Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse2_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
99     real             *vftab;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     krf              = _mm_set1_ps(fr->ic->k_rf);
118     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
119     crf              = _mm_set1_ps(fr->ic->c_rf);
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_vdw->data;
125     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = jnrC = jnrD = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131     j_coord_offsetC = 0;
132     j_coord_offsetD = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     for(iidx=0;iidx<4*DIM;iidx++)
138     {
139         scratch[iidx] = 0.0;
140     }  
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
158         
159         fix0             = _mm_setzero_ps();
160         fiy0             = _mm_setzero_ps();
161         fiz0             = _mm_setzero_ps();
162
163         /* Load parameters for i particles */
164         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
165         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
166
167         /* Reset potential sums */
168         velecsum         = _mm_setzero_ps();
169         vvdwsum          = _mm_setzero_ps();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             jnrC             = jjnr[jidx+2];
179             jnrD             = jjnr[jidx+3];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182             j_coord_offsetC  = DIM*jnrC;
183             j_coord_offsetD  = DIM*jnrD;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               x+j_coord_offsetC,x+j_coord_offsetD,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_ps(ix0,jx0);
192             dy00             = _mm_sub_ps(iy0,jy0);
193             dz00             = _mm_sub_ps(iz0,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
197
198             rinv00           = gmx_mm_invsqrt_ps(rsq00);
199
200             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
201
202             /* Load parameters for j particles */
203             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
204                                                               charge+jnrC+0,charge+jnrD+0);
205             vdwjidx0A        = 2*vdwtype[jnrA+0];
206             vdwjidx0B        = 2*vdwtype[jnrB+0];
207             vdwjidx0C        = 2*vdwtype[jnrC+0];
208             vdwjidx0D        = 2*vdwtype[jnrD+0];
209
210             /**************************
211              * CALCULATE INTERACTIONS *
212              **************************/
213
214             r00              = _mm_mul_ps(rsq00,rinv00);
215
216             /* Compute parameters for interactions between i and j atoms */
217             qq00             = _mm_mul_ps(iq0,jq0);
218             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
219                                          vdwparam+vdwioffset0+vdwjidx0B,
220                                          vdwparam+vdwioffset0+vdwjidx0C,
221                                          vdwparam+vdwioffset0+vdwjidx0D,
222                                          &c6_00,&c12_00);
223
224             /* Calculate table index by multiplying r with table scale and truncate to integer */
225             rt               = _mm_mul_ps(r00,vftabscale);
226             vfitab           = _mm_cvttps_epi32(rt);
227             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
228             vfitab           = _mm_slli_epi32(vfitab,3);
229
230             /* REACTION-FIELD ELECTROSTATICS */
231             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
232             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
233
234             /* CUBIC SPLINE TABLE DISPERSION */
235             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
236             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
237             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
238             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
239             _MM_TRANSPOSE4_PS(Y,F,G,H);
240             Heps             = _mm_mul_ps(vfeps,H);
241             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
242             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
243             vvdw6            = _mm_mul_ps(c6_00,VV);
244             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
245             fvdw6            = _mm_mul_ps(c6_00,FF);
246
247             /* CUBIC SPLINE TABLE REPULSION */
248             vfitab           = _mm_add_epi32(vfitab,ifour);
249             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
250             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
251             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
252             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
253             _MM_TRANSPOSE4_PS(Y,F,G,H);
254             Heps             = _mm_mul_ps(vfeps,H);
255             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
256             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
257             vvdw12           = _mm_mul_ps(c12_00,VV);
258             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
259             fvdw12           = _mm_mul_ps(c12_00,FF);
260             vvdw             = _mm_add_ps(vvdw12,vvdw6);
261             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
262
263             /* Update potential sum for this i atom from the interaction with this j atom. */
264             velecsum         = _mm_add_ps(velecsum,velec);
265             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
266
267             fscal            = _mm_add_ps(felec,fvdw);
268
269             /* Calculate temporary vectorial force */
270             tx               = _mm_mul_ps(fscal,dx00);
271             ty               = _mm_mul_ps(fscal,dy00);
272             tz               = _mm_mul_ps(fscal,dz00);
273
274             /* Update vectorial force */
275             fix0             = _mm_add_ps(fix0,tx);
276             fiy0             = _mm_add_ps(fiy0,ty);
277             fiz0             = _mm_add_ps(fiz0,tz);
278
279             fjptrA             = f+j_coord_offsetA;
280             fjptrB             = f+j_coord_offsetB;
281             fjptrC             = f+j_coord_offsetC;
282             fjptrD             = f+j_coord_offsetD;
283             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
284             
285             /* Inner loop uses 67 flops */
286         }
287
288         if(jidx<j_index_end)
289         {
290
291             /* Get j neighbor index, and coordinate index */
292             jnrlistA         = jjnr[jidx];
293             jnrlistB         = jjnr[jidx+1];
294             jnrlistC         = jjnr[jidx+2];
295             jnrlistD         = jjnr[jidx+3];
296             /* Sign of each element will be negative for non-real atoms.
