Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwNone_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128           dummy_mask,cutoff_mask;
74     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
75     __m128           one     = _mm_set1_ps(1.0);
76     __m128           two     = _mm_set1_ps(2.0);
77     x                = xx[0];
78     f                = ff[0];
79
80     nri              = nlist->nri;
81     iinr             = nlist->iinr;
82     jindex           = nlist->jindex;
83     jjnr             = nlist->jjnr;
84     shiftidx         = nlist->shift;
85     gid              = nlist->gid;
86     shiftvec         = fr->shift_vec[0];
87     fshift           = fr->fshift[0];
88     facel            = _mm_set1_ps(fr->epsfac);
89     charge           = mdatoms->chargeA;
90     krf              = _mm_set1_ps(fr->ic->k_rf);
91     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
92     crf              = _mm_set1_ps(fr->ic->c_rf);
93
94     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
95     rcutoff_scalar   = fr->rcoulomb;
96     rcutoff          = _mm_set1_ps(rcutoff_scalar);
97     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
98
99     /* Avoid stupid compiler warnings */
100     jnrA = jnrB = jnrC = jnrD = 0;
101     j_coord_offsetA = 0;
102     j_coord_offsetB = 0;
103     j_coord_offsetC = 0;
104     j_coord_offsetD = 0;
105
106     outeriter        = 0;
107     inneriter        = 0;
108
109     /* Start outer loop over neighborlists */
110     for(iidx=0; iidx<nri; iidx++)
111     {
112         /* Load shift vector for this list */
113         i_shift_offset   = DIM*shiftidx[iidx];
114         shX              = shiftvec[i_shift_offset+XX];
115         shY              = shiftvec[i_shift_offset+YY];
116         shZ              = shiftvec[i_shift_offset+ZZ];
117
118         /* Load limits for loop over neighbors */
119         j_index_start    = jindex[iidx];
120         j_index_end      = jindex[iidx+1];
121
122         /* Get outer coordinate index */
123         inr              = iinr[iidx];
124         i_coord_offset   = DIM*inr;
125
126         /* Load i particle coords and add shift vector */
127         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
128         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
129         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
130
131         fix0             = _mm_setzero_ps();
132         fiy0             = _mm_setzero_ps();
133         fiz0             = _mm_setzero_ps();
134
135         /* Load parameters for i particles */
136         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
137
138         /* Reset potential sums */
139         velecsum         = _mm_setzero_ps();
140
141         /* Start inner kernel loop */
142         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
143         {
144
145             /* Get j neighbor index, and coordinate index */
146             jnrA             = jjnr[jidx];
147             jnrB             = jjnr[jidx+1];
148             jnrC             = jjnr[jidx+2];
149             jnrD             = jjnr[jidx+3];
150
151             j_coord_offsetA  = DIM*jnrA;
152             j_coord_offsetB  = DIM*jnrB;
153             j_coord_offsetC  = DIM*jnrC;
154             j_coord_offsetD  = DIM*jnrD;
155
156             /* load j atom coordinates */
157             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
158                                               x+j_coord_offsetC,x+j_coord_offsetD,
159                                               &jx0,&jy0,&jz0);
160
161             /* Calculate displacement vector */
162             dx00             = _mm_sub_ps(ix0,jx0);
163             dy00             = _mm_sub_ps(iy0,jy0);
164             dz00             = _mm_sub_ps(iz0,jz0);
165
166             /* Calculate squared distance and things based on it */
167             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
168
169             rinv00           = gmx_mm_invsqrt_ps(rsq00);
170
171             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
172
173             /* Load parameters for j particles */
174             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
175                                                               charge+jnrC+0,charge+jnrD+0);
176
177             /**************************
178              * CALCULATE INTERACTIONS *
179              **************************/
180
181             if (gmx_mm_any_lt(rsq00,rcutoff2))
182             {
183
184             /* Compute parameters for interactions between i and j atoms */
185             qq00             = _mm_mul_ps(iq0,jq0);
186
187             /* REACTION-FIELD ELECTROSTATICS */
188             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
189             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
190
191             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
192
193             /* Update potential sum for this i atom from the interaction with this j atom. */
194             velec            = _mm_and_ps(velec,cutoff_mask);
195             velecsum         = _mm_add_ps(velecsum,velec);
196
197             fscal            = felec;
198
199             fscal            = _mm_and_ps(fscal,cutoff_mask);
200
201             /* Calculate temporary vectorial force */
202             tx               = _mm_mul_ps(fscal,dx00);
203             ty               = _mm_mul_ps(fscal,dy00);
204             tz               = _mm_mul_ps(fscal,dz00);
205
206             /* Update vectorial force */
207             fix0             = _mm_add_ps(fix0,tx);
208             fiy0             = _mm_add_ps(fiy0,ty);
209             fiz0             = _mm_add_ps(fiz0,tz);
210
211             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
212                                                    f+j_coord_offsetC,f+j_coord_offsetD,
213                                                    tx,ty,tz);
214
215             }
216
217             /* Inner loop uses 36 flops */
218         }
219
220         if(jidx<j_index_end)
221         {
222
223             /* Get j neighbor index, and coordinate index */
224             jnrA             = jjnr[jidx];
225             jnrB             = jjnr[jidx+1];
226             jnrC             = jjnr[jidx+2];
227             jnrD             = jjnr[jidx+3];
228
229             /* Sign of each element will be negative for non-real atoms.
