Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwNone_GeomW3P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            None
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     __m128           dummy_mask,cutoff_mask;
83     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
84     __m128           one     = _mm_set1_ps(1.0);
85     __m128           two     = _mm_set1_ps(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_ps(fr->epsfac);
98     charge           = mdatoms->chargeA;
99     krf              = _mm_set1_ps(fr->ic->k_rf);
100     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
101     crf              = _mm_set1_ps(fr->ic->c_rf);
102
103     /* Setup water-specific parameters */
104     inr              = nlist->iinr[0];
105     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
106     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
107     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
108
109     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
110     rcutoff_scalar   = fr->rcoulomb;
111     rcutoff          = _mm_set1_ps(rcutoff_scalar);
112     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = jnrC = jnrD = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118     j_coord_offsetC = 0;
119     j_coord_offsetD = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     for(iidx=0;iidx<4*DIM;iidx++)
125     {
126         scratch[iidx] = 0.0;
127     }  
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
145                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
146         
147         fix0             = _mm_setzero_ps();
148         fiy0             = _mm_setzero_ps();
149         fiz0             = _mm_setzero_ps();
150         fix1             = _mm_setzero_ps();
151         fiy1             = _mm_setzero_ps();
152         fiz1             = _mm_setzero_ps();
153         fix2             = _mm_setzero_ps();
154         fiy2             = _mm_setzero_ps();
155         fiz2             = _mm_setzero_ps();
156
157         /* Reset potential sums */
158         velecsum         = _mm_setzero_ps();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             jnrC             = jjnr[jidx+2];
168             jnrD             = jjnr[jidx+3];
169             j_coord_offsetA  = DIM*jnrA;
170             j_coord_offsetB  = DIM*jnrB;
171             j_coord_offsetC  = DIM*jnrC;
172             j_coord_offsetD  = DIM*jnrD;
173
174             /* load j atom coordinates */
175             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               x+j_coord_offsetC,x+j_coord_offsetD,
177                                               &jx0,&jy0,&jz0);
178
179             /* Calculate displacement vector */
180             dx00             = _mm_sub_ps(ix0,jx0);
181             dy00             = _mm_sub_ps(iy0,jy0);
182             dz00             = _mm_sub_ps(iz0,jz0);
183             dx10             = _mm_sub_ps(ix1,jx0);
184             dy10             = _mm_sub_ps(iy1,jy0);
185             dz10             = _mm_sub_ps(iz1,jz0);
186             dx20             = _mm_sub_ps(ix2,jx0);
187             dy20             = _mm_sub_ps(iy2,jy0);
188             dz20             = _mm_sub_ps(iz2,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
192             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
193             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
194
195             rinv00           = gmx_mm_invsqrt_ps(rsq00);
196             rinv10           = gmx_mm_invsqrt_ps(rsq10);
197             rinv20           = gmx_mm_invsqrt_ps(rsq20);
198
199             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
200             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
201             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
202
203             /* Load parameters for j particles */
204             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
205                                                               charge+jnrC+0,charge+jnrD+0);
206
207             fjx0             = _mm_setzero_ps();
208             fjy0             = _mm_setzero_ps();
209             fjz0             = _mm_setzero_ps();
210
211             /**************************
212              * CALCULATE INTERACTIONS *
213              **************************/
214
215             if (gmx_mm_any_lt(rsq00,rcutoff2))
216             {
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm_mul_ps(iq0,jq0);
220
221             /* REACTION-FIELD ELECTROSTATICS */
222             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
223             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
224
225             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
