REACTION-FIELD ELECTROSTATICS */
323             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
324             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velecsum         = _mm_add_ps(velecsum,velec);
328
329             fscal            = felec;
330
331             /* Calculate temporary vectorial force */
332             tx               = _mm_mul_ps(fscal,dx10);
333             ty               = _mm_mul_ps(fscal,dy10);
334             tz               = _mm_mul_ps(fscal,dz10);
335
336             /* Update vectorial force */
337             fix1             = _mm_add_ps(fix1,tx);
338             fiy1             = _mm_add_ps(fiy1,ty);
339             fiz1             = _mm_add_ps(fiz1,tz);
340
341             fjx0             = _mm_add_ps(fjx0,tx);
342             fjy0             = _mm_add_ps(fjy0,ty);
343             fjz0             = _mm_add_ps(fjz0,tz);
344             
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq20             = _mm_mul_ps(iq2,jq0);
351
352             /* REACTION-FIELD ELECTROSTATICS */
353             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
354             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velecsum         = _mm_add_ps(velecsum,velec);
358
359             fscal            = felec;
360
361             /* Calculate temporary vectorial force */
362             tx               = _mm_mul_ps(fscal,dx20);
363             ty               = _mm_mul_ps(fscal,dy20);
364             tz               = _mm_mul_ps(fscal,dz20);
365
366             /* Update vectorial force */
367             fix2             = _mm_add_ps(fix2,tx);
368             fiy2             = _mm_add_ps(fiy2,ty);
369             fiz2             = _mm_add_ps(fiz2,tz);
370
371             fjx0             = _mm_add_ps(fjx0,tx);
372             fjy0             = _mm_add_ps(fjy0,ty);
373             fjz0             = _mm_add_ps(fjz0,tz);
374             
375             fjptrA             = f+j_coord_offsetA;
376             fjptrB             = f+j_coord_offsetB;
377             fjptrC             = f+j_coord_offsetC;
378             fjptrD             = f+j_coord_offsetD;
379
380             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
381
382             /* Inner loop uses 131 flops */
383         }
384
385         if(jidx<j_index_end)
386         {
387
388             /* Get j neighbor index, and coordinate index */
389             jnrlistA         = jjnr[jidx];
390             jnrlistB         = jjnr[jidx+1];
391             jnrlistC         = jjnr[jidx+2];
392             jnrlistD         = jjnr[jidx+3];
393             /* Sign of each element will be negative for non-real atoms.
394              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
395              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
396              */
397             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
398             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
399             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
400             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
401             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
402             j_coord_offsetA  = DIM*jnrA;
403             j_coord_offsetB  = DIM*jnrB;
404             j_coord_offsetC  = DIM*jnrC;
405             j_coord_offsetD  = DIM*jnrD;
406
407             /* load j atom coordinates */
408             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
409                                               x+j_coord_offsetC,x+j_coord_offsetD,
410                                               &jx0,&jy0,&jz0);
411
412             /* Calculate displacement vector */
413             dx00             = _mm_sub_ps(ix0,jx0);
414             dy00             = _mm_sub_ps(iy0,jy0);
415             dz00             = _mm_sub_ps(iz0,jz0);
416             dx10             = _mm_sub_ps(ix1,jx0);
417             dy10             = _mm_sub_ps(iy1,jy0);
418             dz10             = _mm_sub_ps(iz1,jz0);
419             dx20             = _mm_sub_ps(ix2,jx0);
420             dy20             = _mm_sub_ps(iy2,jy0);
421             dz20             = _mm_sub_ps(iz2,jz0);
422
423             /* Calculate squared distance and things based on it */
424             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
425             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
426             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
427
428             rinv00           = gmx_mm_invsqrt_ps(rsq00);
429             rinv10           = gmx_mm_invsqrt_ps(rsq10);
430             rinv20           = gmx_mm_invsqrt_ps(rsq20);
431
432             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
433             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
434             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
435
436             /* Load parameters for j particles */
437             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
438                                                               charge+jnrC+0,charge+jnrD+0);
439             vdwjidx0A        = 2*vdwtype[jnrA+0];
440             vdwjidx0B        = 2*vdwtype[jnrB+0];
441             vdwjidx0C        = 2*vdwtype[jnrC+0];
442             vdwjidx0D        = 2*vdwtype[jnrD+0];
443
444             fjx0             = _mm_setzero_ps();
445             fjy0             = _mm_setzero_ps();
446             fjz0             = _mm_setzero_ps();
447
448             /**************************
449              * CALCULATE INTERACTIONS *
450              **************************/
451
452             r00              = _mm_mul_ps(rsq00,rinv00);