297              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
298              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
299              */
300             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
301             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
302             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
303             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
304             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
305             j_coord_offsetA  = DIM*jnrA;
306             j_coord_offsetB  = DIM*jnrB;
307             j_coord_offsetC  = DIM*jnrC;
308             j_coord_offsetD  = DIM*jnrD;
309
310             /* load j atom coordinates */
311             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
312                                               x+j_coord_offsetC,x+j_coord_offsetD,
313                                               &jx0,&jy0,&jz0);
314
315             /* Calculate displacement vector */
316             dx00             = _mm_sub_ps(ix0,jx0);
317             dy00             = _mm_sub_ps(iy0,jy0);
318             dz00             = _mm_sub_ps(iz0,jz0);
319
320             /* Calculate squared distance and things based on it */
321             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
322
323             rinv00           = gmx_mm_invsqrt_ps(rsq00);
324
325             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
326
327             /* Load parameters for j particles */
328             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
329                                                               charge+jnrC+0,charge+jnrD+0);
330             vdwjidx0A        = 2*vdwtype[jnrA+0];
331             vdwjidx0B        = 2*vdwtype[jnrB+0];
332             vdwjidx0C        = 2*vdwtype[jnrC+0];
333             vdwjidx0D        = 2*vdwtype[jnrD+0];
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             r00              = _mm_mul_ps(rsq00,rinv00);
340             r00              = _mm_andnot_ps(dummy_mask,r00);
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq00             = _mm_mul_ps(iq0,jq0);
344             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
345                                          vdwparam+vdwioffset0+vdwjidx0B,
346                                          vdwparam+vdwioffset0+vdwjidx0C,
347                                          vdwparam+vdwioffset0+vdwjidx0D,
348                                          &c6_00,&c12_00);
349
350             /* Calculate table index by multiplying r with table scale and truncate to integer */
351             rt               = _mm_mul_ps(r00,vftabscale);
352             vfitab           = _mm_cvttps_epi32(rt);
353             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
354             vfitab           = _mm_slli_epi32(vfitab,3);
355
356             /* REACTION-FIELD ELECTROSTATICS */
357             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
358             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
359
360             /* CUBIC SPLINE TABLE DISPERSION */
361             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
362             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
363             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
364             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
365             _MM_TRANSPOSE4_PS(Y,F,G,H);
366             Heps             = _mm_mul_ps(vfeps,H);
367             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
368             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
369             vvdw6            = _mm_mul_ps(c6_00,VV);
370             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
371             fvdw6            = _mm_mul_ps(c6_00,FF);
372
373             /* CUBIC SPLINE TABLE REPULSION */
374             vfitab           = _mm_add_epi32(vfitab,ifour);
375             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
376             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
377             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
378             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
379             _MM_TRANSPOSE4_PS(Y,F,G,H);
380             Heps             = _mm_mul_ps(vfeps,H);
381             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
382             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
383             vvdw12           = _mm_mul_ps(c12_00,VV);
384             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
385             fvdw12           = _mm_mul_ps(c12_00,FF);
386             vvdw             = _mm_add_ps(vvdw12,vvdw6);
387             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
388
389             /* Update potential sum for this i atom from the interaction with this j atom. */
390             velec            = _mm_andnot_ps(dummy_mask,velec);
391             velecsum         = _mm_add_ps(velecsum,velec);
392             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
393             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
394
395             fscal            = _mm_add_ps(felec,fvdw);
396
397             fscal            = _mm_andnot_ps(dummy_mask,fscal);
398
399             /* Calculate temporary vectorial force */
400             tx               = _mm_mul_ps(fscal,dx00);
401             ty               = _mm_mul_ps(fscal,dy00);
402             tz               = _mm_mul_ps(fscal,dz00);
403
404             /* Update vectorial force */
405             fix0             = _mm_add_ps(fix0,tx);
406             fiy0             = _mm_add_ps(fiy0,ty);
407             fiz0             = _mm_add_ps(fiz0,tz);
408
409             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
410             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
