Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse2_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
103     real             rswitch_scalar,d_scalar;
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm_set1_ps(fr->ic->k_rf);
122     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
123     crf              = _mm_set1_ps(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
131     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
132     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
136     rcutoff_scalar   = fr->rcoulomb;
137     rcutoff          = _mm_set1_ps(rcutoff_scalar);
138     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
139
140     rswitch_scalar   = fr->rvdw_switch;
141     rswitch          = _mm_set1_ps(rswitch_scalar);
142     /* Setup switch parameters */
143     d_scalar         = rcutoff_scalar-rswitch_scalar;
144     d                = _mm_set1_ps(d_scalar);
145     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
146     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
147     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
148     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
149     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
150     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = jnrC = jnrD = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156     j_coord_offsetC = 0;
157     j_coord_offsetD = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     for(iidx=0;iidx<4*DIM;iidx++)
163     {
164         scratch[iidx] = 0.0;
165     }  
166
167     /* Start outer loop over neighborlists */
168     for(iidx=0; iidx<nri; iidx++)
169     {
170         /* Load shift vector for this list */
171         i_shift_offset   = DIM*shiftidx[iidx];
172
173         /* Load limits for loop over neighbors */
174         j_index_start    = jindex[iidx];
175         j_index_end      = jindex[iidx+1];
176
177         /* Get outer coordinate index */
178         inr              = iinr[iidx];
179         i_coord_offset   = DIM*inr;
180
181         /* Load i particle coords and add shift vector */
182         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
183                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
184         
185         fix0             = _mm_setzero_ps();
186         fiy0             = _mm_setzero_ps();
187         fiz0             = _mm_setzero_ps();
188         fix1             = _mm_setzero_ps();
189         fiy1             = _mm_setzero_ps();
190         fiz1             = _mm_setzero_ps();
191         fix2             = _mm_setzero_ps();
192         fiy2             = _mm_setzero_ps();
193         fiz2             = _mm_setzero_ps();
194
195         /* Reset potential sums */
196         velecsum         = _mm_setzero_ps();
197         vvdwsum          = _mm_setzero_ps();
198
199         /* Start inner kernel loop */
200         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
201         {
202
203             /* Get j neighbor index, and coordinate index */
204             jnrA             = jjnr[jidx];
205             jnrB             = jjnr[jidx+1];
206             jnrC             = jjnr[jidx+2];
207             jnrD             = jjnr[jidx+3];
208             j_coord_offsetA  = DIM*jnrA;
209             j_coord_offsetB  = DIM*jnrB;
210             j_coord_offsetC  = DIM*jnrC;
211             j_coord_offsetD  = DIM*jnrD;
212
213             /* load j atom coordinates */
214             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
215                                               x+j_coord_offsetC,x+j_coord_offsetD,
216                                               &jx0,&jy0,&jz0);
217
218             /* Calculate displacement vector */
219             dx00             = _mm_sub_ps(ix0,jx0);
220             dy00             = _mm_sub_ps(iy0,jy0);
221             dz00             = _mm_sub_ps(iz0,jz0);
222             dx10             = _mm_sub_ps(ix1,jx0);
223             dy10             = _mm_sub_ps(iy1,jy0);
224             dz10             = _mm_sub_ps(iz1,jz0);
225             dx20             = _mm_sub_ps(ix2,jx0);
226             dy20             = _mm_sub_ps(iy2,jy0);
227             dz20             = _mm_sub_ps(iz2,jz0);
228
229             /* Calculate squared distance and things based on it */
230             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
231             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
232             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
233
234             rinv00           = gmx_mm_invsqrt_ps(rsq00);
235             rinv10           = gmx_mm_invsqrt_ps(rsq10);
236             rinv20           = gmx_mm_invsqrt_ps(rsq20);
237
238             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
239             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
240             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
241
242             /* Load parameters for j particles */
243             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
244                                                               charge+jnrC+0,charge+jnrD+0);
245             vdwjidx0A        = 2*vdwtype[jnrA+0];
246             vdwjidx0B        = 2*vdwtype[jnrB+0];
247             vdwjidx0C        = 2*vdwtype[jnrC+0];
248             vdwjidx0D        = 2*vdwtype[jnrD+0];
249
250             fjx0             = _mm_setzero_ps();
251             fjy0             = _mm_setzero_ps();
252             fjz0             = _mm_setzero_ps();
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             if (gmx_mm_any_lt(rsq00,rcutoff2))
259             {
260
261             r00              = _mm_mul_ps(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             qq00             = _mm_mul_ps(iq0,jq0);
265             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
266                                          vdwparam+vdwioffset0+vdwjidx0B,
267                                          vdwparam+vdwioffset0+vdwjidx0C,