453             r00              = _mm_andnot_ps(dummy_mask,r00);
454
455             /* Compute parameters for interactions between i and j atoms */
456             qq00             = _mm_mul_ps(iq0,jq0);
457             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
458                                          vdwparam+vdwioffset0+vdwjidx0B,
459                                          vdwparam+vdwioffset0+vdwjidx0C,
460                                          vdwparam+vdwioffset0+vdwjidx0D,
461                                          &c6_00,&c12_00);
462
463             /* Calculate table index by multiplying r with table scale and truncate to integer */
464             rt               = _mm_mul_ps(r00,vftabscale);
465             vfitab           = _mm_cvttps_epi32(rt);
466             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
467             vfitab           = _mm_slli_epi32(vfitab,3);
468
469             /* REACTION-FIELD ELECTROSTATICS */
470             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
471             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
472
473             /* CUBIC SPLINE TABLE DISPERSION */
474             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
475             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
476             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
477             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
478             _MM_TRANSPOSE4_PS(Y,F,G,H);
479             Heps             = _mm_mul_ps(vfeps,H);
480             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
481             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
482             vvdw6            = _mm_mul_ps(c6_00,VV);
483             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
484             fvdw6            = _mm_mul_ps(c6_00,FF);
485
486             /* CUBIC SPLINE TABLE REPULSION */
487             vfitab           = _mm_add_epi32(vfitab,ifour);
488             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
489             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
490             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
491             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
492             _MM_TRANSPOSE4_PS(Y,F,G,H);
493             Heps             = _mm_mul_ps(vfeps,H);
494             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
495             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
496             vvdw12           = _mm_mul_ps(c12_00,VV);
497             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
498             fvdw12           = _mm_mul_ps(c12_00,FF);
499             vvdw             = _mm_add_ps(vvdw12,vvdw6);
500             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
501
502             /* Update potential sum for this i atom from the interaction with this j atom. */
503             velec            = _mm_andnot_ps(dummy_mask,velec);
504             velecsum         = _mm_add_ps(velecsum,velec);
505             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
506             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
507
508             fscal            = _mm_add_ps(felec,fvdw);
509
510             fscal            = _mm_andnot_ps(dummy_mask,fscal);
511
512             /* Calculate temporary vectorial force */
513             tx               = _mm_mul_ps(fscal,dx00);
514             ty               = _mm_mul_ps(fscal,dy00);
515             tz               = _mm_mul_ps(fscal,dz00);
516
517             /* Update vectorial force */
518             fix0             = _mm_add_ps(fix0,tx);
519             fiy0             = _mm_add_ps(fiy0,ty);
520             fiz0             = _mm_add_ps(fiz0,tz);
521
522             fjx0             = _mm_add_ps(fjx0,tx);
523             fjy0             = _mm_add_ps(fjy0,ty);
524             fjz0             = _mm_add_ps(fjz0,tz);
525             
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq10             = _mm_mul_ps(iq1,jq0);
532
533             /* REACTION-FIELD ELECTROSTATICS */
534             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
535             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
536
537             /* Update potential sum for this i atom from the interaction with this j atom. */
538             velec            = _mm_andnot_ps(dummy_mask,velec);
539             velecsum         = _mm_add_ps(velecsum,velec);
540
541             fscal            = felec;
542
543             fscal            = _mm_andnot_ps(dummy_mask,fscal);
544
545             /* Calculate temporary vectorial force */
546             tx               = _mm_mul_ps(fscal,dx10);
547             ty               = _mm_mul_ps(fscal,dy10);
548             tz               = _mm_mul_ps(fscal,dz10);
549
550             /* Update vectorial force */
551             fix1             = _mm_add_ps(fix1,tx);
552             fiy1             = _mm_add_ps(fiy1,ty);
553             fiz1             = _mm_add_ps(fiz1,tz);
554
555             fjx0             = _mm_add_ps(fjx0,tx);
556             fjy0             = _mm_add_ps(fjy0,ty);
557             fjz0             = _mm_add_ps(fjz0,tz);
558             
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             /* Compute parameters for interactions between i and j atoms */
564             qq20             = _mm_mul_ps(iq2,jq0);
565
566             /* REACTION-FIELD ELECTROSTATICS */
567             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
568             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
569