411             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
412             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
413             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
414             
415             /* Inner loop uses 68 flops */
416         }
417
418         /* End of innermost loop */
419
420         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
421                                               f+i_coord_offset,fshift+i_shift_offset);
422
423         ggid                        = gid[iidx];
424         /* Update potential energies */
425         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
426         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
427
428         /* Increment number of inner iterations */
429         inneriter                  += j_index_end - j_index_start;
430
431         /* Outer loop uses 9 flops */
432     }
433
434     /* Increment number of outer iterations */
435     outeriter        += nri;
436
437     /* Update outer/inner flops */
438
439     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*68);
440 }
441 /*
442  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse2_single
443  * Electrostatics interaction: ReactionField
444  * VdW interaction:            CubicSplineTable
445  * Geometry:                   Particle-Particle
446  * Calculate force/pot:        Force
447  */
448 void
449 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse2_single
450                     (t_nblist                    * gmx_restrict       nlist,
451                      rvec                        * gmx_restrict          xx,
452                      rvec                        * gmx_restrict          ff,
453                      t_forcerec                  * gmx_restrict          fr,
454                      t_mdatoms                   * gmx_restrict     mdatoms,
455                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
456                      t_nrnb                      * gmx_restrict        nrnb)
457 {
458     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
459      * just 0 for non-waters.
460      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
461      * jnr indices corresponding to data put in the four positions in the SIMD register.
462      */
463     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
464     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
465     int              jnrA,jnrB,jnrC,jnrD;
466     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
467     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
468     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
469     real             rcutoff_scalar;
470     real             *shiftvec,*fshift,*x,*f;
471     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
472     real             scratch[4*DIM];
473     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
474     int              vdwioffset0;
475     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
476     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
477     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
478     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
479     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
480     real             *charge;
481     int              nvdwtype;
482     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
483     int              *vdwtype;
484     real             *vdwparam;
485     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
486     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
487     __m128i          vfitab;
488     __m128i          ifour       = _mm_set1_epi32(4);
489     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
490     real             *vftab;
491     __m128           dummy_mask,cutoff_mask;
492     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
493     __m128           one     = _mm_set1_ps(1.0);
494     __m128           two     = _mm_set1_ps(2.0);
495     x                = xx[0];
496     f                = ff[0];
497
498     nri              = nlist->nri;
499     iinr             = nlist->iinr;
500     jindex           = nlist->jindex;
501     jjnr             = nlist->jjnr;
502     shiftidx         = nlist->shift;
503     gid              = nlist->gid;
504     shiftvec         = fr->shift_vec[0];
505     fshift           = fr->fshift[0];
506     facel            = _mm_set1_ps(fr->epsfac);
507     charge           = mdatoms->chargeA;
508     krf              = _mm_set1_ps(fr->ic->k_rf);
509     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
510     crf              = _mm_set1_ps(fr->ic->c_rf);
511     nvdwtype         = fr->ntype;
512     vdwparam         = fr->nbfp;
513     vdwtype          = mdatoms->typeA;
514
515     vftab            = kernel_data->table_vdw->data;
516     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
517
518     /* Avoid stupid compiler warnings */
519     jnrA = jnrB = jnrC = jnrD = 0;
520     j_coord_offsetA = 0;
521     j_coord_offsetB = 0;
522     j_coord_offsetC = 0;
523     j_coord_offsetD = 0;
524
525     outeriter        = 0;
526     inneriter        = 0;
527
528     for(iidx=0;iidx<4*DIM;iidx++)
529     {
530         scratch[iidx] = 0.0;
531     }  
532
533     /* Start outer loop over neighborlists */
534     for(iidx=0; iidx<nri; iidx++)
535     {
536         /* Load shift vector for this list */
537         i_shift_offset   = DIM*shiftidx[iidx];
538
539         /* Load limits for loop over neighbors */
540         j_index_start    = jindex[iidx];
541         j_index_end      = jindex[iidx+1];
542
543         /* Get outer coordinate index */
544         inr              = iinr[iidx];
545         i_coord_offset   = DIM*inr;
546
547         /* Load i particle coords and add shift vector */
548         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
549         
