Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
89     real             rswitch_scalar,d_scalar;
90     __m128           dummy_mask,cutoff_mask;
91     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
92     __m128           one     = _mm_set1_ps(1.0);
93     __m128           two     = _mm_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     krf              = _mm_set1_ps(fr->ic->k_rf);
108     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
109     crf              = _mm_set1_ps(fr->ic->c_rf);
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
117     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
118     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
119     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
120
121     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
122     rcutoff_scalar   = fr->rcoulomb;
123     rcutoff          = _mm_set1_ps(rcutoff_scalar);
124     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
125
126     rswitch_scalar   = fr->rvdw_switch;
127     rswitch          = _mm_set1_ps(rswitch_scalar);
128     /* Setup switch parameters */
129     d_scalar         = rcutoff_scalar-rswitch_scalar;
130     d                = _mm_set1_ps(d_scalar);
131     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
132     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
133     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
134     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
135     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }  
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
170         
171         fix0             = _mm_setzero_ps();
172         fiy0             = _mm_setzero_ps();
173         fiz0             = _mm_setzero_ps();
174         fix1             = _mm_setzero_ps();
175         fiy1             = _mm_setzero_ps();
176         fiz1             = _mm_setzero_ps();
177         fix2             = _mm_setzero_ps();
178         fiy2             = _mm_setzero_ps();
179         fiz2             = _mm_setzero_ps();
180
181         /* Reset potential sums */
182         velecsum         = _mm_setzero_ps();
183         vvdwsum          = _mm_setzero_ps();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             jnrC             = jjnr[jidx+2];
193             jnrD             = jjnr[jidx+3];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198
199             /* load j atom coordinates */
200             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
201                                               x+j_coord_offsetC,x+j_coord_offsetD,
202                                               &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm_sub_ps(ix0,jx0);
206             dy00             = _mm_sub_ps(iy0,jy0);
207             dz00             = _mm_sub_ps(iz0,jz0);
208             dx10             = _mm_sub_ps(ix1,jx0);
209             dy10             = _mm_sub_ps(iy1,jy0);
210             dz10             = _mm_sub_ps(iz1,jz0);
211             dx20             = _mm_sub_ps(ix2,jx0);
212             dy20             = _mm_sub_ps(iy2,jy0);
213             dz20             = _mm_sub_ps(iz2,jz0);
214
215             /* Calculate squared distance and things based on it */
216             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
217             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
218             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
219
220             rinv00           = gmx_mm_invsqrt_ps(rsq00);
221             rinv10           = gmx_mm_invsqrt_ps(rsq10);
222             rinv20           = gmx_mm_invsqrt_ps(rsq20);
223
224             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
225             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
226             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
227
228             /* Load parameters for j particles */
229             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
230                                                               charge+jnrC+0,charge+jnrD+0);
231             vdwjidx0A        = 2*vdwtype[jnrA+0];
232             vdwjidx0B        = 2*vdwtype[jnrB+0];
233             vdwjidx0C        = 2*vdwtype[jnrC+0];
234             vdwjidx0D        = 2*vdwtype[jnrD+0];
235
236             fjx0             = _mm_setzero_ps();
237             fjy0             = _mm_setzero_ps();
238             fjz0             = _mm_setzero_ps();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             if (gmx_mm_any_lt(rsq00,rcutoff2))
245             {
246
247             r00              = _mm_mul_ps(rsq00,rinv00);
248
249             /* Compute parameters for interactions between i and j atoms */
250             qq00             = _mm_mul_ps(iq0,jq0);
251             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
252                                          vdwparam+vdwioffset0+vdwjidx0B,
253                                          vdwparam+vdwioffset0+vdwjidx0C,
254                                          vdwparam+vdwioffset0+vdwjidx0D,
255                                          &c6_00,&c12_00);
256
257             /* REACTION-FIELD ELECTROSTATICS */
258             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
259             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
260
261             /* LENNARD-JONES DISPERSION/REPULSION */
262
263             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
