f343c5cb48cbf7e6117526abb5e33398a9ecc48c
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_sse2_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
106     real             rswitch_scalar,d_scalar;
107     __m128           dummy_mask,cutoff_mask;
108     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
109     __m128           one     = _mm_set1_ps(1.0);
110     __m128           two     = _mm_set1_ps(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm_set1_ps(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     krf              = _mm_set1_ps(fr->ic->k_rf);
125     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
126     crf              = _mm_set1_ps(fr->ic->c_rf);
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
134     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
135     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
136     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
137
138     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
139     rcutoff_scalar   = fr->rcoulomb;
140     rcutoff          = _mm_set1_ps(rcutoff_scalar);
141     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
142
143     rswitch_scalar   = fr->rvdw_switch;
144     rswitch          = _mm_set1_ps(rswitch_scalar);
145     /* Setup switch parameters */
146     d_scalar         = rcutoff_scalar-rswitch_scalar;
147     d                = _mm_set1_ps(d_scalar);
148     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
149     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
150     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
151     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
152     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
153     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
154
155     /* Avoid stupid compiler warnings */
156     jnrA = jnrB = jnrC = jnrD = 0;
157     j_coord_offsetA = 0;
158     j_coord_offsetB = 0;
159     j_coord_offsetC = 0;
160     j_coord_offsetD = 0;
161
162     outeriter        = 0;
163     inneriter        = 0;
164
165     for(iidx=0;iidx<4*DIM;iidx++)
166     {
167         scratch[iidx] = 0.0;
168     }  
169
170     /* Start outer loop over neighborlists */
171     for(iidx=0; iidx<nri; iidx++)
172     {
173         /* Load shift vector for this list */
174         i_shift_offset   = DIM*shiftidx[iidx];
175
176         /* Load limits for loop over neighbors */
177         j_index_start    = jindex[iidx];
178         j_index_end      = jindex[iidx+1];
179
180         /* Get outer coordinate index */
181         inr              = iinr[iidx];
182         i_coord_offset   = DIM*inr;
183
184         /* Load i particle coords and add shift vector */
185         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
186                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
187         
188         fix0             = _mm_setzero_ps();
189         fiy0             = _mm_setzero_ps();
190         fiz0             = _mm_setzero_ps();
191         fix1             = _mm_setzero_ps();
192         fiy1             = _mm_setzero_ps();
193         fiz1             = _mm_setzero_ps();
194         fix2             = _mm_setzero_ps();
195         fiy2             = _mm_setzero_ps();
196         fiz2             = _mm_setzero_ps();
197         fix3             = _mm_setzero_ps();
198         fiy3             = _mm_setzero_ps();
199         fiz3             = _mm_setzero_ps();
200
201         /* Reset potential sums */
202         velecsum         = _mm_setzero_ps();
203         vvdwsum          = _mm_setzero_ps();
204
205         /* Start inner kernel loop */
206         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
207         {
208
209             /* Get j neighbor index, and coordinate index */
210             jnrA             = jjnr[jidx];
211             jnrB             = jjnr[jidx+1];
212             jnrC             = jjnr[jidx+2];
213             jnrD             = jjnr[jidx+3];
214             j_coord_offsetA  = DIM*jnrA;
215             j_coord_offsetB  = DIM*jnrB;
216             j_coord_offsetC  = DIM*jnrC;
217             j_coord_offsetD  = DIM*jnrD;
218
219             /* load j atom coordinates */
220             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
221                                               x+j_coord_offsetC,x+j_coord_offsetD,
222                                               &jx0,&jy0,&jz0);
223
224             /* Calculate displacement vector */
225             dx00             = _mm_sub_ps(ix0,jx0);
226             dy00             = _mm_sub_ps(iy0,jy0);
227             dz00             = _mm_sub_ps(iz0,jz0);
228             dx10             = _mm_sub_ps(ix1,jx0);
229             dy10             = _mm_sub_ps(iy1,jy0);
230             dz10             = _mm_sub_ps(iz1,jz0);
231             dx20             = _mm_sub_ps(ix2,jx0);
232             dy20             = _mm_sub_ps(iy2,jy0);
233             dz20             = _mm_sub_ps(iz2,jz0);
234             dx30             = _mm_sub_ps(ix3,jx0);
235             dy30             = _mm_sub_ps(iy3,jy0);
236             dz30             = _mm_sub_ps(iz3,jz0);
237
238             /* Calculate squared distance and things based on it */
239             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
240             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
241             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
242             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
243
244             rinv00           = gmx_mm_invsqrt_ps(rsq00);
245             rinv10           = gmx_mm_invsqrt_ps(rsq10);
246             rinv20           = gmx_mm_invsqrt_ps(rsq20);
247             rinv30           = gmx_mm_invsqrt_ps(rsq30);
248
249             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
250             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
251             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
252             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
253
254             /* Load parameters for j particles */
255             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
256                                                               charge+jnrC+0,charge+jnrD+0);
257             vdwjidx0A        = 2*vdwtype[jnrA+0];
258             vdwjidx0B        = 2*vdwtype[jnrB+0];
259             vdwjidx0C        = 2*vdwtype[jnrC+0];
260             vdwjidx0D        = 2*vdwtype[jnrD+0];
261
262             fjx0             = _mm_setzero_ps();
263             fjy0             = _mm_setzero_ps();
264             fjz0             = _mm_setzero_ps();
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             if (gmx_mm_any_lt(rsq00,rcutoff2))
271             {
272
273             r00              = _mm_mul_ps(rsq00,rinv00);
274
275             /* Compute parameters for interactions between i and j atoms */
276             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
277                                          vdwparam+vdwioffset0+vdwjidx0B,
278                                          vdwparam+vdwioffset0+vdwjidx0C,
279                                          vdwparam+vdwioffset0+vdwjidx0D,