550         fix0             = _mm_setzero_ps();
551         fiy0             = _mm_setzero_ps();
552         fiz0             = _mm_setzero_ps();
553
554         /* Load parameters for i particles */
555         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
556         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
557
558         /* Start inner kernel loop */
559         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
560         {
561
562             /* Get j neighbor index, and coordinate index */
563             jnrA             = jjnr[jidx];
564             jnrB             = jjnr[jidx+1];
565             jnrC             = jjnr[jidx+2];
566             jnrD             = jjnr[jidx+3];
567             j_coord_offsetA  = DIM*jnrA;
568             j_coord_offsetB  = DIM*jnrB;
569             j_coord_offsetC  = DIM*jnrC;
570             j_coord_offsetD  = DIM*jnrD;
571
572             /* load j atom coordinates */
573             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
574                                               x+j_coord_offsetC,x+j_coord_offsetD,
575                                               &jx0,&jy0,&jz0);
576
577             /* Calculate displacement vector */
578             dx00             = _mm_sub_ps(ix0,jx0);
579             dy00             = _mm_sub_ps(iy0,jy0);
580             dz00             = _mm_sub_ps(iz0,jz0);
581
582             /* Calculate squared distance and things based on it */
583             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
584
585             rinv00           = gmx_mm_invsqrt_ps(rsq00);
586
587             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
588
589             /* Load parameters for j particles */
590             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
591                                                               charge+jnrC+0,charge+jnrD+0);
592             vdwjidx0A        = 2*vdwtype[jnrA+0];
593             vdwjidx0B        = 2*vdwtype[jnrB+0];
594             vdwjidx0C        = 2*vdwtype[jnrC+0];
595             vdwjidx0D        = 2*vdwtype[jnrD+0];
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             r00              = _mm_mul_ps(rsq00,rinv00);
602
603             /* Compute parameters for interactions between i and j atoms */
604             qq00             = _mm_mul_ps(iq0,jq0);
605             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
606                                          vdwparam+vdwioffset0+vdwjidx0B,
607                                          vdwparam+vdwioffset0+vdwjidx0C,
608                                          vdwparam+vdwioffset0+vdwjidx0D,
609                                          &c6_00,&c12_00);
610
611             /* Calculate table index by multiplying r with table scale and truncate to integer */
612             rt               = _mm_mul_ps(r00,vftabscale);
613             vfitab           = _mm_cvttps_epi32(rt);
614             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
615             vfitab           = _mm_slli_epi32(vfitab,3);
616
617             /* REACTION-FIELD ELECTROSTATICS */
618             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
619
620             /* CUBIC SPLINE TABLE DISPERSION */
621             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
622             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
623             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
624             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
625             _MM_TRANSPOSE4_PS(Y,F,G,H);
626             Heps             = _mm_mul_ps(vfeps,H);
627             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
628             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
629             fvdw6            = _mm_mul_ps(c6_00,FF);
630
631             /* CUBIC SPLINE TABLE REPULSION */
632             vfitab           = _mm_add_epi32(vfitab,ifour);
633             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
634             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
635             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
636             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
637             _MM_TRANSPOSE4_PS(Y,F,G,H);
638             Heps             = _mm_mul_ps(vfeps,H);
639             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
640             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
641             fvdw12           = _mm_mul_ps(c12_00,FF);
642             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
643
644             fscal            = _mm_add_ps(felec,fvdw);
645
646             /* Calculate temporary vectorial force */
647             tx               = _mm_mul_ps(fscal,dx00);
648             ty               = _mm_mul_ps(fscal,dy00);
649             tz               = _mm_mul_ps(fscal,dz00);
650
651             /* Update vectorial force */
652             fix0             = _mm_add_ps(fix0,tx);
653             fiy0             = _mm_add_ps(fiy0,ty);
654             fiz0             = _mm_add_ps(fiz0,tz);
655
656             fjptrA             = f+j_coord_offsetA;
657             fjptrB             = f+j_coord_offsetB;
658             fjptrC             = f+j_coord_offsetC;
659             fjptrD             = f+j_coord_offsetD;
660             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
661             
662             /* Inner loop uses 54 flops */
663         }
664
665         if(jidx<j_index_end)
666         {
667
668             /* Get j neighbor index, and coordinate index */
669             jnrlistA         = jjnr[jidx];
670             jnrlistB         = jjnr[jidx+1];
671             jnrlistC         = jjnr[jidx+2];
672             jnrlistD         = jjnr[jidx+3];
673             /* Sign of each element will be negative for non-real atoms.