264             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
265             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
266             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
267             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
268
269             d                = _mm_sub_ps(r00,rswitch);
270             d                = _mm_max_ps(d,_mm_setzero_ps());
271             d2               = _mm_mul_ps(d,d);
272             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
273
274             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
275
276             /* Evaluate switch function */
277             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
278             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
279             vvdw             = _mm_mul_ps(vvdw,sw);
280             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velec            = _mm_and_ps(velec,cutoff_mask);
284             velecsum         = _mm_add_ps(velecsum,velec);
285             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
286             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
287
288             fscal            = _mm_add_ps(felec,fvdw);
289
290             fscal            = _mm_and_ps(fscal,cutoff_mask);
291
292             /* Calculate temporary vectorial force */
293             tx               = _mm_mul_ps(fscal,dx00);
294             ty               = _mm_mul_ps(fscal,dy00);
295             tz               = _mm_mul_ps(fscal,dz00);
296
297             /* Update vectorial force */
298             fix0             = _mm_add_ps(fix0,tx);
299             fiy0             = _mm_add_ps(fiy0,ty);
300             fiz0             = _mm_add_ps(fiz0,tz);
301
302             fjx0             = _mm_add_ps(fjx0,tx);
303             fjy0             = _mm_add_ps(fjy0,ty);
304             fjz0             = _mm_add_ps(fjz0,tz);
305             
306             }
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             if (gmx_mm_any_lt(rsq10,rcutoff2))
313             {
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq10             = _mm_mul_ps(iq1,jq0);
317
318             /* REACTION-FIELD ELECTROSTATICS */
319             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
320             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
321
322             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
323
324             /* Update potential sum for this i atom from the interaction with this j atom. */
325             velec            = _mm_and_ps(velec,cutoff_mask);
326             velecsum         = _mm_add_ps(velecsum,velec);
327
328             fscal            = felec;
329
330             fscal            = _mm_and_ps(fscal,cutoff_mask);
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm_mul_ps(fscal,dx10);
334             ty               = _mm_mul_ps(fscal,dy10);
335             tz               = _mm_mul_ps(fscal,dz10);
336
337             /* Update vectorial force */
338             fix1             = _mm_add_ps(fix1,tx);
339             fiy1             = _mm_add_ps(fiy1,ty);
340             fiz1             = _mm_add_ps(fiz1,tz);
341
342             fjx0             = _mm_add_ps(fjx0,tx);
343             fjy0             = _mm_add_ps(fjy0,ty);
344             fjz0             = _mm_add_ps(fjz0,tz);
345             
346             }
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             if (gmx_mm_any_lt(rsq20,rcutoff2))
353             {
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq20             = _mm_mul_ps(iq2,jq0);
357
358             /* REACTION-FIELD ELECTROSTATICS */
359             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
360             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
361
362             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velec            = _mm_and_ps(velec,cutoff_mask);
366             velecsum         = _mm_add_ps(velecsum,velec);
367
368             fscal            = felec;
369
370             fscal            = _mm_and_ps(fscal,cutoff_mask);
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm_mul_ps(fscal,dx20);
374             ty               = _mm_mul_ps(fscal,dy20);
375             tz               = _mm_mul_ps(fscal,dz20);
376
377             /* Update vectorial force */
378             fix2             = _mm_add_ps(fix2,tx);
379             fiy2             = _mm_add_ps(fiy2,ty);
380             fiz2             = _mm_add_ps(fiz2,tz);
381
382             fjx0             = _mm_add_ps(fjx0,tx);
383             fjy0             = _mm_add_ps(fjy0,ty);
384             fjz0             = _mm_add_ps(fjz0,tz);
385             
386             }
387
388             fjptrA             = f+j_coord_offsetA;
389             fjptrB             = f+j_coord_offsetB;
390             fjptrC             = f+j_coord_offsetC;
391             fjptrD             = f+j_coord_offsetD;
392
393             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
394
395             /* Inner loop uses 142 flops */
396         }
397
398         if(jidx<j_index_end)
399         {
400
401             /* Get j neighbor index, and coordinate index */
402             jnrlistA         = jjnr[jidx];
403             jnrlistB         = jjnr[jidx+1];
404             jnrlistC         = jjnr[jidx+2];
405             jnrlistD         = jjnr[jidx+3];
406             /* Sign of each element will be negative for non-real atoms.