280                                          &c6_00,&c12_00);
281
282             /* LENNARD-JONES DISPERSION/REPULSION */
283
284             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
285             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
286             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
287             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
288             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
289
290             d                = _mm_sub_ps(r00,rswitch);
291             d                = _mm_max_ps(d,_mm_setzero_ps());
292             d2               = _mm_mul_ps(d,d);
293             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
294
295             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
296
297             /* Evaluate switch function */
298             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
299             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
300             vvdw             = _mm_mul_ps(vvdw,sw);
301             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
305             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
306
307             fscal            = fvdw;
308
309             fscal            = _mm_and_ps(fscal,cutoff_mask);
310
311             /* Calculate temporary vectorial force */
312             tx               = _mm_mul_ps(fscal,dx00);
313             ty               = _mm_mul_ps(fscal,dy00);
314             tz               = _mm_mul_ps(fscal,dz00);
315
316             /* Update vectorial force */
317             fix0             = _mm_add_ps(fix0,tx);
318             fiy0             = _mm_add_ps(fiy0,ty);
319             fiz0             = _mm_add_ps(fiz0,tz);
320
321             fjx0             = _mm_add_ps(fjx0,tx);
322             fjy0             = _mm_add_ps(fjy0,ty);
323             fjz0             = _mm_add_ps(fjz0,tz);
324             
325             }
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             if (gmx_mm_any_lt(rsq10,rcutoff2))
332             {
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq10             = _mm_mul_ps(iq1,jq0);
336
337             /* REACTION-FIELD ELECTROSTATICS */
338             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
339             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
340
341             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velec            = _mm_and_ps(velec,cutoff_mask);
345             velecsum         = _mm_add_ps(velecsum,velec);
346
347             fscal            = felec;
348
349             fscal            = _mm_and_ps(fscal,cutoff_mask);
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm_mul_ps(fscal,dx10);
353             ty               = _mm_mul_ps(fscal,dy10);
354             tz               = _mm_mul_ps(fscal,dz10);
355
356             /* Update vectorial force */
357             fix1             = _mm_add_ps(fix1,tx);
358             fiy1             = _mm_add_ps(fiy1,ty);
359             fiz1             = _mm_add_ps(fiz1,tz);
360
361             fjx0             = _mm_add_ps(fjx0,tx);
362             fjy0             = _mm_add_ps(fjy0,ty);
363             fjz0             = _mm_add_ps(fjz0,tz);
364             
365             }
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             if (gmx_mm_any_lt(rsq20,rcutoff2))
372             {
373
374             /* Compute parameters for interactions between i and j atoms */
375             qq20             = _mm_mul_ps(iq2,jq0);
376
377             /* REACTION-FIELD ELECTROSTATICS */
378             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
379             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
380
381             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
382
383             /* Update potential sum for this i atom from the interaction with this j atom. */
384             velec            = _mm_and_ps(velec,cutoff_mask);
385             velecsum         = _mm_add_ps(velecsum,velec);
386
387             fscal            = felec;
388
389             fscal            = _mm_and_ps(fscal,cutoff_mask);
390
391             /* Calculate temporary vectorial force */
392             tx               = _mm_mul_ps(fscal,dx20);
393             ty               = _mm_mul_ps(fscal,dy20);
394             tz               = _mm_mul_ps(fscal,dz20);
395
396             /* Update vectorial force */
397             fix2             = _mm_add_ps(fix2,tx);
398             fiy2             = _mm_add_ps(fiy2,ty);
399             fiz2             = _mm_add_ps(fiz2,tz);
400
401             fjx0             = _mm_add_ps(fjx0,tx);
402             fjy0             = _mm_add_ps(fjy0,ty);
403             fjz0             = _mm_add_ps(fjz0,tz);
404             
405             }
406
407             /**************************
408              * CALCULATE INTERACTIONS *
409              **************************/
410
411             if (gmx_mm_any_lt(rsq30,rcutoff2))
412             {
413
414             /* Compute parameters for interactions between i and j atoms */
415             qq30             = _mm_mul_ps(iq3,jq0);
416
417             /* REACTION-FIELD ELECTROSTATICS */
418             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
419             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
420
421             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
422
423             /* Update potential sum for this i atom from the interaction with this j atom. */
424             velec            = _mm_and_ps(velec,cutoff_mask);
425             velecsum         = _mm_add_ps(velecsum,velec);
426
427             fscal            = felec;
428
429             fscal            = _mm_and_ps(fscal,cutoff_mask);
430
431             /* Calculate temporary vectorial force */
432             tx               = _mm_mul_ps(fscal,dx30);
433             ty               = _mm_mul_ps(fscal,dy30);
434             tz               = _mm_mul_ps(fscal,dz30);
435
436             /* Update vectorial force */
437             fix3             = _mm_add_ps(fix3,tx);
438             fiy3             = _mm_add_ps(fiy3,ty);
439             fiz3             = _mm_add_ps(fiz3,tz);
440
441             fjx0             = _mm_add_ps(fjx0,tx);
442             fjy0             = _mm_add_ps(fjy0,ty);
443             fjz0             = _mm_add_ps(fjz0,tz);
444             
445             }
446
447             fjptrA             = f+j_coord_offsetA;
448             fjptrB             = f+j_coord_offsetB;
449             fjptrC             = f+j_coord_offsetC;
450             fjptrD             = f+j_coord_offsetD;
451
452             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
453
454             /* Inner loop uses 167 flops */
455         }
456
457         if(jidx<j_index_end)
458         {
459
460             /* Get j neighbor index, and coordinate index */
461             jnrlistA         = jjnr[jidx];
462             jnrlistB         = jjnr[jidx+1];
463             jnrlistC         = jjnr[jidx+2];
464             jnrlistD         = jjnr[jidx+3];
465             /* Sign of each element will be negative for non-real atoms.