226
227             /* Update potential sum for this i atom from the interaction with this j atom. */
228             velec            = _mm_and_ps(velec,cutoff_mask);
229             velecsum         = _mm_add_ps(velecsum,velec);
230
231             fscal            = felec;
232
233             fscal            = _mm_and_ps(fscal,cutoff_mask);
234
235             /* Calculate temporary vectorial force */
236             tx               = _mm_mul_ps(fscal,dx00);
237             ty               = _mm_mul_ps(fscal,dy00);
238             tz               = _mm_mul_ps(fscal,dz00);
239
240             /* Update vectorial force */
241             fix0             = _mm_add_ps(fix0,tx);
242             fiy0             = _mm_add_ps(fiy0,ty);
243             fiz0             = _mm_add_ps(fiz0,tz);
244
245             fjx0             = _mm_add_ps(fjx0,tx);
246             fjy0             = _mm_add_ps(fjy0,ty);
247             fjz0             = _mm_add_ps(fjz0,tz);
248             
249             }
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             if (gmx_mm_any_lt(rsq10,rcutoff2))
256             {
257
258             /* Compute parameters for interactions between i and j atoms */
259             qq10             = _mm_mul_ps(iq1,jq0);
260
261             /* REACTION-FIELD ELECTROSTATICS */
262             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
263             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
264
265             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
266
267             /* Update potential sum for this i atom from the interaction with this j atom. */
268             velec            = _mm_and_ps(velec,cutoff_mask);
269             velecsum         = _mm_add_ps(velecsum,velec);
270
271             fscal            = felec;
272
273             fscal            = _mm_and_ps(fscal,cutoff_mask);
274
275             /* Calculate temporary vectorial force */
276             tx               = _mm_mul_ps(fscal,dx10);
277             ty               = _mm_mul_ps(fscal,dy10);
278             tz               = _mm_mul_ps(fscal,dz10);
279
280             /* Update vectorial force */
281             fix1             = _mm_add_ps(fix1,tx);
282             fiy1             = _mm_add_ps(fiy1,ty);
283             fiz1             = _mm_add_ps(fiz1,tz);
284
285             fjx0             = _mm_add_ps(fjx0,tx);
286             fjy0             = _mm_add_ps(fjy0,ty);
287             fjz0             = _mm_add_ps(fjz0,tz);
288             
289             }
290
291             /**************************
292              * CALCULATE INTERACTIONS *
293              **************************/
294
295             if (gmx_mm_any_lt(rsq20,rcutoff2))
296             {
297
298             /* Compute parameters for interactions between i and j atoms */
299             qq20             = _mm_mul_ps(iq2,jq0);
300
301             /* REACTION-FIELD ELECTROSTATICS */
302             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
303             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
304
305             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velec            = _mm_and_ps(velec,cutoff_mask);
309             velecsum         = _mm_add_ps(velecsum,velec);
310
311             fscal            = felec;
312
313             fscal            = _mm_and_ps(fscal,cutoff_mask);
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm_mul_ps(fscal,dx20);
317             ty               = _mm_mul_ps(fscal,dy20);
318             tz               = _mm_mul_ps(fscal,dz20);
319
320             /* Update vectorial force */
321             fix2             = _mm_add_ps(fix2,tx);
322             fiy2             = _mm_add_ps(fiy2,ty);
323             fiz2             = _mm_add_ps(fiz2,tz);
324
325             fjx0             = _mm_add_ps(fjx0,tx);
326             fjy0             = _mm_add_ps(fjy0,ty);
327             fjz0             = _mm_add_ps(fjz0,tz);
328             
329             }
330
331             fjptrA             = f+j_coord_offsetA;
332             fjptrB             = f+j_coord_offsetB;
333             fjptrC             = f+j_coord_offsetC;
334             fjptrD             = f+j_coord_offsetD;
335
336             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
337
338             /* Inner loop uses 108 flops */
339         }
340
341         if(jidx<j_index_end)
342         {
343
344             /* Get j neighbor index, and coordinate index */
345             jnrlistA         = jjnr[jidx];
346             jnrlistB         = jjnr[jidx+1];
347             jnrlistC         = jjnr[jidx+2];
348             jnrlistD         = jjnr[jidx+3];
349             /* Sign of each element will be negative for non-real atoms.
