Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
78     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
82     real             *vftab;
83     __m128           dummy_mask,cutoff_mask;
84     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
85     __m128           one     = _mm_set1_ps(1.0);
86     __m128           two     = _mm_set1_ps(2.0);
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = _mm_set1_ps(fr->epsfac);
99     charge           = mdatoms->chargeA;
100     krf              = _mm_set1_ps(fr->ic->k_rf);
101     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
102     crf              = _mm_set1_ps(fr->ic->c_rf);
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106
107     vftab            = kernel_data->table_vdw->data;
108     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
109
110     /* Avoid stupid compiler warnings */
111     jnrA = jnrB = jnrC = jnrD = 0;
112     j_coord_offsetA = 0;
113     j_coord_offsetB = 0;
114     j_coord_offsetC = 0;
115     j_coord_offsetD = 0;
116
117     outeriter        = 0;
118     inneriter        = 0;
119
120     /* Start outer loop over neighborlists */
121     for(iidx=0; iidx<nri; iidx++)
122     {
123         /* Load shift vector for this list */
124         i_shift_offset   = DIM*shiftidx[iidx];
125         shX              = shiftvec[i_shift_offset+XX];
126         shY              = shiftvec[i_shift_offset+YY];
127         shZ              = shiftvec[i_shift_offset+ZZ];
128
129         /* Load limits for loop over neighbors */
130         j_index_start    = jindex[iidx];
131         j_index_end      = jindex[iidx+1];
132
133         /* Get outer coordinate index */
134         inr              = iinr[iidx];
135         i_coord_offset   = DIM*inr;
136
137         /* Load i particle coords and add shift vector */
138         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
139         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
140         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
141
142         fix0             = _mm_setzero_ps();
143         fiy0             = _mm_setzero_ps();
144         fiz0             = _mm_setzero_ps();
145
146         /* Load parameters for i particles */
147         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
148         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150         /* Reset potential sums */
151         velecsum         = _mm_setzero_ps();
152         vvdwsum          = _mm_setzero_ps();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             jnrC             = jjnr[jidx+2];
162             jnrD             = jjnr[jidx+3];
163
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166             j_coord_offsetC  = DIM*jnrC;
167             j_coord_offsetD  = DIM*jnrD;
168
169             /* load j atom coordinates */
170             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
171                                               x+j_coord_offsetC,x+j_coord_offsetD,
172                                               &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm_sub_ps(ix0,jx0);
176             dy00             = _mm_sub_ps(iy0,jy0);
177             dz00             = _mm_sub_ps(iz0,jz0);
178
179             /* Calculate squared distance and things based on it */
180             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
181
182             rinv00           = gmx_mm_invsqrt_ps(rsq00);
183
184             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
185
186             /* Load parameters for j particles */
187             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
188                                                               charge+jnrC+0,charge+jnrD+0);
189             vdwjidx0A        = 2*vdwtype[jnrA+0];
190             vdwjidx0B        = 2*vdwtype[jnrB+0];
191             vdwjidx0C        = 2*vdwtype[jnrC+0];
192             vdwjidx0D        = 2*vdwtype[jnrD+0];
193
194             /**************************
195              * CALCULATE INTERACTIONS *
196              **************************/
197
198             r00              = _mm_mul_ps(rsq00,rinv00);
199
200             /* Compute parameters for interactions between i and j atoms */
201             qq00             = _mm_mul_ps(iq0,jq0);
202             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
203                                          vdwparam+vdwioffset0+vdwjidx0B,
204                                          vdwparam+vdwioffset0+vdwjidx0C,
205                                          vdwparam+vdwioffset0+vdwjidx0D,
206                                          &c6_00,&c12_00);
207
208             /* Calculate table index by multiplying r with table scale and truncate to integer */
209             rt               = _mm_mul_ps(r00,vftabscale);
210             vfitab           = _mm_cvttps_epi32(rt);
211             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
212             vfitab           = _mm_slli_epi32(vfitab,3);
213
214             /* REACTION-FIELD ELECTROSTATICS */
215             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
216             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
217
218             /* CUBIC SPLINE TABLE DISPERSION */
219             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