570             /* Update potential sum for this i atom from the interaction with this j atom. */
571             velec            = _mm_andnot_ps(dummy_mask,velec);
572             velecsum         = _mm_add_ps(velecsum,velec);
573
574             fscal            = felec;
575
576             fscal            = _mm_andnot_ps(dummy_mask,fscal);
577
578             /* Calculate temporary vectorial force */
579             tx               = _mm_mul_ps(fscal,dx20);
580             ty               = _mm_mul_ps(fscal,dy20);
581             tz               = _mm_mul_ps(fscal,dz20);
582
583             /* Update vectorial force */
584             fix2             = _mm_add_ps(fix2,tx);
585             fiy2             = _mm_add_ps(fiy2,ty);
586             fiz2             = _mm_add_ps(fiz2,tz);
587
588             fjx0             = _mm_add_ps(fjx0,tx);
589             fjy0             = _mm_add_ps(fjy0,ty);
590             fjz0             = _mm_add_ps(fjz0,tz);
591             
592             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
593             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
594             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
595             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
596
597             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
598
599             /* Inner loop uses 132 flops */
600         }
601
602         /* End of innermost loop */
603
604         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
605                                               f+i_coord_offset,fshift+i_shift_offset);
606
607         ggid                        = gid[iidx];
608         /* Update potential energies */
609         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
610         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
611
612         /* Increment number of inner iterations */
613         inneriter                  += j_index_end - j_index_start;
614
615         /* Outer loop uses 20 flops */
616     }
617
618     /* Increment number of outer iterations */
619     outeriter        += nri;
620
621     /* Update outer/inner flops */
622
623     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*132);
624 }
625 /*
626  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_sse2_single
627  * Electrostatics interaction: ReactionField
628  * VdW interaction:            CubicSplineTable
629  * Geometry:                   Water3-Particle
630  * Calculate force/pot:        Force
631  */
632 void
633 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_sse2_single
634                     (t_nblist                    * gmx_restrict       nlist,
635                      rvec                        * gmx_restrict          xx,
636                      rvec                        * gmx_restrict          ff,
637                      t_forcerec                  * gmx_restrict          fr,
638                      t_mdatoms                   * gmx_restrict     mdatoms,
639                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
640                      t_nrnb                      * gmx_restrict        nrnb)
641 {
642     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
643      * just 0 for non-waters.
644      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
645      * jnr indices corresponding to data put in the four positions in the SIMD register.
646      */
647     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
648     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
649     int              jnrA,jnrB,jnrC,jnrD;
650     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
651     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
652     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
653     real             rcutoff_scalar;
654     real             *shiftvec,*fshift,*x,*f;
655     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
656     real             scratch[4*DIM];
657     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
658     int              vdwioffset0;
659     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
660     int              vdwioffset1;
661     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
662     int              vdwioffset2;
663     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
664     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
665     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
666     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
667     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
668     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
669     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
670     real             *charge;
671     int              nvdwtype;
672     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
673     int              *vdwtype;
674     real             *vdwparam;
675     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
676     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
677     __m128i          vfitab;
678     __m128i          ifour       = _mm_set1_epi32(4);
679     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
680     real             *vftab;
681     __m128           dummy_mask,cutoff_mask;
682     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
683     __m128           one     = _mm_set1_ps(1.0);
684     __m128           two     = _mm_set1_ps(2.0);
685     x                = xx[0];
686     f                = ff[0];
687
688     nri              = nlist->nri;
689     iinr             = nlist->iinr;
690     jindex           = nlist->jindex;
691     jjnr             = nlist->jjnr;
692     shiftidx         = nlist->shift;