407              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
408              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
409              */
410             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
411             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
412             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
413             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
414             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
415             j_coord_offsetA  = DIM*jnrA;
416             j_coord_offsetB  = DIM*jnrB;
417             j_coord_offsetC  = DIM*jnrC;
418             j_coord_offsetD  = DIM*jnrD;
419
420             /* load j atom coordinates */
421             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
422                                               x+j_coord_offsetC,x+j_coord_offsetD,
423                                               &jx0,&jy0,&jz0);
424
425             /* Calculate displacement vector */
426             dx00             = _mm_sub_ps(ix0,jx0);
427             dy00             = _mm_sub_ps(iy0,jy0);
428             dz00             = _mm_sub_ps(iz0,jz0);
429             dx10             = _mm_sub_ps(ix1,jx0);
430             dy10             = _mm_sub_ps(iy1,jy0);
431             dz10             = _mm_sub_ps(iz1,jz0);
432             dx20             = _mm_sub_ps(ix2,jx0);
433             dy20             = _mm_sub_ps(iy2,jy0);
434             dz20             = _mm_sub_ps(iz2,jz0);
435
436             /* Calculate squared distance and things based on it */
437             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
438             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
439             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
440
441             rinv00           = gmx_mm_invsqrt_ps(rsq00);
442             rinv10           = gmx_mm_invsqrt_ps(rsq10);
443             rinv20           = gmx_mm_invsqrt_ps(rsq20);
444
445             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
446             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
447             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
448
449             /* Load parameters for j particles */
450             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
451                                                               charge+jnrC+0,charge+jnrD+0);
452             vdwjidx0A        = 2*vdwtype[jnrA+0];
453             vdwjidx0B        = 2*vdwtype[jnrB+0];
454             vdwjidx0C        = 2*vdwtype[jnrC+0];
455             vdwjidx0D        = 2*vdwtype[jnrD+0];
456
457             fjx0             = _mm_setzero_ps();
458             fjy0             = _mm_setzero_ps();
459             fjz0             = _mm_setzero_ps();
460
461             /**************************
462              * CALCULATE INTERACTIONS *
463              **************************/
464
465             if (gmx_mm_any_lt(rsq00,rcutoff2))
466             {
467
468             r00              = _mm_mul_ps(rsq00,rinv00);
469             r00              = _mm_andnot_ps(dummy_mask,r00);
470
471             /* Compute parameters for interactions between i and j atoms */
472             qq00             = _mm_mul_ps(iq0,jq0);
473             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
474                                          vdwparam+vdwioffset0+vdwjidx0B,
475                                          vdwparam+vdwioffset0+vdwjidx0C,
476                                          vdwparam+vdwioffset0+vdwjidx0D,
477                                          &c6_00,&c12_00);
478
479             /* REACTION-FIELD ELECTROSTATICS */
480             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
481             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
482
483             /* LENNARD-JONES DISPERSION/REPULSION */
484
485             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
486             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
487             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
488             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
489             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
490
491             d                = _mm_sub_ps(r00,rswitch);
492             d                = _mm_max_ps(d,_mm_setzero_ps());
493             d2               = _mm_mul_ps(d,d);
494             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
495
496             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
497
498             /* Evaluate switch function */
499             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
500             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
501             vvdw             = _mm_mul_ps(vvdw,sw);
502             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
503
504             /* Update potential sum for this i atom from the interaction with this j atom. */
505             velec            = _mm_and_ps(velec,cutoff_mask);
506             velec            = _mm_andnot_ps(dummy_mask,velec);
507             velecsum         = _mm_add_ps(velecsum,velec);
508             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
509             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
510             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
511
512             fscal            = _mm_add_ps(felec,fvdw);
513
514             fscal            = _mm_and_ps(fscal,cutoff_mask);
515
516             fscal            = _mm_andnot_ps(dummy_mask,fscal);
517
518             /* Calculate temporary vectorial force */
519             tx               = _mm_mul_ps(fscal,dx00);
520             ty               = _mm_mul_ps(fscal,dy00);
521             tz               = _mm_mul_ps(fscal,dz00);
522
523             /* Update vectorial force */
524             fix0             = _mm_add_ps(fix0,tx);
525             fiy0             = _mm_add_ps(fiy0,ty);