466              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
467              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
468              */
469             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
470             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
471             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
472             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
473             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
474             j_coord_offsetA  = DIM*jnrA;
475             j_coord_offsetB  = DIM*jnrB;
476             j_coord_offsetC  = DIM*jnrC;
477             j_coord_offsetD  = DIM*jnrD;
478
479             /* load j atom coordinates */
480             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
481                                               x+j_coord_offsetC,x+j_coord_offsetD,
482                                               &jx0,&jy0,&jz0);
483
484             /* Calculate displacement vector */
485             dx00             = _mm_sub_ps(ix0,jx0);
486             dy00             = _mm_sub_ps(iy0,jy0);
487             dz00             = _mm_sub_ps(iz0,jz0);
488             dx10             = _mm_sub_ps(ix1,jx0);
489             dy10             = _mm_sub_ps(iy1,jy0);
490             dz10             = _mm_sub_ps(iz1,jz0);
491             dx20             = _mm_sub_ps(ix2,jx0);
492             dy20             = _mm_sub_ps(iy2,jy0);
493             dz20             = _mm_sub_ps(iz2,jz0);
494             dx30             = _mm_sub_ps(ix3,jx0);
495             dy30             = _mm_sub_ps(iy3,jy0);
496             dz30             = _mm_sub_ps(iz3,jz0);
497
498             /* Calculate squared distance and things based on it */
499             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
500             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
501             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
502             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
503
504             rinv00           = gmx_mm_invsqrt_ps(rsq00);
505             rinv10           = gmx_mm_invsqrt_ps(rsq10);
506             rinv20           = gmx_mm_invsqrt_ps(rsq20);
507             rinv30           = gmx_mm_invsqrt_ps(rsq30);
508
509             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
510             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
511             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
512             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
513
514             /* Load parameters for j particles */
515             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
516                                                               charge+jnrC+0,charge+jnrD+0);
517             vdwjidx0A        = 2*vdwtype[jnrA+0];
518             vdwjidx0B        = 2*vdwtype[jnrB+0];
519             vdwjidx0C        = 2*vdwtype[jnrC+0];
520             vdwjidx0D        = 2*vdwtype[jnrD+0];
521
522             fjx0             = _mm_setzero_ps();
523             fjy0             = _mm_setzero_ps();
524             fjz0             = _mm_setzero_ps();
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             if (gmx_mm_any_lt(rsq00,rcutoff2))
531             {
532
533             r00              = _mm_mul_ps(rsq00,rinv00);
534             r00              = _mm_andnot_ps(dummy_mask,r00);
535
536             /* Compute parameters for interactions between i and j atoms */
537             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
538                                          vdwparam+vdwioffset0+vdwjidx0B,
539                                          vdwparam+vdwioffset0+vdwjidx0C,
540                                          vdwparam+vdwioffset0+vdwjidx0D,
541                                          &c6_00,&c12_00);
542
543             /* LENNARD-JONES DISPERSION/REPULSION */
544
545             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
546             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
547             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
548             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
549             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
550
551             d                = _mm_sub_ps(r00,rswitch);
552             d                = _mm_max_ps(d,_mm_setzero_ps());
553             d2               = _mm_mul_ps(d,d);
554             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
555
556             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
557
558             /* Evaluate switch function */
559             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
560             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
561             vvdw             = _mm_mul_ps(vvdw,sw);
562             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
563
564             /* Update potential sum for this i atom from the interaction with this j atom. */
565             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
566             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
567             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
568
569             fscal            = fvdw;
570
571             fscal            = _mm_and_ps(fscal,cutoff_mask);
572
573             fscal            = _mm_andnot_ps(dummy_mask,fscal);
574
575             /* Calculate temporary vectorial force */
576             tx               = _mm_mul_ps(fscal,dx00);
577             ty               = _mm_mul_ps(fscal,dy00);
578             tz               = _mm_mul_ps(fscal,dz00);
579
580             /* Update vectorial force */
581             fix0             = _mm_add_ps(fix0,tx);
582             fiy0             = _mm_add_ps(fiy0,ty);
583             fiz0             = _mm_add_ps(fiz0,tz);
584
585             fjx0             = _mm_add_ps(fjx0,tx);
586             fjy0             = _mm_add_ps(fjy0,ty);
587             fjz0             = _mm_add_ps(fjz0,tz);
588             
589             }
590
591             /**************************
592              * CALCULATE INTERACTIONS *
593              **************************/
594
595             if (gmx_mm_any_lt(rsq10,rcutoff2))
596             {
597
598             /* Compute parameters for interactions between i and j atoms */
599             qq10             = _mm_mul_ps(iq1,jq0);
600
601             /* REACTION-FIELD ELECTROSTATICS */
602             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
603             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
604
605             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
606
607             /* Update potential sum for this i atom from the interaction with this j atom. */