350              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
351              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
352              */
353             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
354             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
355             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
356             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
357             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
358             j_coord_offsetA  = DIM*jnrA;
359             j_coord_offsetB  = DIM*jnrB;
360             j_coord_offsetC  = DIM*jnrC;
361             j_coord_offsetD  = DIM*jnrD;
362
363             /* load j atom coordinates */
364             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
365                                               x+j_coord_offsetC,x+j_coord_offsetD,
366                                               &jx0,&jy0,&jz0);
367
368             /* Calculate displacement vector */
369             dx00             = _mm_sub_ps(ix0,jx0);
370             dy00             = _mm_sub_ps(iy0,jy0);
371             dz00             = _mm_sub_ps(iz0,jz0);
372             dx10             = _mm_sub_ps(ix1,jx0);
373             dy10             = _mm_sub_ps(iy1,jy0);
374             dz10             = _mm_sub_ps(iz1,jz0);
375             dx20             = _mm_sub_ps(ix2,jx0);
376             dy20             = _mm_sub_ps(iy2,jy0);
377             dz20             = _mm_sub_ps(iz2,jz0);
378
379             /* Calculate squared distance and things based on it */
380             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
381             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
382             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
383
384             rinv00           = gmx_mm_invsqrt_ps(rsq00);
385             rinv10           = gmx_mm_invsqrt_ps(rsq10);
386             rinv20           = gmx_mm_invsqrt_ps(rsq20);
387
388             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
389             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
390             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
391
392             /* Load parameters for j particles */
393             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
394                                                               charge+jnrC+0,charge+jnrD+0);
395
396             fjx0             = _mm_setzero_ps();
397             fjy0             = _mm_setzero_ps();
398             fjz0             = _mm_setzero_ps();
399
400             /**************************
401              * CALCULATE INTERACTIONS *
402              **************************/
403
404             if (gmx_mm_any_lt(rsq00,rcutoff2))
405             {
406
407             /* Compute parameters for interactions between i and j atoms */
408             qq00             = _mm_mul_ps(iq0,jq0);
409
410             /* REACTION-FIELD ELECTROSTATICS */
411             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
412             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
413
414             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
415
416             /* Update potential sum for this i atom from the interaction with this j atom. */
417             velec            = _mm_and_ps(velec,cutoff_mask);
418             velec            = _mm_andnot_ps(dummy_mask,velec);
419             velecsum         = _mm_add_ps(velecsum,velec);
420
421             fscal            = felec;
422
423             fscal            = _mm_and_ps(fscal,cutoff_mask);
424
425             fscal            = _mm_andnot_ps(dummy_mask,fscal);
426
427             /* Calculate temporary vectorial force */
428             tx               = _mm_mul_ps(fscal,dx00);
429             ty               = _mm_mul_ps(fscal,dy00);
430             tz               = _mm_mul_ps(fscal,dz00);
431
432             /* Update vectorial force */
433             fix0             = _mm_add_ps(fix0,tx);
434             fiy0             = _mm_add_ps(fiy0,ty);
435             fiz0             = _mm_add_ps(fiz0,tz);
436
437             fjx0             = _mm_add_ps(fjx0,tx);
438             fjy0             = _mm_add_ps(fjy0,ty);
439             fjz0             = _mm_add_ps(fjz0,tz);
440             
441             }
442
443             /**************************
444              * CALCULATE INTERACTIONS *
445              **************************/
446
447             if (gmx_mm_any_lt(rsq10,rcutoff2))
448             {
449
450             /* Compute parameters for interactions between i and j atoms */
451             qq10             = _mm_mul_ps(iq1,jq0);
452
453             /* REACTION-FIELD ELECTROSTATICS */
454             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
455             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
456
457             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