230              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
231              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
232              */
233             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
234             jnrA       = (jnrA>=0) ? jnrA : 0;
235             jnrB       = (jnrB>=0) ? jnrB : 0;
236             jnrC       = (jnrC>=0) ? jnrC : 0;
237             jnrD       = (jnrD>=0) ? jnrD : 0;
238
239             j_coord_offsetA  = DIM*jnrA;
240             j_coord_offsetB  = DIM*jnrB;
241             j_coord_offsetC  = DIM*jnrC;
242             j_coord_offsetD  = DIM*jnrD;
243
244             /* load j atom coordinates */
245             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
246                                               x+j_coord_offsetC,x+j_coord_offsetD,
247                                               &jx0,&jy0,&jz0);
248
249             /* Calculate displacement vector */
250             dx00             = _mm_sub_ps(ix0,jx0);
251             dy00             = _mm_sub_ps(iy0,jy0);
252             dz00             = _mm_sub_ps(iz0,jz0);
253
254             /* Calculate squared distance and things based on it */
255             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
256
257             rinv00           = gmx_mm_invsqrt_ps(rsq00);
258
259             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
260
261             /* Load parameters for j particles */
262             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
263                                                               charge+jnrC+0,charge+jnrD+0);
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             if (gmx_mm_any_lt(rsq00,rcutoff2))
270             {
271
272             /* Compute parameters for interactions between i and j atoms */
273             qq00             = _mm_mul_ps(iq0,jq0);
274
275             /* REACTION-FIELD ELECTROSTATICS */
276             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
277             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
278
279             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velec            = _mm_and_ps(velec,cutoff_mask);
283             velec            = _mm_andnot_ps(dummy_mask,velec);
284             velecsum         = _mm_add_ps(velecsum,velec);
285
286             fscal            = felec;
287
288             fscal            = _mm_and_ps(fscal,cutoff_mask);
289
290             fscal            = _mm_andnot_ps(dummy_mask,fscal);
291
292             /* Calculate temporary vectorial force */
293             tx               = _mm_mul_ps(fscal,dx00);
294             ty               = _mm_mul_ps(fscal,dy00);
295             tz               = _mm_mul_ps(fscal,dz00);
296
297             /* Update vectorial force */
298             fix0             = _mm_add_ps(fix0,tx);
299             fiy0             = _mm_add_ps(fiy0,ty);
300             fiz0             = _mm_add_ps(fiz0,tz);
301
302             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
303                                                    f+j_coord_offsetC,f+j_coord_offsetD,
304                                                    tx,ty,tz);
305
306             }
307
308             /* Inner loop uses 36 flops */
309         }
310
311         /* End of innermost loop */
312
313         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
314                                               f+i_coord_offset,fshift+i_shift_offset);
315
316         ggid                        = gid[iidx];
317         /* Update potential energies */
318         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
319
320         /* Increment number of inner iterations */
321         inneriter                  += j_index_end - j_index_start;
322
323         /* Outer loop uses 11 flops */
324     }
325
326     /* Increment number of outer iterations */
327     outeriter        += nri;
328
329     /* Update outer/inner flops */
330
331     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*11 + inneriter*36);
332 }
333 /*
334  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse2_single
335  * Electrostatics interaction: ReactionField
336  * VdW interaction:            None
337  * Geometry:                   Particle-Particle
338  * Calculate force/pot:        Force
339  */
340 void
341 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse2_single
342                     (t_nblist * gmx_restrict                nlist,
343                      rvec * gmx_restrict                    xx,
344                      rvec * gmx_restrict                    ff,
345                      t_forcerec * gmx_restrict              fr,
346                      t_mdatoms * gmx_restrict               mdatoms,
347                      nb_kernel_data_t * gmx_restrict        kernel_data,
348                      t_nrnb * gmx_restrict                  nrnb)
349 {
350     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
351      * just 0 for non-waters.