608             velec            = _mm_and_ps(velec,cutoff_mask);
609             velec            = _mm_andnot_ps(dummy_mask,velec);
610             velecsum         = _mm_add_ps(velecsum,velec);
611
612             fscal            = felec;
613
614             fscal            = _mm_and_ps(fscal,cutoff_mask);
615
616             fscal            = _mm_andnot_ps(dummy_mask,fscal);
617
618             /* Calculate temporary vectorial force */
619             tx               = _mm_mul_ps(fscal,dx10);
620             ty               = _mm_mul_ps(fscal,dy10);
621             tz               = _mm_mul_ps(fscal,dz10);
622
623             /* Update vectorial force */
624             fix1             = _mm_add_ps(fix1,tx);
625             fiy1             = _mm_add_ps(fiy1,ty);
626             fiz1             = _mm_add_ps(fiz1,tz);
627
628             fjx0             = _mm_add_ps(fjx0,tx);
629             fjy0             = _mm_add_ps(fjy0,ty);
630             fjz0             = _mm_add_ps(fjz0,tz);
631             
632             }
633
634             /**************************
635              * CALCULATE INTERACTIONS *
636              **************************/
637
638             if (gmx_mm_any_lt(rsq20,rcutoff2))
639             {
640
641             /* Compute parameters for interactions between i and j atoms */
642             qq20             = _mm_mul_ps(iq2,jq0);
643
644             /* REACTION-FIELD ELECTROSTATICS */
645             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
646             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
647
648             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
649
650             /* Update potential sum for this i atom from the interaction with this j atom. */
651             velec            = _mm_and_ps(velec,cutoff_mask);
652             velec            = _mm_andnot_ps(dummy_mask,velec);
653             velecsum         = _mm_add_ps(velecsum,velec);
654
655             fscal            = felec;
656
657             fscal            = _mm_and_ps(fscal,cutoff_mask);
658
659             fscal            = _mm_andnot_ps(dummy_mask,fscal);
660
661             /* Calculate temporary vectorial force */
662             tx               = _mm_mul_ps(fscal,dx20);
663             ty               = _mm_mul_ps(fscal,dy20);
664             tz               = _mm_mul_ps(fscal,dz20);
665
666             /* Update vectorial force */
667             fix2             = _mm_add_ps(fix2,tx);
668             fiy2             = _mm_add_ps(fiy2,ty);
669             fiz2             = _mm_add_ps(fiz2,tz);
670
671             fjx0             = _mm_add_ps(fjx0,tx);
672             fjy0             = _mm_add_ps(fjy0,ty);
673             fjz0             = _mm_add_ps(fjz0,tz);
674             
675             }
676
677             /**************************
678              * CALCULATE INTERACTIONS *
679              **************************/
680
681             if (gmx_mm_any_lt(rsq30,rcutoff2))
682             {
683
684             /* Compute parameters for interactions between i and j atoms */
685             qq30             = _mm_mul_ps(iq3,jq0);
686
687             /* REACTION-FIELD ELECTROSTATICS */
688             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
689             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
690
691             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
692
693             /* Update potential sum for this i atom from the interaction with this j atom. */
694             velec            = _mm_and_ps(velec,cutoff_mask);
695             velec            = _mm_andnot_ps(dummy_mask,velec);
696             velecsum         = _mm_add_ps(velecsum,velec);
697
698             fscal            = felec;
699
700             fscal            = _mm_and_ps(fscal,cutoff_mask);
701
702             fscal            = _mm_andnot_ps(dummy_mask,fscal);
703
704             /* Calculate temporary vectorial force */
705             tx               = _mm_mul_ps(fscal,dx30);
706             ty               = _mm_mul_ps(fscal,dy30);
707             tz               = _mm_mul_ps(fscal,dz30);
708
709             /* Update vectorial force */
710             fix3             = _mm_add_ps(fix3,tx);
711             fiy3             = _mm_add_ps(fiy3,ty);
712             fiz3             = _mm_add_ps(fiz3,tz);
713
714             fjx0             = _mm_add_ps(fjx0,tx);
715             fjy0             = _mm_add_ps(fjy0,ty);
716             fjz0             = _mm_add_ps(fjz0,tz);
717             
718             }
719
720             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
721             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
722             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
723             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
724
725             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
726
727             /* Inner loop uses 168 flops */
728         }
729
730         /* End of innermost loop */
731
732         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
733                                               f+i_coord_offset,fshift+i_shift_offset);
734
735         ggid                        = gid[iidx];
736         /* Update potential energies */
737         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
738         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
739
740         /* Increment number of inner iterations */
741         inneriter                  += j_index_end - j_index_start;
742
743         /* Outer loop uses 26 flops */
744     }
745
746     /* Increment number of outer iterations */
747     outeriter        += nri;
748
749     /* Update outer/inner flops */
750
751     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*168);
752 }
753 /*
754  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_sse2_single
755  * Electrostatics interaction: ReactionField
756  * VdW interaction:            LennardJones
757  * Geometry:                   Water4-Particle
758  * Calculate force/pot:        Force
759  */
760 void
761 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_sse2_single
762                     (t_nblist                    * gmx_restrict       nlist,
763                      rvec                        * gmx_restrict          xx,
764                      rvec                        * gmx_restrict          ff,
765                      t_forcerec                  * gmx_restrict          fr,
766                      t_mdatoms                   * gmx_restrict     mdatoms,
767                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
768                      t_nrnb                      * gmx_restrict        nrnb)
769 {
770     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
771      * just 0 for non-waters.