458
459             /* Update potential sum for this i atom from the interaction with this j atom. */
460             velec            = _mm_and_ps(velec,cutoff_mask);
461             velec            = _mm_andnot_ps(dummy_mask,velec);
462             velecsum         = _mm_add_ps(velecsum,velec);
463
464             fscal            = felec;
465
466             fscal            = _mm_and_ps(fscal,cutoff_mask);
467
468             fscal            = _mm_andnot_ps(dummy_mask,fscal);
469
470             /* Calculate temporary vectorial force */
471             tx               = _mm_mul_ps(fscal,dx10);
472             ty               = _mm_mul_ps(fscal,dy10);
473             tz               = _mm_mul_ps(fscal,dz10);
474
475             /* Update vectorial force */
476             fix1             = _mm_add_ps(fix1,tx);
477             fiy1             = _mm_add_ps(fiy1,ty);
478             fiz1             = _mm_add_ps(fiz1,tz);
479
480             fjx0             = _mm_add_ps(fjx0,tx);
481             fjy0             = _mm_add_ps(fjy0,ty);
482             fjz0             = _mm_add_ps(fjz0,tz);
483             
484             }
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             if (gmx_mm_any_lt(rsq20,rcutoff2))
491             {
492
493             /* Compute parameters for interactions between i and j atoms */
494             qq20             = _mm_mul_ps(iq2,jq0);
495
496             /* REACTION-FIELD ELECTROSTATICS */
497             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
498             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
499
500             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
501
502             /* Update potential sum for this i atom from the interaction with this j atom. */
503             velec            = _mm_and_ps(velec,cutoff_mask);
504             velec            = _mm_andnot_ps(dummy_mask,velec);
505             velecsum         = _mm_add_ps(velecsum,velec);
506
507             fscal            = felec;
508
509             fscal            = _mm_and_ps(fscal,cutoff_mask);
510
511             fscal            = _mm_andnot_ps(dummy_mask,fscal);
512
513             /* Calculate temporary vectorial force */
514             tx               = _mm_mul_ps(fscal,dx20);
515             ty               = _mm_mul_ps(fscal,dy20);
516             tz               = _mm_mul_ps(fscal,dz20);
517
518             /* Update vectorial force */
519             fix2             = _mm_add_ps(fix2,tx);
520             fiy2             = _mm_add_ps(fiy2,ty);
521             fiz2             = _mm_add_ps(fiz2,tz);
522
523             fjx0             = _mm_add_ps(fjx0,tx);
524             fjy0             = _mm_add_ps(fjy0,ty);
525             fjz0             = _mm_add_ps(fjz0,tz);
526             
527             }
528
529             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
530             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
531             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
532             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
533
534             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
535
536             /* Inner loop uses 108 flops */
537         }
538
539         /* End of innermost loop */
540
541         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
542                                               f+i_coord_offset,fshift+i_shift_offset);
543
544         ggid                        = gid[iidx];
545         /* Update potential energies */
546         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
547
548         /* Increment number of inner iterations */
549         inneriter                  += j_index_end - j_index_start;
550
551         /* Outer loop uses 19 flops */
552     }
553
554     /* Increment number of outer iterations */
555     outeriter        += nri;
556
557     /* Update outer/inner flops */
558
559     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*108);
560 }
561 /*
562  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_sse2_single
563  * Electrostatics interaction: ReactionField
564  * VdW interaction:            None
565  * Geometry:                   Water3-Particle
566  * Calculate force/pot:        Force
567  */
568 void
569 nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_sse2_single
570                     (t_nblist * gmx_restrict                nlist,
571                      rvec * gmx_restrict                    xx,
572                      rvec * gmx_restrict                    ff,
573                      t_forcerec * gmx_restrict              fr,
574                      t_mdatoms * gmx_restrict               mdatoms,
575                      nb_kernel_data_t * gmx_restrict        kernel_data,
576                      t_nrnb * gmx_restrict                  nrnb)
577 {
578     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
579      * just 0 for non-waters.