693     gid              = nlist->gid;
694     shiftvec         = fr->shift_vec[0];
695     fshift           = fr->fshift[0];
696     facel            = _mm_set1_ps(fr->epsfac);
697     charge           = mdatoms->chargeA;
698     krf              = _mm_set1_ps(fr->ic->k_rf);
699     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
700     crf              = _mm_set1_ps(fr->ic->c_rf);
701     nvdwtype         = fr->ntype;
702     vdwparam         = fr->nbfp;
703     vdwtype          = mdatoms->typeA;
704
705     vftab            = kernel_data->table_vdw->data;
706     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
707
708     /* Setup water-specific parameters */
709     inr              = nlist->iinr[0];
710     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
711     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
712     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
713     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
714
715     /* Avoid stupid compiler warnings */
716     jnrA = jnrB = jnrC = jnrD = 0;
717     j_coord_offsetA = 0;
718     j_coord_offsetB = 0;
719     j_coord_offsetC = 0;
720     j_coord_offsetD = 0;
721
722     outeriter        = 0;
723     inneriter        = 0;
724
725     for(iidx=0;iidx<4*DIM;iidx++)
726     {
727         scratch[iidx] = 0.0;
728     }  
729
730     /* Start outer loop over neighborlists */
731     for(iidx=0; iidx<nri; iidx++)
732     {
733         /* Load shift vector for this list */
734         i_shift_offset   = DIM*shiftidx[iidx];
735
736         /* Load limits for loop over neighbors */
737         j_index_start    = jindex[iidx];
738         j_index_end      = jindex[iidx+1];
739
740         /* Get outer coordinate index */
741         inr              = iinr[iidx];
742         i_coord_offset   = DIM*inr;
743
744         /* Load i particle coords and add shift vector */
745         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
746                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
747         
748         fix0             = _mm_setzero_ps();
749         fiy0             = _mm_setzero_ps();
750         fiz0             = _mm_setzero_ps();
751         fix1             = _mm_setzero_ps();
752         fiy1             = _mm_setzero_ps();
753         fiz1             = _mm_setzero_ps();
754         fix2             = _mm_setzero_ps();
755         fiy2             = _mm_setzero_ps();
756         fiz2             = _mm_setzero_ps();
757
758         /* Start inner kernel loop */
759         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
760         {
761
762             /* Get j neighbor index, and coordinate index */
763             jnrA             = jjnr[jidx];
764             jnrB             = jjnr[jidx+1];
765             jnrC             = jjnr[jidx+2];
766             jnrD             = jjnr[jidx+3];
767             j_coord_offsetA  = DIM*jnrA;
768             j_coord_offsetB  = DIM*jnrB;
769             j_coord_offsetC  = DIM*jnrC;
770             j_coord_offsetD  = DIM*jnrD;
771
772             /* load j atom coordinates */
773             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
774                                               x+j_coord_offsetC,x+j_coord_offsetD,
775                                               &jx0,&jy0,&jz0);
776
777             /* Calculate displacement vector */
778             dx00             = _mm_sub_ps(ix0,jx0);
779             dy00             = _mm_sub_ps(iy0,jy0);
780             dz00             = _mm_sub_ps(iz0,jz0);
781             dx10             = _mm_sub_ps(ix1,jx0);
782             dy10             = _mm_sub_ps(iy1,jy0);
783             dz10             = _mm_sub_ps(iz1,jz0);
784             dx20             = _mm_sub_ps(ix2,jx0);
785             dy20             = _mm_sub_ps(iy2,jy0);
786             dz20             = _mm_sub_ps(iz2,jz0);
787
788             /* Calculate squared distance and things based on it */
789             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
790             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
791             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
792
793             rinv00           = gmx_mm_invsqrt_ps(rsq00);
794             rinv10           = gmx_mm_invsqrt_ps(rsq10);
795             rinv20           = gmx_mm_invsqrt_ps(rsq20);
796
797             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
798             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
799             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
800
801             /* Load parameters for j particles */
802             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
803                                                               charge+jnrC+0,charge+jnrD+0);
804             vdwjidx0A        = 2*vdwtype[jnrA+0];
805             vdwjidx0B        = 2*vdwtype[jnrB+0];
806             vdwjidx0C        = 2*vdwtype[jnrC+0];
807             vdwjidx0D        = 2*vdwtype[jnrD+0];
808
809             fjx0             = _mm_setzero_ps();
810             fjy0             = _mm_setzero_ps();
811             fjz0             = _mm_setzero_ps();
812
813             /**************************
814              * CALCULATE INTERACTIONS *
815              **************************/
816
817             r00              = _mm_mul_ps(rsq00,rinv00);
818
819             /* Compute parameters for interactions between i and j atoms */
820             qq00             = _mm_mul_ps(iq0,jq0);
821             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
822                                          vdwparam+vdwioffset0+vdwjidx0B,
823                                          vdwparam+vdwioffset0+vdwjidx0C,