772      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
773      * jnr indices corresponding to data put in the four positions in the SIMD register.
774      */
775     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
776     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
777     int              jnrA,jnrB,jnrC,jnrD;
778     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
779     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
780     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
781     real             rcutoff_scalar;
782     real             *shiftvec,*fshift,*x,*f;
783     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
784     real             scratch[4*DIM];
785     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
786     int              vdwioffset0;
787     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
788     int              vdwioffset1;
789     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
790     int              vdwioffset2;
791     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
792     int              vdwioffset3;
793     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
794     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
795     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
796     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
797     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
798     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
799     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
800     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
801     real             *charge;
802     int              nvdwtype;
803     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
804     int              *vdwtype;
805     real             *vdwparam;
806     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
807     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
808     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
809     real             rswitch_scalar,d_scalar;
810     __m128           dummy_mask,cutoff_mask;
811     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
812     __m128           one     = _mm_set1_ps(1.0);
813     __m128           two     = _mm_set1_ps(2.0);
814     x                = xx[0];
815     f                = ff[0];
816
817     nri              = nlist->nri;
818     iinr             = nlist->iinr;
819     jindex           = nlist->jindex;
820     jjnr             = nlist->jjnr;
821     shiftidx         = nlist->shift;
822     gid              = nlist->gid;
823     shiftvec         = fr->shift_vec[0];
824     fshift           = fr->fshift[0];
825     facel            = _mm_set1_ps(fr->epsfac);
826     charge           = mdatoms->chargeA;
827     krf              = _mm_set1_ps(fr->ic->k_rf);
828     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
829     crf              = _mm_set1_ps(fr->ic->c_rf);
830     nvdwtype         = fr->ntype;
831     vdwparam         = fr->nbfp;
832     vdwtype          = mdatoms->typeA;
833
834     /* Setup water-specific parameters */
835     inr              = nlist->iinr[0];
836     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
837     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
838     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
839     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
840
841     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
842     rcutoff_scalar   = fr->rcoulomb;
843     rcutoff          = _mm_set1_ps(rcutoff_scalar);
844     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
845
846     rswitch_scalar   = fr->rvdw_switch;
847     rswitch          = _mm_set1_ps(rswitch_scalar);
848     /* Setup switch parameters */
849     d_scalar         = rcutoff_scalar-rswitch_scalar;
850     d                = _mm_set1_ps(d_scalar);
851     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
852     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
853     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
854     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
855     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
856     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
857
858     /* Avoid stupid compiler warnings */
859     jnrA = jnrB = jnrC = jnrD = 0;
860     j_coord_offsetA = 0;
861     j_coord_offsetB = 0;
862     j_coord_offsetC = 0;
863     j_coord_offsetD = 0;
864
865     outeriter        = 0;
866     inneriter        = 0;
867
868     for(iidx=0;iidx<4*DIM;iidx++)
869     {
870         scratch[iidx] = 0.0;
871     }  
872
873     /* Start outer loop over neighborlists */
874     for(iidx=0; iidx<nri; iidx++)
875     {
876         /* Load shift vector for this list */
877         i_shift_offset   = DIM*shiftidx[iidx];
878
879         /* Load limits for loop over neighbors */
880         j_index_start    = jindex[iidx];
881         j_index_end      = jindex[iidx+1];
882
883         /* Get outer coordinate index */
884         inr              = iinr[iidx];
885         i_coord_offset   = DIM*inr;
886
887         /* Load i particle coords and add shift vector */
888         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
889                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
890         
891         fix0             = _mm_setzero_ps();
892         fiy0             = _mm_setzero_ps();
893         fiz0             = _mm_setzero_ps();
894         fix1             = _mm_setzero_ps();
895         fiy1             = _mm_setzero_ps();
896         fiz1             = _mm_setzero_ps();
897         fix2             = _mm_setzero_ps();
898         fiy2             = _mm_setzero_ps();
899         fiz2             = _mm_setzero_ps();
900         fix3             = _mm_setzero_ps();
901         fiy3             = _mm_setzero_ps();
902         fiz3             = _mm_setzero_ps();
903
904         /* Start inner kernel loop */
905         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
906         {
907
908             /* Get j neighbor index, and coordinate index */
909             jnrA             = jjnr[jidx];
910             jnrB             = jjnr[jidx+1];
911             jnrC             = jjnr[jidx+2];
912             jnrD             = jjnr[jidx+3];
913             j_coord_offsetA  = DIM*jnrA;
914             j_coord_offsetB  = DIM*jnrB;
915             j_coord_offsetC  = DIM*jnrC;
916             j_coord_offsetD  = DIM*jnrD;
917
918             /* load j atom coordinates */
919             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
920                                               x+j_coord_offsetC,x+j_coord_offsetD,
921                                               &jx0,&jy0,&jz0);
922
923             /* Calculate displacement vector */
924             dx00             = _mm_sub_ps(ix0,jx0);