580      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
581      * jnr indices corresponding to data put in the four positions in the SIMD register.
582      */
583     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
584     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
585     int              jnrA,jnrB,jnrC,jnrD;
586     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
587     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
588     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
589     real             rcutoff_scalar;
590     real             *shiftvec,*fshift,*x,*f;
591     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
592     real             scratch[4*DIM];
593     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
594     int              vdwioffset0;
595     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
596     int              vdwioffset1;
597     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
598     int              vdwioffset2;
599     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
600     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
601     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
602     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
603     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
604     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
605     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
606     real             *charge;
607     __m128           dummy_mask,cutoff_mask;
608     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
609     __m128           one     = _mm_set1_ps(1.0);
610     __m128           two     = _mm_set1_ps(2.0);
611     x                = xx[0];
612     f                = ff[0];
613
614     nri              = nlist->nri;
615     iinr             = nlist->iinr;
616     jindex           = nlist->jindex;
617     jjnr             = nlist->jjnr;
618     shiftidx         = nlist->shift;
619     gid              = nlist->gid;
620     shiftvec         = fr->shift_vec[0];
621     fshift           = fr->fshift[0];
622     facel            = _mm_set1_ps(fr->epsfac);
623     charge           = mdatoms->chargeA;
624     krf              = _mm_set1_ps(fr->ic->k_rf);
625     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
626     crf              = _mm_set1_ps(fr->ic->c_rf);
627
628     /* Setup water-specific parameters */
629     inr              = nlist->iinr[0];
630     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
631     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
632     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
633
634     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
635     rcutoff_scalar   = fr->rcoulomb;
636     rcutoff          = _mm_set1_ps(rcutoff_scalar);
637     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
638
639     /* Avoid stupid compiler warnings */
640     jnrA = jnrB = jnrC = jnrD = 0;
641     j_coord_offsetA = 0;
642     j_coord_offsetB = 0;
643     j_coord_offsetC = 0;
644     j_coord_offsetD = 0;
645
646     outeriter        = 0;
647     inneriter        = 0;
648
649     for(iidx=0;iidx<4*DIM;iidx++)
650     {
651         scratch[iidx] = 0.0;
652     }  
653
654     /* Start outer loop over neighborlists */
655     for(iidx=0; iidx<nri; iidx++)
656     {
657         /* Load shift vector for this list */
658         i_shift_offset   = DIM*shiftidx[iidx];
659
660         /* Load limits for loop over neighbors */
661         j_index_start    = jindex[iidx];
662         j_index_end      = jindex[iidx+1];
663
664         /* Get outer coordinate index */
665         inr              = iinr[iidx];
666         i_coord_offset   = DIM*inr;
667
668         /* Load i particle coords and add shift vector */
669         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
670                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
671         
672         fix0             = _mm_setzero_ps();
673         fiy0             = _mm_setzero_ps();
674         fiz0             = _mm_setzero_ps();
675         fix1             = _mm_setzero_ps();
676         fiy1             = _mm_setzero_ps();
677         fiz1             = _mm_setzero_ps();
678         fix2             = _mm_setzero_ps();
679         fiy2             = _mm_setzero_ps();
680         fiz2             = _mm_setzero_ps();
681
682         /* Start inner kernel loop */
683         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
684         {
685
686             /* Get j neighbor index, and coordinate index */
687             jnrA             = jjnr[jidx];
688             jnrB             = jjnr[jidx+1];
689             jnrC             = jjnr[jidx+2];
690             jnrD             = jjnr[jidx+3];
691             j_coord_offsetA  = DIM*jnrA;
692             j_coord_offsetB  = DIM*jnrB;