526             fiz0             = _mm_add_ps(fiz0,tz);
527
528             fjx0             = _mm_add_ps(fjx0,tx);
529             fjy0             = _mm_add_ps(fjy0,ty);
530             fjz0             = _mm_add_ps(fjz0,tz);
531             
532             }
533
534             /**************************
535              * CALCULATE INTERACTIONS *
536              **************************/
537
538             if (gmx_mm_any_lt(rsq10,rcutoff2))
539             {
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq10             = _mm_mul_ps(iq1,jq0);
543
544             /* REACTION-FIELD ELECTROSTATICS */
545             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
546             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
547
548             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
549
550             /* Update potential sum for this i atom from the interaction with this j atom. */
551             velec            = _mm_and_ps(velec,cutoff_mask);
552             velec            = _mm_andnot_ps(dummy_mask,velec);
553             velecsum         = _mm_add_ps(velecsum,velec);
554
555             fscal            = felec;
556
557             fscal            = _mm_and_ps(fscal,cutoff_mask);
558
559             fscal            = _mm_andnot_ps(dummy_mask,fscal);
560
561             /* Calculate temporary vectorial force */
562             tx               = _mm_mul_ps(fscal,dx10);
563             ty               = _mm_mul_ps(fscal,dy10);
564             tz               = _mm_mul_ps(fscal,dz10);
565
566             /* Update vectorial force */
567             fix1             = _mm_add_ps(fix1,tx);
568             fiy1             = _mm_add_ps(fiy1,ty);
569             fiz1             = _mm_add_ps(fiz1,tz);
570
571             fjx0             = _mm_add_ps(fjx0,tx);
572             fjy0             = _mm_add_ps(fjy0,ty);
573             fjz0             = _mm_add_ps(fjz0,tz);
574             
575             }
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             if (gmx_mm_any_lt(rsq20,rcutoff2))
582             {
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq20             = _mm_mul_ps(iq2,jq0);
586
587             /* REACTION-FIELD ELECTROSTATICS */
588             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
589             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
590
591             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
592
593             /* Update potential sum for this i atom from the interaction with this j atom. */
594             velec            = _mm_and_ps(velec,cutoff_mask);
595             velec            = _mm_andnot_ps(dummy_mask,velec);
596             velecsum         = _mm_add_ps(velecsum,velec);
597
598             fscal            = felec;
599
600             fscal            = _mm_and_ps(fscal,cutoff_mask);
601
602             fscal            = _mm_andnot_ps(dummy_mask,fscal);
603
604             /* Calculate temporary vectorial force */
605             tx               = _mm_mul_ps(fscal,dx20);
606             ty               = _mm_mul_ps(fscal,dy20);
607             tz               = _mm_mul_ps(fscal,dz20);
608
609             /* Update vectorial force */
610             fix2             = _mm_add_ps(fix2,tx);
611             fiy2             = _mm_add_ps(fiy2,ty);
612             fiz2             = _mm_add_ps(fiz2,tz);
613
614             fjx0             = _mm_add_ps(fjx0,tx);
615             fjy0             = _mm_add_ps(fjy0,ty);
616             fjz0             = _mm_add_ps(fjz0,tz);
617             
618             }
619
620             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
621             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
622             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
623             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
624
625             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
626
627             /* Inner loop uses 143 flops */
628         }
629
630         /* End of innermost loop */
631
632         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
633                                               f+i_coord_offset,fshift+i_shift_offset);
634
635         ggid                        = gid[iidx];
636         /* Update potential energies */
637         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
638         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
639
640         /* Increment number of inner iterations */
641         inneriter                  += j_index_end - j_index_start;
642
643         /* Outer loop uses 20 flops */
644     }
645
646     /* Increment number of outer iterations */
647     outeriter        += nri;
648
649     /* Update outer/inner flops */
650
651     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*143);
652 }
653 /*
654  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse2_single
655  * Electrostatics interaction: ReactionField
656  * VdW interaction:            LennardJones
657  * Geometry:                   Water3-Particle
658  * Calculate force/pot:        Force
659  */
660 void
661 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse2_single
662                     (t_nblist * gmx_restrict                nlist,
663                      rvec * gmx_restrict                    xx,
664                      rvec * gmx_restrict                    ff,
665                      t_forcerec * gmx_restrict              fr,
666                      t_mdatoms * gmx_restrict               mdatoms,
667                      nb_kernel_data_t * gmx_restrict        kernel_data,
668                      t_nrnb * gmx_restrict                  nrnb)
669 {
670     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
671      * just 0 for non-waters.
672      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
673      * jnr indices corresponding to data put in the four positions in the SIMD register.