824                                          vdwparam+vdwioffset0+vdwjidx0D,
825                                          &c6_00,&c12_00);
826
827             /* Calculate table index by multiplying r with table scale and truncate to integer */
828             rt               = _mm_mul_ps(r00,vftabscale);
829             vfitab           = _mm_cvttps_epi32(rt);
830             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
831             vfitab           = _mm_slli_epi32(vfitab,3);
832
833             /* REACTION-FIELD ELECTROSTATICS */
834             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
835
836             /* CUBIC SPLINE TABLE DISPERSION */
837             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
838             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
839             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
840             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
841             _MM_TRANSPOSE4_PS(Y,F,G,H);
842             Heps             = _mm_mul_ps(vfeps,H);
843             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
844             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
845             fvdw6            = _mm_mul_ps(c6_00,FF);
846
847             /* CUBIC SPLINE TABLE REPULSION */
848             vfitab           = _mm_add_epi32(vfitab,ifour);
849             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
850             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
851             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
852             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
853             _MM_TRANSPOSE4_PS(Y,F,G,H);
854             Heps             = _mm_mul_ps(vfeps,H);
855             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
856             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
857             fvdw12           = _mm_mul_ps(c12_00,FF);
858             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
859
860             fscal            = _mm_add_ps(felec,fvdw);
861
862             /* Calculate temporary vectorial force */
863             tx               = _mm_mul_ps(fscal,dx00);
864             ty               = _mm_mul_ps(fscal,dy00);
865             tz               = _mm_mul_ps(fscal,dz00);
866
867             /* Update vectorial force */
868             fix0             = _mm_add_ps(fix0,tx);
869             fiy0             = _mm_add_ps(fiy0,ty);
870             fiz0             = _mm_add_ps(fiz0,tz);
871
872             fjx0             = _mm_add_ps(fjx0,tx);
873             fjy0             = _mm_add_ps(fjy0,ty);
874             fjz0             = _mm_add_ps(fjz0,tz);
875             
876             /**************************
877              * CALCULATE INTERACTIONS *
878              **************************/
879
880             /* Compute parameters for interactions between i and j atoms */
881             qq10             = _mm_mul_ps(iq1,jq0);
882
883             /* REACTION-FIELD ELECTROSTATICS */
884             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
885
886             fscal            = felec;
887
888             /* Calculate temporary vectorial force */
889             tx               = _mm_mul_ps(fscal,dx10);
890             ty               = _mm_mul_ps(fscal,dy10);
891             tz               = _mm_mul_ps(fscal,dz10);
892
893             /* Update vectorial force */
894             fix1             = _mm_add_ps(fix1,tx);
895             fiy1             = _mm_add_ps(fiy1,ty);
896             fiz1             = _mm_add_ps(fiz1,tz);
897
898             fjx0             = _mm_add_ps(fjx0,tx);
899             fjy0             = _mm_add_ps(fjy0,ty);
900             fjz0             = _mm_add_ps(fjz0,tz);
901             
902             /**************************
903              * CALCULATE INTERACTIONS *
904              **************************/
905
906             /* Compute parameters for interactions between i and j atoms */
907             qq20             = _mm_mul_ps(iq2,jq0);
908
909             /* REACTION-FIELD ELECTROSTATICS */
910             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
911
912             fscal            = felec;
913
914             /* Calculate temporary vectorial force */
915             tx               = _mm_mul_ps(fscal,dx20);
916             ty               = _mm_mul_ps(fscal,dy20);
917             tz               = _mm_mul_ps(fscal,dz20);
918
919             /* Update vectorial force */
920             fix2             = _mm_add_ps(fix2,tx);
921             fiy2             = _mm_add_ps(fiy2,ty);
922             fiz2             = _mm_add_ps(fiz2,tz);
923
924             fjx0             = _mm_add_ps(fjx0,tx);
925             fjy0             = _mm_add_ps(fjy0,ty);
926             fjz0             = _mm_add_ps(fjz0,tz);
927             
928             fjptrA             = f+j_coord_offsetA;
929             fjptrB             = f+j_coord_offsetB;
930             fjptrC             = f+j_coord_offsetC;
931             fjptrD             = f+j_coord_offsetD;
932
933             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
934
935             /* Inner loop uses 108 flops */
936         }
937
938         if(jidx<j_index_end)
939         {
940
941             /* Get j neighbor index, and coordinate index */
942             jnrlistA         = jjnr[jidx];
943             jnrlistB         = jjnr[jidx+1];
944             jnrlistC         = jjnr[jidx+2];
945             jnrlistD         = jjnr[jidx+3];
946             /* Sign of each element will be negative for non-real atoms.