268                                          vdwparam+vdwioffset0+vdwjidx0D,
269                                          &c6_00,&c12_00);
270
271             /* REACTION-FIELD ELECTROSTATICS */
272             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
273             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
274
275             /* LENNARD-JONES DISPERSION/REPULSION */
276
277             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
278             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
279             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
280             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
281             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
282
283             d                = _mm_sub_ps(r00,rswitch);
284             d                = _mm_max_ps(d,_mm_setzero_ps());
285             d2               = _mm_mul_ps(d,d);
286             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
287
288             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
289
290             /* Evaluate switch function */
291             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
292             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
293             vvdw             = _mm_mul_ps(vvdw,sw);
294             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velec            = _mm_and_ps(velec,cutoff_mask);
298             velecsum         = _mm_add_ps(velecsum,velec);
299             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
300             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
301
302             fscal            = _mm_add_ps(felec,fvdw);
303
304             fscal            = _mm_and_ps(fscal,cutoff_mask);
305
306             /* Calculate temporary vectorial force */
307             tx               = _mm_mul_ps(fscal,dx00);
308             ty               = _mm_mul_ps(fscal,dy00);
309             tz               = _mm_mul_ps(fscal,dz00);
310
311             /* Update vectorial force */
312             fix0             = _mm_add_ps(fix0,tx);
313             fiy0             = _mm_add_ps(fiy0,ty);
314             fiz0             = _mm_add_ps(fiz0,tz);
315
316             fjx0             = _mm_add_ps(fjx0,tx);
317             fjy0             = _mm_add_ps(fjy0,ty);
318             fjz0             = _mm_add_ps(fjz0,tz);
319             
320             }
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             if (gmx_mm_any_lt(rsq10,rcutoff2))
327             {
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq10             = _mm_mul_ps(iq1,jq0);
331
332             /* REACTION-FIELD ELECTROSTATICS */
333             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
334             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
335
336             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velec            = _mm_and_ps(velec,cutoff_mask);
340             velecsum         = _mm_add_ps(velecsum,velec);
341
342             fscal            = felec;
343
344             fscal            = _mm_and_ps(fscal,cutoff_mask);
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm_mul_ps(fscal,dx10);
348             ty               = _mm_mul_ps(fscal,dy10);
349             tz               = _mm_mul_ps(fscal,dz10);
350
351             /* Update vectorial force */
352             fix1             = _mm_add_ps(fix1,tx);
353             fiy1             = _mm_add_ps(fiy1,ty);
354             fiz1             = _mm_add_ps(fiz1,tz);
355
356             fjx0             = _mm_add_ps(fjx0,tx);
357             fjy0             = _mm_add_ps(fjy0,ty);
358             fjz0             = _mm_add_ps(fjz0,tz);
359             
360             }
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             if (gmx_mm_any_lt(rsq20,rcutoff2))
367             {
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq20             = _mm_mul_ps(iq2,jq0);
371
372             /* REACTION-FIELD ELECTROSTATICS */
373             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
374             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
375
376             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
377
378             /* Update potential sum for this i atom from the interaction with this j atom. */
379             velec            = _mm_and_ps(velec,cutoff_mask);
380             velecsum         = _mm_add_ps(velecsum,velec);
381
382             fscal            = felec;
383
384             fscal            = _mm_and_ps(fscal,cutoff_mask);
385
386             /* Calculate temporary vectorial force */
387             tx               = _mm_mul_ps(fscal,dx20);
388             ty               = _mm_mul_ps(fscal,dy20);
389             tz               = _mm_mul_ps(fscal,dz20);
390
391             /* Update vectorial force */
392             fix2             = _mm_add_ps(fix2,tx);
393             fiy2             = _mm_add_ps(fiy2,ty);
394             fiz2             = _mm_add_ps(fiz2,tz);
395
396             fjx0             = _mm_add_ps(fjx0,tx);
397             fjy0             = _mm_add_ps(fjy0,ty);
398             fjz0             = _mm_add_ps(fjz0,tz);
399             
400             }
401
402             fjptrA             = f+j_coord_offsetA;
403             fjptrB             = f+j_coord_offsetB;
404             fjptrC             = f+j_coord_offsetC;
405             fjptrD             = f+j_coord_offsetD;
406
407             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
408
409             /* Inner loop uses 142 flops */
410         }
411
412         if(jidx<j_index_end)
413         {
414
415             /* Get j neighbor index, and coordinate index */
416             jnrlistA         = jjnr[jidx];
417             jnrlistB         = jjnr[jidx+1];
418             jnrlistC         = jjnr[jidx+2];
419             jnrlistD         = jjnr[jidx+3];
420             /* Sign of each element will be negative for non-real atoms.