352      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
353      * jnr indices corresponding to data put in the four positions in the SIMD register.
354      */
355     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
356     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
357     int              jnrA,jnrB,jnrC,jnrD;
358     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
359     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
360     real             shX,shY,shZ,rcutoff_scalar;
361     real             *shiftvec,*fshift,*x,*f;
362     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
363     int              vdwioffset0;
364     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
365     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
366     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
367     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
368     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
369     real             *charge;
370     __m128           dummy_mask,cutoff_mask;
371     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
372     __m128           one     = _mm_set1_ps(1.0);
373     __m128           two     = _mm_set1_ps(2.0);
374     x                = xx[0];
375     f                = ff[0];
376
377     nri              = nlist->nri;
378     iinr             = nlist->iinr;
379     jindex           = nlist->jindex;
380     jjnr             = nlist->jjnr;
381     shiftidx         = nlist->shift;
382     gid              = nlist->gid;
383     shiftvec         = fr->shift_vec[0];
384     fshift           = fr->fshift[0];
385     facel            = _mm_set1_ps(fr->epsfac);
386     charge           = mdatoms->chargeA;
387     krf              = _mm_set1_ps(fr->ic->k_rf);
388     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
389     crf              = _mm_set1_ps(fr->ic->c_rf);
390
391     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
392     rcutoff_scalar   = fr->rcoulomb;
393     rcutoff          = _mm_set1_ps(rcutoff_scalar);
394     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
395
396     /* Avoid stupid compiler warnings */
397     jnrA = jnrB = jnrC = jnrD = 0;
398     j_coord_offsetA = 0;
399     j_coord_offsetB = 0;
400     j_coord_offsetC = 0;
401     j_coord_offsetD = 0;
402
403     outeriter        = 0;
404     inneriter        = 0;
405
406     /* Start outer loop over neighborlists */
407     for(iidx=0; iidx<nri; iidx++)
408     {
409         /* Load shift vector for this list */
410         i_shift_offset   = DIM*shiftidx[iidx];
411         shX              = shiftvec[i_shift_offset+XX];
412         shY              = shiftvec[i_shift_offset+YY];
413         shZ              = shiftvec[i_shift_offset+ZZ];
414
415         /* Load limits for loop over neighbors */
416         j_index_start    = jindex[iidx];
417         j_index_end      = jindex[iidx+1];
418
419         /* Get outer coordinate index */
420         inr              = iinr[iidx];
421         i_coord_offset   = DIM*inr;
422
423         /* Load i particle coords and add shift vector */
424         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
425         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
426         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
427
428         fix0             = _mm_setzero_ps();
429         fiy0             = _mm_setzero_ps();
430         fiz0             = _mm_setzero_ps();
431
432         /* Load parameters for i particles */
433         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
434
435         /* Start inner kernel loop */
436         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
437         {
438
439             /* Get j neighbor index, and coordinate index */
440             jnrA             = jjnr[jidx];
441             jnrB             = jjnr[jidx+1];
442             jnrC             = jjnr[jidx+2];
443             jnrD             = jjnr[jidx+3];
444
445             j_coord_offsetA  = DIM*jnrA;
446             j_coord_offsetB  = DIM*jnrB;
447             j_coord_offsetC  = DIM*jnrC;
448             j_coord_offsetD  = DIM*jnrD;
449
450             /* load j atom coordinates */
451             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
452                                               x+j_coord_offsetC,x+j_coord_offsetD,
453                                               &jx0,&jy0,&jz0);
454
455             /* Calculate displacement vector */
456             dx00             = _mm_sub_ps(ix0,jx0);
457             dy00             = _mm_sub_ps(iy0,jy0);
458             dz00             = _mm_sub_ps(iz0,jz0);
459
460             /* Calculate squared distance and things based on it */
461             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
462
463             rinv00           = gmx_mm_invsqrt_ps(rsq00);
464
465             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
466
467             /* Load parameters for j particles */
468             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
469                                                               charge+jnrC+0,charge+jnrD+0);
470
471             /**************************
472              * CALCULATE INTERACTIONS *
473              **************************/
474