947              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
948              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
949              */
950             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
951             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
952             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
953             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
954             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
955             j_coord_offsetA  = DIM*jnrA;
956             j_coord_offsetB  = DIM*jnrB;
957             j_coord_offsetC  = DIM*jnrC;
958             j_coord_offsetD  = DIM*jnrD;
959
960             /* load j atom coordinates */
961             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
962                                               x+j_coord_offsetC,x+j_coord_offsetD,
963                                               &jx0,&jy0,&jz0);
964
965             /* Calculate displacement vector */
966             dx00             = _mm_sub_ps(ix0,jx0);
967             dy00             = _mm_sub_ps(iy0,jy0);
968             dz00             = _mm_sub_ps(iz0,jz0);
969             dx10             = _mm_sub_ps(ix1,jx0);
970             dy10             = _mm_sub_ps(iy1,jy0);
971             dz10             = _mm_sub_ps(iz1,jz0);
972             dx20             = _mm_sub_ps(ix2,jx0);
973             dy20             = _mm_sub_ps(iy2,jy0);
974             dz20             = _mm_sub_ps(iz2,jz0);
975
976             /* Calculate squared distance and things based on it */
977             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
978             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
979             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
980
981             rinv00           = gmx_mm_invsqrt_ps(rsq00);
982             rinv10           = gmx_mm_invsqrt_ps(rsq10);
983             rinv20           = gmx_mm_invsqrt_ps(rsq20);
984
985             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
986             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
987             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
988
989             /* Load parameters for j particles */
990             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
991                                                               charge+jnrC+0,charge+jnrD+0);
992             vdwjidx0A        = 2*vdwtype[jnrA+0];
993             vdwjidx0B        = 2*vdwtype[jnrB+0];
994             vdwjidx0C        = 2*vdwtype[jnrC+0];
995             vdwjidx0D        = 2*vdwtype[jnrD+0];
996
997             fjx0             = _mm_setzero_ps();
998             fjy0             = _mm_setzero_ps();
999             fjz0             = _mm_setzero_ps();
1000
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             r00              = _mm_mul_ps(rsq00,rinv00);
1006             r00              = _mm_andnot_ps(dummy_mask,r00);
1007
1008             /* Compute parameters for interactions between i and j atoms */
1009             qq00             = _mm_mul_ps(iq0,jq0);
1010             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1011                                          vdwparam+vdwioffset0+vdwjidx0B,
1012                                          vdwparam+vdwioffset0+vdwjidx0C,
1013                                          vdwparam+vdwioffset0+vdwjidx0D,
1014                                          &c6_00,&c12_00);
1015
1016             /* Calculate table index by multiplying r with table scale and truncate to integer */
1017             rt               = _mm_mul_ps(r00,vftabscale);
1018             vfitab           = _mm_cvttps_epi32(rt);
1019             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1020             vfitab           = _mm_slli_epi32(vfitab,3);
1021
1022             /* REACTION-FIELD ELECTROSTATICS */
1023             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1024
1025             /* CUBIC SPLINE TABLE DISPERSION */
1026             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1027             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1028             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1029             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1030             _MM_TRANSPOSE4_PS(Y,F,G,H);
1031             Heps             = _mm_mul_ps(vfeps,H);
1032             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1033             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1034             fvdw6            = _mm_mul_ps(c6_00,FF);
1035
1036             /* CUBIC SPLINE TABLE REPULSION */
1037             vfitab           = _mm_add_epi32(vfitab,ifour);