421              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
422              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
423              */
424             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
425             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
426             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
427             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
428             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
429             j_coord_offsetA  = DIM*jnrA;
430             j_coord_offsetB  = DIM*jnrB;
431             j_coord_offsetC  = DIM*jnrC;
432             j_coord_offsetD  = DIM*jnrD;
433
434             /* load j atom coordinates */
435             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
436                                               x+j_coord_offsetC,x+j_coord_offsetD,
437                                               &jx0,&jy0,&jz0);
438
439             /* Calculate displacement vector */
440             dx00             = _mm_sub_ps(ix0,jx0);
441             dy00             = _mm_sub_ps(iy0,jy0);
442             dz00             = _mm_sub_ps(iz0,jz0);
443             dx10             = _mm_sub_ps(ix1,jx0);
444             dy10             = _mm_sub_ps(iy1,jy0);
445             dz10             = _mm_sub_ps(iz1,jz0);
446             dx20             = _mm_sub_ps(ix2,jx0);
447             dy20             = _mm_sub_ps(iy2,jy0);
448             dz20             = _mm_sub_ps(iz2,jz0);
449
450             /* Calculate squared distance and things based on it */
451             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
452             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
453             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
454
455             rinv00           = gmx_mm_invsqrt_ps(rsq00);
456             rinv10           = gmx_mm_invsqrt_ps(rsq10);
457             rinv20           = gmx_mm_invsqrt_ps(rsq20);
458
459             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
460             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
461             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
462
463             /* Load parameters for j particles */
464             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
465                                                               charge+jnrC+0,charge+jnrD+0);
466             vdwjidx0A        = 2*vdwtype[jnrA+0];
467             vdwjidx0B        = 2*vdwtype[jnrB+0];
468             vdwjidx0C        = 2*vdwtype[jnrC+0];
469             vdwjidx0D        = 2*vdwtype[jnrD+0];
470
471             fjx0             = _mm_setzero_ps();
472             fjy0             = _mm_setzero_ps();
473             fjz0             = _mm_setzero_ps();
474
475             /**************************
476              * CALCULATE INTERACTIONS *
477              **************************/
478
479             if (gmx_mm_any_lt(rsq00,rcutoff2))
480             {
481
482             r00              = _mm_mul_ps(rsq00,rinv00);
483             r00              = _mm_andnot_ps(dummy_mask,r00);
484
485             /* Compute parameters for interactions between i and j atoms */
486             qq00             = _mm_mul_ps(iq0,jq0);
487             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
488                                          vdwparam+vdwioffset0+vdwjidx0B,
489                                          vdwparam+vdwioffset0+vdwjidx0C,
490                                          vdwparam+vdwioffset0+vdwjidx0D,
491                                          &c6_00,&c12_00);
492
493             /* REACTION-FIELD ELECTROSTATICS */
494             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
495             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
496
497             /* LENNARD-JONES DISPERSION/REPULSION */
498
499             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
500             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
501             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
502             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
503             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
504
505             d                = _mm_sub_ps(r00,rswitch);
506             d                = _mm_max_ps(d,_mm_setzero_ps());
507             d2               = _mm_mul_ps(d,d);
508             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
509
510             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
511
512             /* Evaluate switch function */
513             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
514             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
515             vvdw             = _mm_mul_ps(vvdw,sw);
516             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
517
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             velec            = _mm_and_ps(velec,cutoff_mask);
520             velec            = _mm_andnot_ps(dummy_mask,velec);
521             velecsum         = _mm_add_ps(velecsum,velec);
522             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
523             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
524             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
525
526             fscal            = _mm_add_ps(felec,fvdw);
527
528             fscal            = _mm_and_ps(fscal,cutoff_mask);
529
530             fscal            = _mm_andnot_ps(dummy_mask,fscal);
531
532             /* Calculate temporary vectorial force */
533             tx               = _mm_mul_ps(fscal,dx00);
534             ty               = _mm_mul_ps(fscal,dy00);
535             tz               = _mm_mul_ps(fscal,dz00);
536
537             /* Update vectorial force */
538             fix0             = _mm_add_ps(fix0,tx);
539             fiy0             = _mm_add_ps(fiy0,ty);
540             fiz0             = _mm_add_ps(fiz0,tz);
541
542             fjx0             = _mm_add_ps(fjx0,tx);
543             fjy0             = _mm_add_ps(fjy0,ty);
544             fjz0             = _mm_add_ps(fjz0,tz);
545             
546             }
547
548             /**************************
549              * CALCULATE INTERACTIONS *
550              **************************/
551
552             if (gmx_mm_any_lt(rsq10,rcutoff2))
553             {
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq10             = _mm_mul_ps(iq1,jq0);
557
558             /* REACTION-FIELD ELECTROSTATICS */
559             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
560             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
561
562             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
563
564             /* Update potential sum for this i atom from the interaction with this j atom. */
565             velec            = _mm_and_ps(velec,cutoff_mask);