220             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
221             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
222             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
223             _MM_TRANSPOSE4_PS(Y,F,G,H);
224             Heps             = _mm_mul_ps(vfeps,H);
225             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
226             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
227             vvdw6            = _mm_mul_ps(c6_00,VV);
228             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
229             fvdw6            = _mm_mul_ps(c6_00,FF);
230
231             /* CUBIC SPLINE TABLE REPULSION */
232             vfitab           = _mm_add_epi32(vfitab,ifour);
233             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
234             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
235             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
236             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
237             _MM_TRANSPOSE4_PS(Y,F,G,H);
238             Heps             = _mm_mul_ps(vfeps,H);
239             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
240             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
241             vvdw12           = _mm_mul_ps(c12_00,VV);
242             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
243             fvdw12           = _mm_mul_ps(c12_00,FF);
244             vvdw             = _mm_add_ps(vvdw12,vvdw6);
245             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             velecsum         = _mm_add_ps(velecsum,velec);
249             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
250
251             fscal            = _mm_add_ps(felec,fvdw);
252
253             /* Calculate temporary vectorial force */
254             tx               = _mm_mul_ps(fscal,dx00);
255             ty               = _mm_mul_ps(fscal,dy00);
256             tz               = _mm_mul_ps(fscal,dz00);
257
258             /* Update vectorial force */
259             fix0             = _mm_add_ps(fix0,tx);
260             fiy0             = _mm_add_ps(fiy0,ty);
261             fiz0             = _mm_add_ps(fiz0,tz);
262
263             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
264                                                    f+j_coord_offsetC,f+j_coord_offsetD,
265                                                    tx,ty,tz);
266
267             /* Inner loop uses 67 flops */
268         }
269
270         if(jidx<j_index_end)
271         {
272
273             /* Get j neighbor index, and coordinate index */
274             jnrA             = jjnr[jidx];
275             jnrB             = jjnr[jidx+1];
276             jnrC             = jjnr[jidx+2];
277             jnrD             = jjnr[jidx+3];
278
279             /* Sign of each element will be negative for non-real atoms.
280              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
281              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
282              */
283             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
284             jnrA       = (jnrA>=0) ? jnrA : 0;
285             jnrB       = (jnrB>=0) ? jnrB : 0;
286             jnrC       = (jnrC>=0) ? jnrC : 0;
287             jnrD       = (jnrD>=0) ? jnrD : 0;
288
289             j_coord_offsetA  = DIM*jnrA;
290             j_coord_offsetB  = DIM*jnrB;
291             j_coord_offsetC  = DIM*jnrC;
292             j_coord_offsetD  = DIM*jnrD;
293
294             /* load j atom coordinates */
295             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
296                                               x+j_coord_offsetC,x+j_coord_offsetD,
297                                               &jx0,&jy0,&jz0);
298
299             /* Calculate displacement vector */
300             dx00             = _mm_sub_ps(ix0,jx0);
301             dy00             = _mm_sub_ps(iy0,jy0);
302             dz00             = _mm_sub_ps(iz0,jz0);
303
304             /* Calculate squared distance and things based on it */
305             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
306
307             rinv00           = gmx_mm_invsqrt_ps(rsq00);
308
309             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
310
311             /* Load parameters for j particles */
312             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
313                                                               charge+jnrC+0,charge+jnrD+0);
314             vdwjidx0A        = 2*vdwtype[jnrA+0];
315             vdwjidx0B        = 2*vdwtype[jnrB+0];
316             vdwjidx0C        = 2*vdwtype[jnrC+0];
317             vdwjidx0D        = 2*vdwtype[jnrD+0];
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             r00              = _mm_mul_ps(rsq00,rinv00);
324             r00              = _mm_andnot_ps(dummy_mask,r00);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq00             = _mm_mul_ps(iq0,jq0);
328             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
329                                          vdwparam+vdwioffset0+vdwjidx0B,
330                                          vdwparam+vdwioffset0+vdwjidx0C,
331                                          vdwparam+vdwioffset0+vdwjidx0D,
332                                          &c6_00,&c12_00);