1038             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1039             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1040             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1041             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1042             _MM_TRANSPOSE4_PS(Y,F,G,H);
1043             Heps             = _mm_mul_ps(vfeps,H);
1044             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1045             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1046             fvdw12           = _mm_mul_ps(c12_00,FF);
1047             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1048
1049             fscal            = _mm_add_ps(felec,fvdw);
1050
1051             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1052
1053             /* Calculate temporary vectorial force */
1054             tx               = _mm_mul_ps(fscal,dx00);
1055             ty               = _mm_mul_ps(fscal,dy00);
1056             tz               = _mm_mul_ps(fscal,dz00);
1057
1058             /* Update vectorial force */
1059             fix0             = _mm_add_ps(fix0,tx);
1060             fiy0             = _mm_add_ps(fiy0,ty);
1061             fiz0             = _mm_add_ps(fiz0,tz);
1062
1063             fjx0             = _mm_add_ps(fjx0,tx);
1064             fjy0             = _mm_add_ps(fjy0,ty);
1065             fjz0             = _mm_add_ps(fjz0,tz);
1066             
1067             /**************************
1068              * CALCULATE INTERACTIONS *
1069              **************************/
1070
1071             /* Compute parameters for interactions between i and j atoms */
1072             qq10             = _mm_mul_ps(iq1,jq0);
1073
1074             /* REACTION-FIELD ELECTROSTATICS */
1075             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1076
1077             fscal            = felec;
1078
1079             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1080
1081             /* Calculate temporary vectorial force */
1082             tx               = _mm_mul_ps(fscal,dx10);
1083             ty               = _mm_mul_ps(fscal,dy10);
1084             tz               = _mm_mul_ps(fscal,dz10);
1085
1086             /* Update vectorial force */
1087             fix1             = _mm_add_ps(fix1,tx);
1088             fiy1             = _mm_add_ps(fiy1,ty);
1089             fiz1             = _mm_add_ps(fiz1,tz);
1090
1091             fjx0             = _mm_add_ps(fjx0,tx);
1092             fjy0             = _mm_add_ps(fjy0,ty);
1093             fjz0             = _mm_add_ps(fjz0,tz);
1094             
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             /* Compute parameters for interactions between i and j atoms */
1100             qq20             = _mm_mul_ps(iq2,jq0);
1101
1102             /* REACTION-FIELD ELECTROSTATICS */
1103             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1104
1105             fscal            = felec;
1106
1107             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1108
1109             /* Calculate temporary vectorial force */
1110             tx               = _mm_mul_ps(fscal,dx20);
1111             ty               = _mm_mul_ps(fscal,dy20);
1112             tz               = _mm_mul_ps(fscal,dz20);
1113
1114             /* Update vectorial force */
1115             fix2             = _mm_add_ps(fix2,tx);
1116             fiy2             = _mm_add_ps(fiy2,ty);
1117             fiz2             = _mm_add_ps(fiz2,tz);
1118
1119             fjx0             = _mm_add_ps(fjx0,tx);
1120             fjy0             = _mm_add_ps(fjy0,ty);
1121             fjz0             = _mm_add_ps(fjz0,tz);
1122             
1123             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1124             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1125             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1126             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1127
1128             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1129
1130             /* Inner loop uses 109 flops */
1131         }
1132
1133         /* End of innermost loop */
1134
1135         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1136                                               f+i_coord_offset,fshift+i_shift_offset);
1137
1138         /* Increment number of inner iterations */
1139         inneriter                  += j_index_end - j_index_start;
1140
1141         /* Outer loop uses 18 flops */
1142     }
1143
1144     /* Increment number of outer iterations */
1145     outeriter        += nri;
1146
1147     /* Update outer/inner flops */
1148
1149     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*109);
1150 }