674              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
675              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
676              */
677             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
678             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
679             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
680             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
681             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
682             j_coord_offsetA  = DIM*jnrA;
683             j_coord_offsetB  = DIM*jnrB;
684             j_coord_offsetC  = DIM*jnrC;
685             j_coord_offsetD  = DIM*jnrD;
686
687             /* load j atom coordinates */
688             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
689                                               x+j_coord_offsetC,x+j_coord_offsetD,
690                                               &jx0,&jy0,&jz0);
691
692             /* Calculate displacement vector */
693             dx00             = _mm_sub_ps(ix0,jx0);
694             dy00             = _mm_sub_ps(iy0,jy0);
695             dz00             = _mm_sub_ps(iz0,jz0);
696
697             /* Calculate squared distance and things based on it */
698             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
699
700             rinv00           = gmx_mm_invsqrt_ps(rsq00);
701
702             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
703
704             /* Load parameters for j particles */
705             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
706                                                               charge+jnrC+0,charge+jnrD+0);
707             vdwjidx0A        = 2*vdwtype[jnrA+0];
708             vdwjidx0B        = 2*vdwtype[jnrB+0];
709             vdwjidx0C        = 2*vdwtype[jnrC+0];
710             vdwjidx0D        = 2*vdwtype[jnrD+0];
711
712             /**************************
713              * CALCULATE INTERACTIONS *
714              **************************/
715
716             r00              = _mm_mul_ps(rsq00,rinv00);
717             r00              = _mm_andnot_ps(dummy_mask,r00);
718
719             /* Compute parameters for interactions between i and j atoms */
720             qq00             = _mm_mul_ps(iq0,jq0);
721             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
722                                          vdwparam+vdwioffset0+vdwjidx0B,
723                                          vdwparam+vdwioffset0+vdwjidx0C,
724                                          vdwparam+vdwioffset0+vdwjidx0D,
725                                          &c6_00,&c12_00);
726
727             /* Calculate table index by multiplying r with table scale and truncate to integer */
728             rt               = _mm_mul_ps(r00,vftabscale);
729             vfitab           = _mm_cvttps_epi32(rt);
730             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
731             vfitab           = _mm_slli_epi32(vfitab,3);
732
733             /* REACTION-FIELD ELECTROSTATICS */
734             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
735
736             /* CUBIC SPLINE TABLE DISPERSION */
737             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
738             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
739             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
740             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
741             _MM_TRANSPOSE4_PS(Y,F,G,H);
742             Heps             = _mm_mul_ps(vfeps,H);
743             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
744             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
745             fvdw6            = _mm_mul_ps(c6_00,FF);
746
747             /* CUBIC SPLINE TABLE REPULSION */
748             vfitab           = _mm_add_epi32(vfitab,ifour);
749             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
750             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
751             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
752             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
753             _MM_TRANSPOSE4_PS(Y,F,G,H);
754             Heps             = _mm_mul_ps(vfeps,H);
755             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
756             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
757             fvdw12           = _mm_mul_ps(c12_00,FF);
758             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
759
760             fscal            = _mm_add_ps(felec,fvdw);
761
762             fscal            = _mm_andnot_ps(dummy_mask,fscal);
763
764             /* Calculate temporary vectorial force */
765             tx               = _mm_mul_ps(fscal,dx00);
766             ty               = _mm_mul_ps(fscal,dy00);
767             tz               = _mm_mul_ps(fscal,dz00);
768
769             /* Update vectorial force */
770             fix0             = _mm_add_ps(fix0,tx);
771             fiy0             = _mm_add_ps(fiy0,ty);
772             fiz0             = _mm_add_ps(fiz0,tz);
773
774             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
775             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
776             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
777             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
778             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
779             
780             /* Inner loop uses 55 flops */
781         }
782
783         /* End of innermost loop */
784
785         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
786                                               f+i_coord_offset,fshift+i_shift_offset);
787
788         /* Increment number of inner iterations */
789         inneriter                  += j_index_end - j_index_start;
790
791         /* Outer loop uses 7 flops */
792     }
793
794     /* Increment number of outer iterations */
795     outeriter        += nri;
796
797     /* Update outer/inner flops */
798
799     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55);
800 }