925             dy00             = _mm_sub_ps(iy0,jy0);
926             dz00             = _mm_sub_ps(iz0,jz0);
927             dx10             = _mm_sub_ps(ix1,jx0);
928             dy10             = _mm_sub_ps(iy1,jy0);
929             dz10             = _mm_sub_ps(iz1,jz0);
930             dx20             = _mm_sub_ps(ix2,jx0);
931             dy20             = _mm_sub_ps(iy2,jy0);
932             dz20             = _mm_sub_ps(iz2,jz0);
933             dx30             = _mm_sub_ps(ix3,jx0);
934             dy30             = _mm_sub_ps(iy3,jy0);
935             dz30             = _mm_sub_ps(iz3,jz0);
936
937             /* Calculate squared distance and things based on it */
938             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
939             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
940             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
941             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
942
943             rinv00           = gmx_mm_invsqrt_ps(rsq00);
944             rinv10           = gmx_mm_invsqrt_ps(rsq10);
945             rinv20           = gmx_mm_invsqrt_ps(rsq20);
946             rinv30           = gmx_mm_invsqrt_ps(rsq30);
947
948             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
949             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
950             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
951             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
952
953             /* Load parameters for j particles */
954             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
955                                                               charge+jnrC+0,charge+jnrD+0);
956             vdwjidx0A        = 2*vdwtype[jnrA+0];
957             vdwjidx0B        = 2*vdwtype[jnrB+0];
958             vdwjidx0C        = 2*vdwtype[jnrC+0];
959             vdwjidx0D        = 2*vdwtype[jnrD+0];
960
961             fjx0             = _mm_setzero_ps();
962             fjy0             = _mm_setzero_ps();
963             fjz0             = _mm_setzero_ps();
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             if (gmx_mm_any_lt(rsq00,rcutoff2))
970             {
971
972             r00              = _mm_mul_ps(rsq00,rinv00);
973
974             /* Compute parameters for interactions between i and j atoms */
975             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
976                                          vdwparam+vdwioffset0+vdwjidx0B,
977                                          vdwparam+vdwioffset0+vdwjidx0C,
978                                          vdwparam+vdwioffset0+vdwjidx0D,
979                                          &c6_00,&c12_00);
980
981             /* LENNARD-JONES DISPERSION/REPULSION */
982
983             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
984             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
985             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
986             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
987             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
988
989             d                = _mm_sub_ps(r00,rswitch);
990             d                = _mm_max_ps(d,_mm_setzero_ps());
991             d2               = _mm_mul_ps(d,d);
992             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
993
994             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
995
996             /* Evaluate switch function */
997             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
998             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
999             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1000
1001             fscal            = fvdw;
1002
1003             fscal            = _mm_and_ps(fscal,cutoff_mask);
1004
1005             /* Calculate temporary vectorial force */
1006             tx               = _mm_mul_ps(fscal,dx00);
1007             ty               = _mm_mul_ps(fscal,dy00);
1008             tz               = _mm_mul_ps(fscal,dz00);
1009
1010             /* Update vectorial force */
1011             fix0             = _mm_add_ps(fix0,tx);
1012             fiy0             = _mm_add_ps(fiy0,ty);
1013             fiz0             = _mm_add_ps(fiz0,tz);
1014
1015             fjx0             = _mm_add_ps(fjx0,tx);
1016             fjy0             = _mm_add_ps(fjy0,ty);
1017             fjz0             = _mm_add_ps(fjz0,tz);
1018             
1019             }
1020
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             if (gmx_mm_any_lt(rsq10,rcutoff2))
1026             {
1027
1028             /* Compute parameters for interactions between i and j atoms */
1029             qq10             = _mm_mul_ps(iq1,jq0);
1030
1031             /* REACTION-FIELD ELECTROSTATICS */
1032             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1033
1034             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1035
1036             fscal            = felec;
1037
1038             fscal            = _mm_and_ps(fscal,cutoff_mask);
1039
1040             /* Calculate temporary vectorial force */
1041             tx               = _mm_mul_ps(fscal,dx10);
1042             ty               = _mm_mul_ps(fscal,dy10);
1043             tz               = _mm_mul_ps(fscal,dz10);
1044
1045             /* Update vectorial force */
1046             fix1             = _mm_add_ps(fix1,tx);
1047             fiy1             = _mm_add_ps(fiy1,ty);
1048             fiz1             = _mm_add_ps(fiz1,tz);
1049
1050             fjx0             = _mm_add_ps(fjx0,tx);
1051             fjy0             = _mm_add_ps(fjy0,ty);
1052             fjz0             = _mm_add_ps(fjz0,tz);
1053             
1054             }
1055
1056             /**************************
1057              * CALCULATE INTERACTIONS *
1058              **************************/
1059
1060             if (gmx_mm_any_lt(rsq20,rcutoff2))
1061             {
1062
1063             /* Compute parameters for interactions between i and j atoms */
1064             qq20             = _mm_mul_ps(iq2,jq0);
1065
1066             /* REACTION-FIELD ELECTROSTATICS */
1067             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1068
1069             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1070
1071             fscal            = felec;
1072
1073             fscal            = _mm_and_ps(fscal,cutoff_mask);
1074
1075             /* Calculate temporary vectorial force */
1076             tx               = _mm_mul_ps(fscal,dx20);
1077             ty               = _mm_mul_ps(fscal,dy20);
1078             tz               = _mm_mul_ps(fscal,dz20);
1079
1080             /* Update vectorial force */
1081             fix2             = _mm_add_ps(fix2,tx);
1082             fiy2             = _mm_add_ps(fiy2,ty);