475             if (gmx_mm_any_lt(rsq00,rcutoff2))
476             {
477
478             /* Compute parameters for interactions between i and j atoms */
479             qq00             = _mm_mul_ps(iq0,jq0);
480
481             /* REACTION-FIELD ELECTROSTATICS */
482             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
483
484             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
485
486             fscal            = felec;
487
488             fscal            = _mm_and_ps(fscal,cutoff_mask);
489
490             /* Calculate temporary vectorial force */
491             tx               = _mm_mul_ps(fscal,dx00);
492             ty               = _mm_mul_ps(fscal,dy00);
493             tz               = _mm_mul_ps(fscal,dz00);
494
495             /* Update vectorial force */
496             fix0             = _mm_add_ps(fix0,tx);
497             fiy0             = _mm_add_ps(fiy0,ty);
498             fiz0             = _mm_add_ps(fiz0,tz);
499
500             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
501                                                    f+j_coord_offsetC,f+j_coord_offsetD,
502                                                    tx,ty,tz);
503
504             }
505
506             /* Inner loop uses 30 flops */
507         }
508
509         if(jidx<j_index_end)
510         {
511
512             /* Get j neighbor index, and coordinate index */
513             jnrA             = jjnr[jidx];
514             jnrB             = jjnr[jidx+1];
515             jnrC             = jjnr[jidx+2];
516             jnrD             = jjnr[jidx+3];
517
518             /* Sign of each element will be negative for non-real atoms.
519              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
520              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
521              */
522             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
523             jnrA       = (jnrA>=0) ? jnrA : 0;
524             jnrB       = (jnrB>=0) ? jnrB : 0;
525             jnrC       = (jnrC>=0) ? jnrC : 0;
526             jnrD       = (jnrD>=0) ? jnrD : 0;
527
528             j_coord_offsetA  = DIM*jnrA;
529             j_coord_offsetB  = DIM*jnrB;
530             j_coord_offsetC  = DIM*jnrC;
531             j_coord_offsetD  = DIM*jnrD;
532
533             /* load j atom coordinates */
534             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
535                                               x+j_coord_offsetC,x+j_coord_offsetD,
536                                               &jx0,&jy0,&jz0);
537
538             /* Calculate displacement vector */
539             dx00             = _mm_sub_ps(ix0,jx0);
540             dy00             = _mm_sub_ps(iy0,jy0);
541             dz00             = _mm_sub_ps(iz0,jz0);
542
543             /* Calculate squared distance and things based on it */
544             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
545
546             rinv00           = gmx_mm_invsqrt_ps(rsq00);
547
548             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
549
550             /* Load parameters for j particles */
551             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
552                                                               charge+jnrC+0,charge+jnrD+0);
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             if (gmx_mm_any_lt(rsq00,rcutoff2))
559             {
560
561             /* Compute parameters for interactions between i and j atoms */
562             qq00             = _mm_mul_ps(iq0,jq0);
563
564             /* REACTION-FIELD ELECTROSTATICS */
565             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
566
567             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
568
569             fscal            = felec;
570
571             fscal            = _mm_and_ps(fscal,cutoff_mask);
572
573             fscal            = _mm_andnot_ps(dummy_mask,fscal);
574
575             /* Calculate temporary vectorial force */
576             tx               = _mm_mul_ps(fscal,dx00);
577             ty               = _mm_mul_ps(fscal,dy00);
578             tz               = _mm_mul_ps(fscal,dz00);
579
580             /* Update vectorial force */
581             fix0             = _mm_add_ps(fix0,tx);
582             fiy0             = _mm_add_ps(fiy0,ty);
583             fiz0             = _mm_add_ps(fiz0,tz);
584
585             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
586                                                    f+j_coord_offsetC,f+j_coord_offsetD,
587                                                    tx,ty,tz);
588
589             }
590
591             /* Inner loop uses 30 flops */
592         }
593
594         /* End of innermost loop */
595
596         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
597                                               f+i_coord_offset,fshift+i_shift_offset);
598
599         /* Increment number of inner iterations */
600         inneriter                  += j_index_end - j_index_start;
601
602         /* Outer loop uses 10 flops */
603     }
604
605     /* Increment number of outer iterations */
606     outeriter        += nri;
607
608     /* Update outer/inner flops */
609
610     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*10 + inneriter*30);
611 }