333
334             /* Calculate table index by multiplying r with table scale and truncate to integer */
335             rt               = _mm_mul_ps(r00,vftabscale);
336             vfitab           = _mm_cvttps_epi32(rt);
337             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
338             vfitab           = _mm_slli_epi32(vfitab,3);
339
340             /* REACTION-FIELD ELECTROSTATICS */
341             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
342             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
343
344             /* CUBIC SPLINE TABLE DISPERSION */
345             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
346             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
347             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
348             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
349             _MM_TRANSPOSE4_PS(Y,F,G,H);
350             Heps             = _mm_mul_ps(vfeps,H);
351             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
352             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
353             vvdw6            = _mm_mul_ps(c6_00,VV);
354             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
355             fvdw6            = _mm_mul_ps(c6_00,FF);
356
357             /* CUBIC SPLINE TABLE REPULSION */
358             vfitab           = _mm_add_epi32(vfitab,ifour);
359             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
360             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
361             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
362             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
363             _MM_TRANSPOSE4_PS(Y,F,G,H);
364             Heps             = _mm_mul_ps(vfeps,H);
365             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
366             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
367             vvdw12           = _mm_mul_ps(c12_00,VV);
368             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
369             fvdw12           = _mm_mul_ps(c12_00,FF);
370             vvdw             = _mm_add_ps(vvdw12,vvdw6);
371             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
372
373             /* Update potential sum for this i atom from the interaction with this j atom. */
374             velec            = _mm_andnot_ps(dummy_mask,velec);
375             velecsum         = _mm_add_ps(velecsum,velec);
376             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
377             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
378
379             fscal            = _mm_add_ps(felec,fvdw);
380
381             fscal            = _mm_andnot_ps(dummy_mask,fscal);
382
383             /* Calculate temporary vectorial force */
384             tx               = _mm_mul_ps(fscal,dx00);
385             ty               = _mm_mul_ps(fscal,dy00);
386             tz               = _mm_mul_ps(fscal,dz00);
387
388             /* Update vectorial force */
389             fix0             = _mm_add_ps(fix0,tx);
390             fiy0             = _mm_add_ps(fiy0,ty);
391             fiz0             = _mm_add_ps(fiz0,tz);
392
393             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
394                                                    f+j_coord_offsetC,f+j_coord_offsetD,
395                                                    tx,ty,tz);
396
397             /* Inner loop uses 68 flops */
398         }
399
400         /* End of innermost loop */
401
402         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
403                                               f+i_coord_offset,fshift+i_shift_offset);
404
405         ggid                        = gid[iidx];
406         /* Update potential energies */
407         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
408         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
409
410         /* Increment number of inner iterations */
411         inneriter                  += j_index_end - j_index_start;
412
413         /* Outer loop uses 12 flops */
414     }
415
416     /* Increment number of outer iterations */
417     outeriter        += nri;
418
419     /* Update outer/inner flops */
420
421     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*12 + inneriter*68);
422 }
423 /*
424  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse2_single
425  * Electrostatics interaction: ReactionField
426  * VdW interaction:            CubicSplineTable
427  * Geometry:                   Particle-Particle
428  * Calculate force/pot:        Force
429  */
430 void
431 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse2_single
432                     (t_nblist * gmx_restrict                nlist,
433                      rvec * gmx_restrict                    xx,
434                      rvec * gmx_restrict                    ff,
435                      t_forcerec * gmx_restrict              fr,
436                      t_mdatoms * gmx_restrict               mdatoms,
437                      nb_kernel_data_t * gmx_restrict        kernel_data,
438                      t_nrnb * gmx_restrict                  nrnb)
439 {
440     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
441      * just 0 for non-waters.