693             j_coord_offsetC  = DIM*jnrC;
694             j_coord_offsetD  = DIM*jnrD;
695
696             /* load j atom coordinates */
697             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
698                                               x+j_coord_offsetC,x+j_coord_offsetD,
699                                               &jx0,&jy0,&jz0);
700
701             /* Calculate displacement vector */
702             dx00             = _mm_sub_ps(ix0,jx0);
703             dy00             = _mm_sub_ps(iy0,jy0);
704             dz00             = _mm_sub_ps(iz0,jz0);
705             dx10             = _mm_sub_ps(ix1,jx0);
706             dy10             = _mm_sub_ps(iy1,jy0);
707             dz10             = _mm_sub_ps(iz1,jz0);
708             dx20             = _mm_sub_ps(ix2,jx0);
709             dy20             = _mm_sub_ps(iy2,jy0);
710             dz20             = _mm_sub_ps(iz2,jz0);
711
712             /* Calculate squared distance and things based on it */
713             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
714             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
715             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
716
717             rinv00           = gmx_mm_invsqrt_ps(rsq00);
718             rinv10           = gmx_mm_invsqrt_ps(rsq10);
719             rinv20           = gmx_mm_invsqrt_ps(rsq20);
720
721             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
722             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
723             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
724
725             /* Load parameters for j particles */
726             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
727                                                               charge+jnrC+0,charge+jnrD+0);
728
729             fjx0             = _mm_setzero_ps();
730             fjy0             = _mm_setzero_ps();
731             fjz0             = _mm_setzero_ps();
732
733             /**************************
734              * CALCULATE INTERACTIONS *
735              **************************/
736
737             if (gmx_mm_any_lt(rsq00,rcutoff2))
738             {
739
740             /* Compute parameters for interactions between i and j atoms */
741             qq00             = _mm_mul_ps(iq0,jq0);
742
743             /* REACTION-FIELD ELECTROSTATICS */
744             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
745
746             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
747
748             fscal            = felec;
749
750             fscal            = _mm_and_ps(fscal,cutoff_mask);
751
752             /* Calculate temporary vectorial force */
753             tx               = _mm_mul_ps(fscal,dx00);
754             ty               = _mm_mul_ps(fscal,dy00);
755             tz               = _mm_mul_ps(fscal,dz00);
756
757             /* Update vectorial force */
758             fix0             = _mm_add_ps(fix0,tx);
759             fiy0             = _mm_add_ps(fiy0,ty);
760             fiz0             = _mm_add_ps(fiz0,tz);
761
762             fjx0             = _mm_add_ps(fjx0,tx);
763             fjy0             = _mm_add_ps(fjy0,ty);
764             fjz0             = _mm_add_ps(fjz0,tz);
765             
766             }
767
768             /**************************
769              * CALCULATE INTERACTIONS *
770              **************************/
771
772             if (gmx_mm_any_lt(rsq10,rcutoff2))
773             {
774
775             /* Compute parameters for interactions between i and j atoms */
776             qq10             = _mm_mul_ps(iq1,jq0);
777
778             /* REACTION-FIELD ELECTROSTATICS */
779             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
780
781             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
782
783             fscal            = felec;
784
785             fscal            = _mm_and_ps(fscal,cutoff_mask);
786
787             /* Calculate temporary vectorial force */
788             tx               = _mm_mul_ps(fscal,dx10);
789             ty               = _mm_mul_ps(fscal,dy10);
790             tz               = _mm_mul_ps(fscal,dz10);
791
792             /* Update vectorial force */
793             fix1             = _mm_add_ps(fix1,tx);
794             fiy1             = _mm_add_ps(fiy1,ty);
795             fiz1             = _mm_add_ps(fiz1,tz);
796
797             fjx0             = _mm_add_ps(fjx0,tx);
798             fjy0             = _mm_add_ps(fjy0,ty);
799             fjz0             = _mm_add_ps(fjz0,tz);
800             
801             }
802
803             /**************************
804              * CALCULATE INTERACTIONS *
805              **************************/
806
807             if (gmx_mm_any_lt(rsq20,rcutoff2))