1083             fiz2             = _mm_add_ps(fiz2,tz);
1084
1085             fjx0             = _mm_add_ps(fjx0,tx);
1086             fjy0             = _mm_add_ps(fjy0,ty);
1087             fjz0             = _mm_add_ps(fjz0,tz);
1088             
1089             }
1090
1091             /**************************
1092              * CALCULATE INTERACTIONS *
1093              **************************/
1094
1095             if (gmx_mm_any_lt(rsq30,rcutoff2))
1096             {
1097
1098             /* Compute parameters for interactions between i and j atoms */
1099             qq30             = _mm_mul_ps(iq3,jq0);
1100
1101             /* REACTION-FIELD ELECTROSTATICS */
1102             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1103
1104             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1105
1106             fscal            = felec;
1107
1108             fscal            = _mm_and_ps(fscal,cutoff_mask);
1109
1110             /* Calculate temporary vectorial force */
1111             tx               = _mm_mul_ps(fscal,dx30);
1112             ty               = _mm_mul_ps(fscal,dy30);
1113             tz               = _mm_mul_ps(fscal,dz30);
1114
1115             /* Update vectorial force */
1116             fix3             = _mm_add_ps(fix3,tx);
1117             fiy3             = _mm_add_ps(fiy3,ty);
1118             fiz3             = _mm_add_ps(fiz3,tz);
1119
1120             fjx0             = _mm_add_ps(fjx0,tx);
1121             fjy0             = _mm_add_ps(fjy0,ty);
1122             fjz0             = _mm_add_ps(fjz0,tz);
1123             
1124             }
1125
1126             fjptrA             = f+j_coord_offsetA;
1127             fjptrB             = f+j_coord_offsetB;
1128             fjptrC             = f+j_coord_offsetC;
1129             fjptrD             = f+j_coord_offsetD;
1130
1131             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1132
1133             /* Inner loop uses 146 flops */
1134         }
1135
1136         if(jidx<j_index_end)
1137         {
1138
1139             /* Get j neighbor index, and coordinate index */
1140             jnrlistA         = jjnr[jidx];
1141             jnrlistB         = jjnr[jidx+1];
1142             jnrlistC         = jjnr[jidx+2];
1143             jnrlistD         = jjnr[jidx+3];
1144             /* Sign of each element will be negative for non-real atoms.
1145              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1146              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1147              */
1148             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1149             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1150             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1151             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1152             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1153             j_coord_offsetA  = DIM*jnrA;
1154             j_coord_offsetB  = DIM*jnrB;
1155             j_coord_offsetC  = DIM*jnrC;
1156             j_coord_offsetD  = DIM*jnrD;
1157
1158             /* load j atom coordinates */
1159             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1160                                               x+j_coord_offsetC,x+j_coord_offsetD,
1161                                               &jx0,&jy0,&jz0);
1162
1163             /* Calculate displacement vector */
1164             dx00             = _mm_sub_ps(ix0,jx0);
1165             dy00             = _mm_sub_ps(iy0,jy0);
1166             dz00             = _mm_sub_ps(iz0,jz0);
1167             dx10             = _mm_sub_ps(ix1,jx0);
1168             dy10             = _mm_sub_ps(iy1,jy0);
1169             dz10             = _mm_sub_ps(iz1,jz0);
1170             dx20             = _mm_sub_ps(ix2,jx0);
1171             dy20             = _mm_sub_ps(iy2,jy0);
1172             dz20             = _mm_sub_ps(iz2,jz0);
1173             dx30             = _mm_sub_ps(ix3,jx0);
1174             dy30             = _mm_sub_ps(iy3,jy0);
1175             dz30             = _mm_sub_ps(iz3,jz0);
1176
1177             /* Calculate squared distance and things based on it */
1178             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1179             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1180             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1181             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1182
1183             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1184             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1185             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1186             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1187
1188             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1189             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1190             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1191             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1192
1193             /* Load parameters for j particles */
1194             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1195                                                               charge+jnrC+0,charge+jnrD+0);
1196             vdwjidx0A        = 2*vdwtype[jnrA+0];
1197             vdwjidx0B        = 2*vdwtype[jnrB+0];
1198             vdwjidx0C        = 2*vdwtype[jnrC+0];
1199             vdwjidx0D        = 2*vdwtype[jnrD+0];
1200
1201             fjx0             = _mm_setzero_ps();
1202             fjy0             = _mm_setzero_ps();
1203             fjz0             = _mm_setzero_ps();
1204
1205             /**************************
1206              * CALCULATE INTERACTIONS *
1207              **************************/
1208
1209             if (gmx_mm_any_lt(rsq00,rcutoff2))
1210             {
1211
1212             r00              = _mm_mul_ps(rsq00,rinv00);
1213             r00              = _mm_andnot_ps(dummy_mask,r00);
1214
1215             /* Compute parameters for interactions between i and j atoms */
1216             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1217                                          vdwparam+vdwioffset0+vdwjidx0B,
1218                                          vdwparam+vdwioffset0+vdwjidx0C,
1219                                          vdwparam+vdwioffset0+vdwjidx0D,
1220                                          &c6_00,&c12_00);
1221
1222             /* LENNARD-JONES DISPERSION/REPULSION */
1223
1224             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1225             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1226             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1227             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1228             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1229