442      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
443      * jnr indices corresponding to data put in the four positions in the SIMD register.
444      */
445     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
446     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
447     int              jnrA,jnrB,jnrC,jnrD;
448     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
449     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
450     real             shX,shY,shZ,rcutoff_scalar;
451     real             *shiftvec,*fshift,*x,*f;
452     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
453     int              vdwioffset0;
454     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
455     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
456     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
457     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
458     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
459     real             *charge;
460     int              nvdwtype;
461     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
462     int              *vdwtype;
463     real             *vdwparam;
464     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
465     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
466     __m128i          vfitab;
467     __m128i          ifour       = _mm_set1_epi32(4);
468     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
469     real             *vftab;
470     __m128           dummy_mask,cutoff_mask;
471     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
472     __m128           one     = _mm_set1_ps(1.0);
473     __m128           two     = _mm_set1_ps(2.0);
474     x                = xx[0];
475     f                = ff[0];
476
477     nri              = nlist->nri;
478     iinr             = nlist->iinr;
479     jindex           = nlist->jindex;
480     jjnr             = nlist->jjnr;
481     shiftidx         = nlist->shift;
482     gid              = nlist->gid;
483     shiftvec         = fr->shift_vec[0];
484     fshift           = fr->fshift[0];
485     facel            = _mm_set1_ps(fr->epsfac);
486     charge           = mdatoms->chargeA;
487     krf              = _mm_set1_ps(fr->ic->k_rf);
488     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
489     crf              = _mm_set1_ps(fr->ic->c_rf);
490     nvdwtype         = fr->ntype;
491     vdwparam         = fr->nbfp;
492     vdwtype          = mdatoms->typeA;
493
494     vftab            = kernel_data->table_vdw->data;
495     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
496
497     /* Avoid stupid compiler warnings */
498     jnrA = jnrB = jnrC = jnrD = 0;
499     j_coord_offsetA = 0;
500     j_coord_offsetB = 0;
501     j_coord_offsetC = 0;
502     j_coord_offsetD = 0;
503
504     outeriter        = 0;
505     inneriter        = 0;
506
507     /* Start outer loop over neighborlists */
508     for(iidx=0; iidx<nri; iidx++)
509     {
510         /* Load shift vector for this list */
511         i_shift_offset   = DIM*shiftidx[iidx];
512         shX              = shiftvec[i_shift_offset+XX];
513         shY              = shiftvec[i_shift_offset+YY];
514         shZ              = shiftvec[i_shift_offset+ZZ];
515
516         /* Load limits for loop over neighbors */
517         j_index_start    = jindex[iidx];
518         j_index_end      = jindex[iidx+1];
519
520         /* Get outer coordinate index */
521         inr              = iinr[iidx];
522         i_coord_offset   = DIM*inr;
523
524         /* Load i particle coords and add shift vector */
525         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
526         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
527         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
528
529         fix0             = _mm_setzero_ps();
530         fiy0             = _mm_setzero_ps();
531         fiz0             = _mm_setzero_ps();
532
533         /* Load parameters for i particles */
534         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
535         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
536
537         /* Start inner kernel loop */
538         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
539         {
540
541             /* Get j neighbor index, and coordinate index */
542             jnrA             = jjnr[jidx];
543             jnrB             = jjnr[jidx+1];
544             jnrC             = jjnr[jidx+2];
545             jnrD             = jjnr[jidx+3];
546
547             j_coord_offsetA  = DIM*jnrA;
548             j_coord_offsetB  = DIM*jnrB;
549             j_coord_offsetC  = DIM*jnrC;
550             j_coord_offsetD  = DIM*jnrD;
551
552             /* load j atom coordinates */
553             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