808             {
809
810             /* Compute parameters for interactions between i and j atoms */
811             qq20             = _mm_mul_ps(iq2,jq0);
812
813             /* REACTION-FIELD ELECTROSTATICS */
814             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
815
816             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
817
818             fscal            = felec;
819
820             fscal            = _mm_and_ps(fscal,cutoff_mask);
821
822             /* Calculate temporary vectorial force */
823             tx               = _mm_mul_ps(fscal,dx20);
824             ty               = _mm_mul_ps(fscal,dy20);
825             tz               = _mm_mul_ps(fscal,dz20);
826
827             /* Update vectorial force */
828             fix2             = _mm_add_ps(fix2,tx);
829             fiy2             = _mm_add_ps(fiy2,ty);
830             fiz2             = _mm_add_ps(fiz2,tz);
831
832             fjx0             = _mm_add_ps(fjx0,tx);
833             fjy0             = _mm_add_ps(fjy0,ty);
834             fjz0             = _mm_add_ps(fjz0,tz);
835             
836             }
837
838             fjptrA             = f+j_coord_offsetA;
839             fjptrB             = f+j_coord_offsetB;
840             fjptrC             = f+j_coord_offsetC;
841             fjptrD             = f+j_coord_offsetD;
842
843             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
844
845             /* Inner loop uses 90 flops */
846         }
847
848         if(jidx<j_index_end)
849         {
850
851             /* Get j neighbor index, and coordinate index */
852             jnrlistA         = jjnr[jidx];
853             jnrlistB         = jjnr[jidx+1];
854             jnrlistC         = jjnr[jidx+2];
855             jnrlistD         = jjnr[jidx+3];
856             /* Sign of each element will be negative for non-real atoms.
857              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
858              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
859              */
860             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
861             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
862             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
863             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
864             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
865             j_coord_offsetA  = DIM*jnrA;
866             j_coord_offsetB  = DIM*jnrB;
867             j_coord_offsetC  = DIM*jnrC;
868             j_coord_offsetD  = DIM*jnrD;
869
870             /* load j atom coordinates */
871             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
872                                               x+j_coord_offsetC,x+j_coord_offsetD,
873                                               &jx0,&jy0,&jz0);
874
875             /* Calculate displacement vector */
876             dx00             = _mm_sub_ps(ix0,jx0);
877             dy00             = _mm_sub_ps(iy0,jy0);
878             dz00             = _mm_sub_ps(iz0,jz0);
879             dx10             = _mm_sub_ps(ix1,jx0);
880             dy10             = _mm_sub_ps(iy1,jy0);
881             dz10             = _mm_sub_ps(iz1,jz0);
882             dx20             = _mm_sub_ps(ix2,jx0);
883             dy20             = _mm_sub_ps(iy2,jy0);
884             dz20             = _mm_sub_ps(iz2,jz0);
885
886             /* Calculate squared distance and things based on it */
887             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
888             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
889             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
890
891             rinv00           = gmx_mm_invsqrt_ps(rsq00);
892             rinv10           = gmx_mm_invsqrt_ps(rsq10);
893             rinv20           = gmx_mm_invsqrt_ps(rsq20);
894
895             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
896             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
897             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
898
899             /* Load parameters for j particles */
900             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
901                                                               charge+jnrC+0,charge+jnrD+0);
902
903             fjx0             = _mm_setzero_ps();
904             fjy0             = _mm_setzero_ps();
905             fjz0             = _mm_setzero_ps();
906
907             /**************************
908              * CALCULATE INTERACTIONS *
909              **************************/
910
911             if (gmx_mm_any_lt(rsq00,rcutoff2))
912             {
913
914             /* Compute parameters for interactions between i and j atoms */
915             qq00             = _mm_mul_ps(iq0,jq0);