1230             d                = _mm_sub_ps(r00,rswitch);
1231             d                = _mm_max_ps(d,_mm_setzero_ps());
1232             d2               = _mm_mul_ps(d,d);
1233             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1234
1235             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1236
1237             /* Evaluate switch function */
1238             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1239             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1240             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1241
1242             fscal            = fvdw;
1243
1244             fscal            = _mm_and_ps(fscal,cutoff_mask);
1245
1246             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1247
1248             /* Calculate temporary vectorial force */
1249             tx               = _mm_mul_ps(fscal,dx00);
1250             ty               = _mm_mul_ps(fscal,dy00);
1251             tz               = _mm_mul_ps(fscal,dz00);
1252
1253             /* Update vectorial force */
1254             fix0             = _mm_add_ps(fix0,tx);
1255             fiy0             = _mm_add_ps(fiy0,ty);
1256             fiz0             = _mm_add_ps(fiz0,tz);
1257
1258             fjx0             = _mm_add_ps(fjx0,tx);
1259             fjy0             = _mm_add_ps(fjy0,ty);
1260             fjz0             = _mm_add_ps(fjz0,tz);
1261             
1262             }
1263
1264             /**************************
1265              * CALCULATE INTERACTIONS *
1266              **************************/
1267
1268             if (gmx_mm_any_lt(rsq10,rcutoff2))
1269             {
1270
1271             /* Compute parameters for interactions between i and j atoms */
1272             qq10             = _mm_mul_ps(iq1,jq0);
1273
1274             /* REACTION-FIELD ELECTROSTATICS */
1275             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1276
1277             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1278
1279             fscal            = felec;
1280
1281             fscal            = _mm_and_ps(fscal,cutoff_mask);
1282
1283             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1284
1285             /* Calculate temporary vectorial force */
1286             tx               = _mm_mul_ps(fscal,dx10);
1287             ty               = _mm_mul_ps(fscal,dy10);
1288             tz               = _mm_mul_ps(fscal,dz10);
1289
1290             /* Update vectorial force */
1291             fix1             = _mm_add_ps(fix1,tx);
1292             fiy1             = _mm_add_ps(fiy1,ty);
1293             fiz1             = _mm_add_ps(fiz1,tz);
1294
1295             fjx0             = _mm_add_ps(fjx0,tx);
1296             fjy0             = _mm_add_ps(fjy0,ty);
1297             fjz0             = _mm_add_ps(fjz0,tz);
1298             
1299             }
1300
1301             /**************************
1302              * CALCULATE INTERACTIONS *
1303              **************************/
1304
1305             if (gmx_mm_any_lt(rsq20,rcutoff2))
1306             {
1307
1308             /* Compute parameters for interactions between i and j atoms */
1309             qq20             = _mm_mul_ps(iq2,jq0);
1310
1311             /* REACTION-FIELD ELECTROSTATICS */
1312             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1313
1314             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1315
1316             fscal            = felec;
1317
1318             fscal            = _mm_and_ps(fscal,cutoff_mask);
1319
1320             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1321
1322             /* Calculate temporary vectorial force */
1323             tx               = _mm_mul_ps(fscal,dx20);
1324             ty               = _mm_mul_ps(fscal,dy20);
1325             tz               = _mm_mul_ps(fscal,dz20);
1326
1327             /* Update vectorial force */
1328             fix2             = _mm_add_ps(fix2,tx);
1329             fiy2             = _mm_add_ps(fiy2,ty);
1330             fiz2             = _mm_add_ps(fiz2,tz);
1331
1332             fjx0             = _mm_add_ps(fjx0,tx);
1333             fjy0             = _mm_add_ps(fjy0,ty);
1334             fjz0             = _mm_add_ps(fjz0,tz);
1335             
1336             }
1337
1338             /**************************
1339              * CALCULATE INTERACTIONS *
1340              **************************/
1341
1342             if (gmx_mm_any_lt(rsq30,rcutoff2))
1343             {
1344
1345             /* Compute parameters for interactions between i and j atoms */
1346             qq30             = _mm_mul_ps(iq3,jq0);
1347
1348             /* REACTION-FIELD ELECTROSTATICS */
1349             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1350
1351             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1352
1353             fscal            = felec;
1354
1355             fscal            = _mm_and_ps(fscal,cutoff_mask);
1356
1357             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1358
1359             /* Calculate temporary vectorial force */
1360             tx               = _mm_mul_ps(fscal,dx30);
1361             ty               = _mm_mul_ps(fscal,dy30);
1362             tz               = _mm_mul_ps(fscal,dz30);
1363
1364             /* Update vectorial force */
1365             fix3             = _mm_add_ps(fix3,tx);
1366             fiy3             = _mm_add_ps(fiy3,ty);
1367             fiz3             = _mm_add_ps(fiz3,tz);
1368
1369             fjx0             = _mm_add_ps(fjx0,tx);
1370             fjy0             = _mm_add_ps(fjy0,ty);
1371             fjz0             = _mm_add_ps(fjz0,tz);
1372             
1373             }
1374
1375             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1376             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1377             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1378             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1379
1380             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1381
1382             /* Inner loop uses 147 flops */
1383         }
1384
1385         /* End of innermost loop */
1386
1387         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1388                                               f+i_coord_offset,fshift+i_shift_offset);
1389
1390         /* Increment number of inner iterations */
1391         inneriter                  += j_index_end - j_index_start;
1392
1393         /* Outer loop uses 24 flops */
1394     }
1395
1396     /* Increment number of outer iterations */
1397     outeriter        += nri;
1398
1399     /* Update outer/inner flops */
1400
1401     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*147);
1402 }