554                                               x+j_coord_offsetC,x+j_coord_offsetD,
555                                               &jx0,&jy0,&jz0);
556
557             /* Calculate displacement vector */
558             dx00             = _mm_sub_ps(ix0,jx0);
559             dy00             = _mm_sub_ps(iy0,jy0);
560             dz00             = _mm_sub_ps(iz0,jz0);
561
562             /* Calculate squared distance and things based on it */
563             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
564
565             rinv00           = gmx_mm_invsqrt_ps(rsq00);
566
567             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
568
569             /* Load parameters for j particles */
570             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
571                                                               charge+jnrC+0,charge+jnrD+0);
572             vdwjidx0A        = 2*vdwtype[jnrA+0];
573             vdwjidx0B        = 2*vdwtype[jnrB+0];
574             vdwjidx0C        = 2*vdwtype[jnrC+0];
575             vdwjidx0D        = 2*vdwtype[jnrD+0];
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             r00              = _mm_mul_ps(rsq00,rinv00);
582
583             /* Compute parameters for interactions between i and j atoms */
584             qq00             = _mm_mul_ps(iq0,jq0);
585             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
586                                          vdwparam+vdwioffset0+vdwjidx0B,
587                                          vdwparam+vdwioffset0+vdwjidx0C,
588                                          vdwparam+vdwioffset0+vdwjidx0D,
589                                          &c6_00,&c12_00);
590
591             /* Calculate table index by multiplying r with table scale and truncate to integer */
592             rt               = _mm_mul_ps(r00,vftabscale);
593             vfitab           = _mm_cvttps_epi32(rt);
594             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
595             vfitab           = _mm_slli_epi32(vfitab,3);
596
597             /* REACTION-FIELD ELECTROSTATICS */
598             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
599
600             /* CUBIC SPLINE TABLE DISPERSION */
601             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
602             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
603             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
604             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
605             _MM_TRANSPOSE4_PS(Y,F,G,H);
606             Heps             = _mm_mul_ps(vfeps,H);
607             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
608             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
609             fvdw6            = _mm_mul_ps(c6_00,FF);
610
611             /* CUBIC SPLINE TABLE REPULSION */
612             vfitab           = _mm_add_epi32(vfitab,ifour);
613             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
614             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
615             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
616             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
617             _MM_TRANSPOSE4_PS(Y,F,G,H);
618             Heps             = _mm_mul_ps(vfeps,H);
619             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
620             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
621             fvdw12           = _mm_mul_ps(c12_00,FF);
622             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
623
624             fscal            = _mm_add_ps(felec,fvdw);
625
626             /* Calculate temporary vectorial force */
627             tx               = _mm_mul_ps(fscal,dx00);
628             ty               = _mm_mul_ps(fscal,dy00);
629             tz               = _mm_mul_ps(fscal,dz00);
630
631             /* Update vectorial force */
632             fix0             = _mm_add_ps(fix0,tx);
633             fiy0             = _mm_add_ps(fiy0,ty);
634             fiz0             = _mm_add_ps(fiz0,tz);
635
636             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
637                                                    f+j_coord_offsetC,f+j_coord_offsetD,
638                                                    tx,ty,tz);
639
640             /* Inner loop uses 54 flops */
641         }
642
643         if(jidx<j_index_end)
644         {
645
646             /* Get j neighbor index, and coordinate index */
647             jnrA             = jjnr[jidx];
648             jnrB             = jjnr[jidx+1];
649             jnrC             = jjnr[jidx+2];
650             jnrD             = jjnr[jidx+3];
651
652             /* Sign of each element will be negative for non-real atoms.