916
917             /* REACTION-FIELD ELECTROSTATICS */
918             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
919
920             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
921
922             fscal            = felec;
923
924             fscal            = _mm_and_ps(fscal,cutoff_mask);
925
926             fscal            = _mm_andnot_ps(dummy_mask,fscal);
927
928             /* Calculate temporary vectorial force */
929             tx               = _mm_mul_ps(fscal,dx00);
930             ty               = _mm_mul_ps(fscal,dy00);
931             tz               = _mm_mul_ps(fscal,dz00);
932
933             /* Update vectorial force */
934             fix0             = _mm_add_ps(fix0,tx);
935             fiy0             = _mm_add_ps(fiy0,ty);
936             fiz0             = _mm_add_ps(fiz0,tz);
937
938             fjx0             = _mm_add_ps(fjx0,tx);
939             fjy0             = _mm_add_ps(fjy0,ty);
940             fjz0             = _mm_add_ps(fjz0,tz);
941             
942             }
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             if (gmx_mm_any_lt(rsq10,rcutoff2))
949             {
950
951             /* Compute parameters for interactions between i and j atoms */
952             qq10             = _mm_mul_ps(iq1,jq0);
953
954             /* REACTION-FIELD ELECTROSTATICS */
955             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
956
957             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
958
959             fscal            = felec;
960
961             fscal            = _mm_and_ps(fscal,cutoff_mask);
962
963             fscal            = _mm_andnot_ps(dummy_mask,fscal);
964
965             /* Calculate temporary vectorial force */
966             tx               = _mm_mul_ps(fscal,dx10);
967             ty               = _mm_mul_ps(fscal,dy10);
968             tz               = _mm_mul_ps(fscal,dz10);
969
970             /* Update vectorial force */
971             fix1             = _mm_add_ps(fix1,tx);
972             fiy1             = _mm_add_ps(fiy1,ty);
973             fiz1             = _mm_add_ps(fiz1,tz);
974
975             fjx0             = _mm_add_ps(fjx0,tx);
976             fjy0             = _mm_add_ps(fjy0,ty);
977             fjz0             = _mm_add_ps(fjz0,tz);
978             
979             }
980
981             /**************************
982              * CALCULATE INTERACTIONS *
983              **************************/
984
985             if (gmx_mm_any_lt(rsq20,rcutoff2))
986             {
987
988             /* Compute parameters for interactions between i and j atoms */
989             qq20             = _mm_mul_ps(iq2,jq0);
990
991             /* REACTION-FIELD ELECTROSTATICS */
992             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
993
994             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
995
996             fscal            = felec;
997
998             fscal            = _mm_and_ps(fscal,cutoff_mask);
999
1000             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1001
1002             /* Calculate temporary vectorial force */
1003             tx               = _mm_mul_ps(fscal,dx20);
1004             ty               = _mm_mul_ps(fscal,dy20);
1005             tz               = _mm_mul_ps(fscal,dz20);
1006
1007             /* Update vectorial force */
1008             fix2             = _mm_add_ps(fix2,tx);
1009             fiy2             = _mm_add_ps(fiy2,ty);
1010             fiz2             = _mm_add_ps(fiz2,tz);
1011
1012             fjx0             = _mm_add_ps(fjx0,tx);
1013             fjy0             = _mm_add_ps(fjy0,ty);
1014             fjz0             = _mm_add_ps(fjz0,tz);
1015             
1016             }
1017
1018             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1019             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1020             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1021             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1022
1023             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1024
1025             /* Inner loop uses 90 flops */
1026         }
1027
1028         /* End of innermost loop */
1029
1030         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1031                                               f+i_coord_offset,fshift+i_shift_offset);
1032
1033         /* Increment number of inner iterations */
1034         inneriter                  += j_index_end - j_index_start;
1035
1036         /* Outer loop uses 18 flops */
1037     }
1038
1039     /* Increment number of outer iterations */
1040     outeriter        += nri;
1041
1042     /* Update outer/inner flops */
1043
1044     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*90);
1045 }