674      */
675     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
676     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
677     int              jnrA,jnrB,jnrC,jnrD;
678     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
679     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
680     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
681     real             rcutoff_scalar;
682     real             *shiftvec,*fshift,*x,*f;
683     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
684     real             scratch[4*DIM];
685     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
686     int              vdwioffset0;
687     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
688     int              vdwioffset1;
689     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
690     int              vdwioffset2;
691     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
692     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
693     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
694     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
695     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
696     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
697     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
698     real             *charge;
699     int              nvdwtype;
700     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
701     int              *vdwtype;
702     real             *vdwparam;
703     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
704     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
705     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
706     real             rswitch_scalar,d_scalar;
707     __m128           dummy_mask,cutoff_mask;
708     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
709     __m128           one     = _mm_set1_ps(1.0);
710     __m128           two     = _mm_set1_ps(2.0);
711     x                = xx[0];
712     f                = ff[0];
713
714     nri              = nlist->nri;
715     iinr             = nlist->iinr;
716     jindex           = nlist->jindex;
717     jjnr             = nlist->jjnr;
718     shiftidx         = nlist->shift;
719     gid              = nlist->gid;
720     shiftvec         = fr->shift_vec[0];
721     fshift           = fr->fshift[0];
722     facel            = _mm_set1_ps(fr->epsfac);
723     charge           = mdatoms->chargeA;
724     krf              = _mm_set1_ps(fr->ic->k_rf);
725     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
726     crf              = _mm_set1_ps(fr->ic->c_rf);
727     nvdwtype         = fr->ntype;
728     vdwparam         = fr->nbfp;
729     vdwtype          = mdatoms->typeA;
730
731     /* Setup water-specific parameters */
732     inr              = nlist->iinr[0];
733     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
734     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
735     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
736     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
737
738     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
739     rcutoff_scalar   = fr->rcoulomb;
740     rcutoff          = _mm_set1_ps(rcutoff_scalar);
741     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
742
743     rswitch_scalar   = fr->rvdw_switch;
744     rswitch          = _mm_set1_ps(rswitch_scalar);
745     /* Setup switch parameters */
746     d_scalar         = rcutoff_scalar-rswitch_scalar;
747     d                = _mm_set1_ps(d_scalar);
748     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
749     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
750     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
751     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
752     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
753     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
754
755     /* Avoid stupid compiler warnings */
756     jnrA = jnrB = jnrC = jnrD = 0;
757     j_coord_offsetA = 0;
758     j_coord_offsetB = 0;
759     j_coord_offsetC = 0;
760     j_coord_offsetD = 0;
761
762     outeriter        = 0;
763     inneriter        = 0;
764
765     for(iidx=0;iidx<4*DIM;iidx++)
766     {
767         scratch[iidx] = 0.0;
768     }  
769
770     /* Start outer loop over neighborlists */
771     for(iidx=0; iidx<nri; iidx++)
772     {
773         /* Load shift vector for this list */
774         i_shift_offset   = DIM*shiftidx[iidx];
775
776         /* Load limits for loop over neighbors */
777         j_index_start    = jindex[iidx];
778         j_index_end      = jindex[iidx+1];
779
780         /* Get outer coordinate index */
781         inr              = iinr[iidx];
782         i_coord_offset   = DIM*inr;
783
784         /* Load i particle coords and add shift vector */
785         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
786                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
787         
788         fix0             = _mm_setzero_ps();
789         fiy0             = _mm_setzero_ps();
790         fiz0             = _mm_setzero_ps();
791         fix1             = _mm_setzero_ps();
792         fiy1             = _mm_setzero_ps();
793         fiz1             = _mm_setzero_ps();
794         fix2             = _mm_setzero_ps();
795         fiy2             = _mm_setzero_ps();
796         fiz2             = _mm_setzero_ps();
797
798         /* Start inner kernel loop */
799         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
800         {
801
802             /* Get j neighbor index, and coordinate index */
803             jnrA             = jjnr[jidx];
804             jnrB             = jjnr[jidx+1];
805             jnrC             = jjnr[jidx+2];
806             jnrD             = jjnr[jidx+3];
807             j_coord_offsetA  = DIM*jnrA;
808             j_coord_offsetB  = DIM*jnrB;
809             j_coord_offsetC  = DIM*jnrC;