653              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
654              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
655              */
656             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
657             jnrA       = (jnrA>=0) ? jnrA : 0;
658             jnrB       = (jnrB>=0) ? jnrB : 0;
659             jnrC       = (jnrC>=0) ? jnrC : 0;
660             jnrD       = (jnrD>=0) ? jnrD : 0;
661
662             j_coord_offsetA  = DIM*jnrA;
663             j_coord_offsetB  = DIM*jnrB;
664             j_coord_offsetC  = DIM*jnrC;
665             j_coord_offsetD  = DIM*jnrD;
666
667             /* load j atom coordinates */
668             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
669                                               x+j_coord_offsetC,x+j_coord_offsetD,
670                                               &jx0,&jy0,&jz0);
671
672             /* Calculate displacement vector */
673             dx00             = _mm_sub_ps(ix0,jx0);
674             dy00             = _mm_sub_ps(iy0,jy0);
675             dz00             = _mm_sub_ps(iz0,jz0);
676
677             /* Calculate squared distance and things based on it */
678             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
679
680             rinv00           = gmx_mm_invsqrt_ps(rsq00);
681
682             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
683
684             /* Load parameters for j particles */
685             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
686                                                               charge+jnrC+0,charge+jnrD+0);
687             vdwjidx0A        = 2*vdwtype[jnrA+0];
688             vdwjidx0B        = 2*vdwtype[jnrB+0];
689             vdwjidx0C        = 2*vdwtype[jnrC+0];
690             vdwjidx0D        = 2*vdwtype[jnrD+0];
691
692             /**************************
693              * CALCULATE INTERACTIONS *
694              **************************/
695
696             r00              = _mm_mul_ps(rsq00,rinv00);
697             r00              = _mm_andnot_ps(dummy_mask,r00);
698
699             /* Compute parameters for interactions between i and j atoms */
700             qq00             = _mm_mul_ps(iq0,jq0);
701             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
702                                          vdwparam+vdwioffset0+vdwjidx0B,
703                                          vdwparam+vdwioffset0+vdwjidx0C,
704                                          vdwparam+vdwioffset0+vdwjidx0D,
705                                          &c6_00,&c12_00);
706
707             /* Calculate table index by multiplying r with table scale and truncate to integer */
708             rt               = _mm_mul_ps(r00,vftabscale);
709             vfitab           = _mm_cvttps_epi32(rt);
710             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
711             vfitab           = _mm_slli_epi32(vfitab,3);
712
713             /* REACTION-FIELD ELECTROSTATICS */
714             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
715
716             /* CUBIC SPLINE TABLE DISPERSION */
717             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
718             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
719             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
720             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
721             _MM_TRANSPOSE4_PS(Y,F,G,H);
722             Heps             = _mm_mul_ps(vfeps,H);
723             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
724             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
725             fvdw6            = _mm_mul_ps(c6_00,FF);
726
727             /* CUBIC SPLINE TABLE REPULSION */
728             vfitab           = _mm_add_epi32(vfitab,ifour);
729             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
730             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
731             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
732             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
733             _MM_TRANSPOSE4_PS(Y,F,G,H);
734             Heps             = _mm_mul_ps(vfeps,H);
735             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
736             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
737             fvdw12           = _mm_mul_ps(c12_00,FF);
738             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
739
740             fscal            = _mm_add_ps(felec,fvdw);
741
742             fscal            = _mm_andnot_ps(dummy_mask,fscal);
743
744             /* Calculate temporary vectorial force */
745             tx               = _mm_mul_ps(fscal,dx00);
746             ty               = _mm_mul_ps(fscal,dy00);
747             tz               = _mm_mul_ps(fscal,dz00);
748
749             /* Update vectorial force */
750             fix0             = _mm_add_ps(fix0,tx);
751             fiy0             = _mm_add_ps(fiy0,ty);
752             fiz0             = _mm_add_ps(fiz0,tz);
753
754             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
755                                                    f+j_coord_offsetC,f+j_coord_offsetD,
756                                                    tx,ty,tz);
757
758             /* Inner loop uses 55 flops */
759         }
760
761         /* End of innermost loop */
762
763         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
764                                               f+i_coord_offset,fshift+i_shift_offset);
765
766         /* Increment number of inner iterations */
767         inneriter                  += j_index_end - j_index_start;
768
769         /* Outer loop uses 10 flops */
770     }
771
772     /* Increment number of outer iterations */
773     outeriter        += nri;
774
775     /* Update outer/inner flops */
776
777     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*10 + inneriter*55);
778 }