810             j_coord_offsetD  = DIM*jnrD;
811
812             /* load j atom coordinates */
813             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
814                                               x+j_coord_offsetC,x+j_coord_offsetD,
815                                               &jx0,&jy0,&jz0);
816
817             /* Calculate displacement vector */
818             dx00             = _mm_sub_ps(ix0,jx0);
819             dy00             = _mm_sub_ps(iy0,jy0);
820             dz00             = _mm_sub_ps(iz0,jz0);
821             dx10             = _mm_sub_ps(ix1,jx0);
822             dy10             = _mm_sub_ps(iy1,jy0);
823             dz10             = _mm_sub_ps(iz1,jz0);
824             dx20             = _mm_sub_ps(ix2,jx0);
825             dy20             = _mm_sub_ps(iy2,jy0);
826             dz20             = _mm_sub_ps(iz2,jz0);
827
828             /* Calculate squared distance and things based on it */
829             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
830             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
831             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
832
833             rinv00           = gmx_mm_invsqrt_ps(rsq00);
834             rinv10           = gmx_mm_invsqrt_ps(rsq10);
835             rinv20           = gmx_mm_invsqrt_ps(rsq20);
836
837             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
838             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
839             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
840
841             /* Load parameters for j particles */
842             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
843                                                               charge+jnrC+0,charge+jnrD+0);
844             vdwjidx0A        = 2*vdwtype[jnrA+0];
845             vdwjidx0B        = 2*vdwtype[jnrB+0];
846             vdwjidx0C        = 2*vdwtype[jnrC+0];
847             vdwjidx0D        = 2*vdwtype[jnrD+0];
848
849             fjx0             = _mm_setzero_ps();
850             fjy0             = _mm_setzero_ps();
851             fjz0             = _mm_setzero_ps();
852
853             /**************************
854              * CALCULATE INTERACTIONS *
855              **************************/
856
857             if (gmx_mm_any_lt(rsq00,rcutoff2))
858             {
859
860             r00              = _mm_mul_ps(rsq00,rinv00);
861
862             /* Compute parameters for interactions between i and j atoms */
863             qq00             = _mm_mul_ps(iq0,jq0);
864             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
865                                          vdwparam+vdwioffset0+vdwjidx0B,
866                                          vdwparam+vdwioffset0+vdwjidx0C,
867                                          vdwparam+vdwioffset0+vdwjidx0D,
868                                          &c6_00,&c12_00);
869
870             /* REACTION-FIELD ELECTROSTATICS */
871             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
872
873             /* LENNARD-JONES DISPERSION/REPULSION */
874
875             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
876             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
877             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
878             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
879             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
880
881             d                = _mm_sub_ps(r00,rswitch);
882             d                = _mm_max_ps(d,_mm_setzero_ps());
883             d2               = _mm_mul_ps(d,d);
884             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
885
886             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
887
888             /* Evaluate switch function */
889             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
890             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
891             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
892
893             fscal            = _mm_add_ps(felec,fvdw);
894
895             fscal            = _mm_and_ps(fscal,cutoff_mask);
896
897             /* Calculate temporary vectorial force */
898             tx               = _mm_mul_ps(fscal,dx00);
899             ty               = _mm_mul_ps(fscal,dy00);
900             tz               = _mm_mul_ps(fscal,dz00);
901
902             /* Update vectorial force */
903             fix0             = _mm_add_ps(fix0,tx);
904             fiy0             = _mm_add_ps(fiy0,ty);
905             fiz0             = _mm_add_ps(fiz0,tz);
906
907             fjx0             = _mm_add_ps(fjx0,tx);
908             fjy0             = _mm_add_ps(fjy0,ty);
909             fjz0             = _mm_add_ps(fjz0,tz);
910             
911             }
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             if (gmx_mm_any_lt(rsq10,rcutoff2))
918             {
919
920             /* Compute parameters for interactions between i and j atoms */
921             qq10             = _mm_mul_ps(iq1,jq0);
922
923             /* REACTION-FIELD ELECTROSTATICS */
924             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
925
926             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
927
928             fscal            = felec;
929
930             fscal            = _mm_and_ps(fscal,cutoff_mask);
931
932             /* Calculate temporary vectorial force */
933             tx               = _mm_mul_ps(fscal,dx10);
934             ty               = _mm_mul_ps(fscal,dy10);
935             tz               = _mm_mul_ps(fscal,dz10);
936
937             /* Update vectorial force */
938             fix1             = _mm_add_ps(fix1,tx);
939             fiy1             = _mm_add_ps(fiy1,ty);
940             fiz1             = _mm_add_ps(fiz1,tz);
941
942             fjx0             = _mm_add_ps(fjx0,tx);
943             fjy0             = _mm_add_ps(fjy0,ty);
944             fjz0             = _mm_add_ps(fjz0,tz);
945             
946             }
947
948             /**************************
949              * CALCULATE INTERACTIONS *
950              **************************/
951
952             if (gmx_mm_any_lt(rsq20,rcutoff2))
953             {
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq20             = _mm_mul_ps(iq2,jq0);
957
958             /* REACTION-FIELD ELECTROSTATICS */
959             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
960
961             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
962
963             fscal            = felec;
964
965             fscal            = _mm_and_ps(fscal,cutoff_mask);
966
967             /* Calculate temporary vectorial force */
968             tx               = _mm_mul_ps(fscal,dx20);
969             ty               = _mm_mul_ps(fscal,dy20);
970             tz               = _mm_mul_ps(fscal,dz20);
971
972             /* Update vectorial force */
973             fix2             = _mm_add_ps(fix2,tx);
974             fiy2             = _mm_add_ps(fiy2,ty);
975             fiz2             = _mm_add_ps(fiz2,tz);
976
977             fjx0             = _mm_add_ps(fjx0,tx);
978             fjy0             = _mm_add_ps(fjy0,ty);
979             fjz0             = _mm_add_ps(fjz0,tz);
980             
981             }
982
983             fjptrA             = f+j_coord_offsetA;
984             fjptrB             = f+j_coord_offsetB;
985             fjptrC             = f+j_coord_offsetC;
986             fjptrD             = f+j_coord_offsetD;
987
988             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
989
990             /* Inner loop uses 121 flops */
991         }
992
993         if(jidx<j_index_end)
994         {
995
996             /* Get j neighbor index, and coordinate index */
997             jnrlistA         = jjnr[jidx];
998             jnrlistB         = jjnr[jidx+1];
999             jnrlistC         = jjnr[jidx+2];
1000             jnrlistD         = jjnr[jidx+3];
1001             /* Sign of each element will be negative for non-real atoms.
1002              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1003              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1004              */
1005             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1006             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1007             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1008             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1009             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1010             j_coord_offsetA  = DIM*jnrA;
1011             j_coord_offsetB  = DIM*jnrB;
1012             j_coord_offsetC  = DIM*jnrC;
1013             j_coord_offsetD  = DIM*jnrD;
1014
1015             /* load j atom coordinates */
1016             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1017                                               x+j_coord_offsetC,x+j_coord_offsetD,
1018                                               &jx0,&jy0,&jz0);
1019
1020             /* Calculate displacement vector */
1021             dx00             = _mm_sub_ps(ix0,jx0);
1022             dy00             = _mm_sub_ps(iy0,jy0);
1023             dz00             = _mm_sub_ps(iz0,jz0);
1024             dx10             = _mm_sub_ps(ix1,jx0);
1025             dy10             = _mm_sub_ps(iy1,jy0);
1026             dz10             = _mm_sub_ps(iz1,jz0);
1027             dx20             = _mm_sub_ps(ix2,jx0);
1028             dy20             = _mm_sub_ps(iy2,jy0);
1029             dz20             = _mm_sub_ps(iz2,jz0);
1030
1031             /* Calculate squared distance and things based on it */
1032             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1033             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1034             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1035
1036             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1037             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1038             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1039
1040             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1041             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1042             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1043
1044             /* Load parameters for j particles */
1045             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1046                                                               charge+jnrC+0,charge+jnrD+0);
1047             vdwjidx0A        = 2*vdwtype[jnrA+0];
1048             vdwjidx0B        = 2*vdwtype[jnrB+0];
1049             vdwjidx0C        = 2*vdwtype[jnrC+0];
1050             vdwjidx0D        = 2*vdwtype[jnrD+0];
1051
1052             fjx0             = _mm_setzero_ps();
1053             fjy0             = _mm_setzero_ps();
1054             fjz0             = _mm_setzero_ps();
1055
1056             /**************************
1057              * CALCULATE INTERACTIONS *
1058              **************************/
1059
1060             if (gmx_mm_any_lt(rsq00,rcutoff2))
1061             {
1062
1063             r00              = _mm_mul_ps(rsq00,rinv00);
1064             r00              = _mm_andnot_ps(dummy_mask,r00);
1065
1066             /* Compute parameters for interactions between i and j atoms */
1067             qq00             = _mm_mul_ps(iq0,jq0);
1068             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1069                                          vdwparam+vdwioffset0+vdwjidx0B,
1070                                          vdwparam+vdwioffset0+vdwjidx0C,
1071                                          vdwparam+vdwioffset0+vdwjidx0D,
1072                                          &c6_00,&c12_00);
1073
1074             /* REACTION-FIELD ELECTROSTATICS */
1075             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1076
1077             /* LENNARD-JONES DISPERSION/REPULSION */
1078
1079             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1080             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1081             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1082             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1083             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1084
1085             d                = _mm_sub_ps(r00,rswitch);
1086             d                = _mm_max_ps(d,_mm_setzero_ps());
1087             d2               = _mm_mul_ps(d,d);
1088             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1089
1090             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1091
1092             /* Evaluate switch function */
1093             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1094             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1095             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1096
1097             fscal            = _mm_add_ps(felec,fvdw);
1098
1099             fscal            = _mm_and_ps(fscal,cutoff_mask);
1100
1101             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1102
1103             /* Calculate temporary vectorial force */
1104             tx               = _mm_mul_ps(fscal,dx00);
1105             ty               = _mm_mul_ps(fscal,dy00);
1106             tz               = _mm_mul_ps(fscal,dz00);
1107
1108             /* Update vectorial force */
1109             fix0             = _mm_add_ps(fix0,tx);
1110             fiy0             = _mm_add_ps(fiy0,ty);
1111             fiz0             = _mm_add_ps(fiz0,tz);
1112
1113             fjx0             = _mm_add_ps(fjx0,tx);
1114             fjy0             = _mm_add_ps(fjy0,ty);
1115             fjz0             = _mm_add_ps(fjz0,tz);
1116             
1117             }
1118
1119             /**************************
1120              * CALCULATE INTERACTIONS *
1121              **************************/
1122
1123             if (gmx_mm_any_lt(rsq10,rcutoff2))
1124             {
1125
1126             /* Compute parameters for interactions between i and j atoms */
1127             qq10             = _mm_mul_ps(iq1,jq0);
1128
1129             /* REACTION-FIELD ELECTROSTATICS */
1130             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1131
1132             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1133
1134             fscal            = felec;
1135
1136             fscal            = _mm_and_ps(fscal,cutoff_mask);
1137
1138             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1139
1140             /* Calculate temporary vectorial force */
1141             tx               = _mm_mul_ps(fscal,dx10);
1142             ty               = _mm_mul_ps(fscal,dy10);
1143             tz               = _mm_mul_ps(fscal,dz10);
1144
1145             /* Update vectorial force */
1146             fix1             = _mm_add_ps(fix1,tx);
1147             fiy1             = _mm_add_ps(fiy1,ty);
1148             fiz1             = _mm_add_ps(fiz1,tz);
1149
1150             fjx0             = _mm_add_ps(fjx0,tx);
1151             fjy0             = _mm_add_ps(fjy0,ty);
1152             fjz0             = _mm_add_ps(fjz0,tz);
1153             
1154             }
1155
1156             /**************************
1157              * CALCULATE INTERACTIONS *
1158              **************************/
1159
1160             if (gmx_mm_any_lt(rsq20,rcutoff2))
1161             {
1162
1163             /* Compute parameters for interactions between i and j atoms */
1164             qq20             = _mm_mul_ps(iq2,jq0);
1165
1166             /* REACTION-FIELD ELECTROSTATICS */
1167             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1168
1169             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1170
1171             fscal            = felec;
1172
1173             fscal            = _mm_and_ps(fscal,cutoff_mask);
1174
1175             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1176
1177             /* Calculate temporary vectorial force */
1178             tx               = _mm_mul_ps(fscal,dx20);
1179             ty               = _mm_mul_ps(fscal,dy20);
1180             tz               = _mm_mul_ps(fscal,dz20);
1181
1182             /* Update vectorial force */
1183             fix2             = _mm_add_ps(fix2,tx);
1184             fiy2             = _mm_add_ps(fiy2,ty);
1185             fiz2             = _mm_add_ps(fiz2,tz);
1186
1187             fjx0             = _mm_add_ps(fjx0,tx);
1188             fjy0             = _mm_add_ps(fjy0,ty);
1189             fjz0             = _mm_add_ps(fjz0,tz);
1190             
1191             }
1192
1193             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1194             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1195             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1196             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1197
1198             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1199
1200             /* Inner loop uses 122 flops */
1201         }
1202
1203         /* End of innermost loop */
1204
1205         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1206                                               f+i_coord_offset,fshift+i_shift_offset);
1207
1208         /* Increment number of inner iterations */
1209         inneriter                  += j_index_end - j_index_start;
1210
1211         /* Outer loop uses 18 flops */
1212     }
1213
1214     /* Increment number of outer iterations */
1215     outeriter        += nri;
1216
1217     /* Update outer/inner flops */
1218
1219     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*122);
1220 }