566             velec            = _mm_andnot_ps(dummy_mask,velec);
567             velecsum         = _mm_add_ps(velecsum,velec);
568
569             fscal            = felec;
570
571             fscal            = _mm_and_ps(fscal,cutoff_mask);
572
573             fscal            = _mm_andnot_ps(dummy_mask,fscal);
574
575             /* Calculate temporary vectorial force */
576             tx               = _mm_mul_ps(fscal,dx10);
577             ty               = _mm_mul_ps(fscal,dy10);
578             tz               = _mm_mul_ps(fscal,dz10);
579
580             /* Update vectorial force */
581             fix1             = _mm_add_ps(fix1,tx);
582             fiy1             = _mm_add_ps(fiy1,ty);
583             fiz1             = _mm_add_ps(fiz1,tz);
584
585             fjx0             = _mm_add_ps(fjx0,tx);
586             fjy0             = _mm_add_ps(fjy0,ty);
587             fjz0             = _mm_add_ps(fjz0,tz);
588             
589             }
590
591             /**************************
592              * CALCULATE INTERACTIONS *
593              **************************/
594
595             if (gmx_mm_any_lt(rsq20,rcutoff2))
596             {
597
598             /* Compute parameters for interactions between i and j atoms */
599             qq20             = _mm_mul_ps(iq2,jq0);
600
601             /* REACTION-FIELD ELECTROSTATICS */
602             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
603             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
604
605             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
606
607             /* Update potential sum for this i atom from the interaction with this j atom. */
608             velec            = _mm_and_ps(velec,cutoff_mask);
609             velec            = _mm_andnot_ps(dummy_mask,velec);
610             velecsum         = _mm_add_ps(velecsum,velec);
611
612             fscal            = felec;
613
614             fscal            = _mm_and_ps(fscal,cutoff_mask);
615
616             fscal            = _mm_andnot_ps(dummy_mask,fscal);
617
618             /* Calculate temporary vectorial force */
619             tx               = _mm_mul_ps(fscal,dx20);
620             ty               = _mm_mul_ps(fscal,dy20);
621             tz               = _mm_mul_ps(fscal,dz20);
622
623             /* Update vectorial force */
624             fix2             = _mm_add_ps(fix2,tx);
625             fiy2             = _mm_add_ps(fiy2,ty);
626             fiz2             = _mm_add_ps(fiz2,tz);
627
628             fjx0             = _mm_add_ps(fjx0,tx);
629             fjy0             = _mm_add_ps(fjy0,ty);
630             fjz0             = _mm_add_ps(fjz0,tz);
631             
632             }
633
634             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
635             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
636             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
637             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
638
639             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
640
641             /* Inner loop uses 143 flops */
642         }
643
644         /* End of innermost loop */
645
646         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
647                                               f+i_coord_offset,fshift+i_shift_offset);
648
649         ggid                        = gid[iidx];
650         /* Update potential energies */
651         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
652         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
653
654         /* Increment number of inner iterations */
655         inneriter                  += j_index_end - j_index_start;
656
657         /* Outer loop uses 20 flops */
658     }
659
660     /* Increment number of outer iterations */
661     outeriter        += nri;
662
663     /* Update outer/inner flops */
664
665     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*143);
666 }
667 /*
668  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse2_single
669  * Electrostatics interaction: ReactionField
670  * VdW interaction:            LennardJones
671  * Geometry:                   Water3-Particle
672  * Calculate force/pot:        Force
673  */
674 void
675 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse2_single
676                     (t_nblist                    * gmx_restrict       nlist,
677                      rvec                        * gmx_restrict          xx,
678                      rvec                        * gmx_restrict          ff,
679                      t_forcerec                  * gmx_restrict          fr,
680                      t_mdatoms                   * gmx_restrict     mdatoms,
681                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
682                      t_nrnb                      * gmx_restrict        nrnb)
683 {
684     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
685      * just 0 for non-waters.
686      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
687      * jnr indices corresponding to data put in the four positions in the SIMD register.
688      */
689     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
690     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
691     int              jnrA,jnrB,jnrC,jnrD;
692     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
693     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
694     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
695     real             rcutoff_scalar;
696     real             *shiftvec,*fshift,*x,*f;
697     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
698     real             scratch[4*DIM];
699     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
700     int              vdwioffset0;
701     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
702     int              vdwioffset1;
703     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
704     int              vdwioffset2;
705     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
706     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
707     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
708     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
709     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
710     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
711     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
712     real             *charge;
713     int              nvdwtype;
714     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
715     int              *vdwtype;
716     real             *vdwparam;
717     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
718     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
719     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
720     real             rswitch_scalar,d_scalar;
721     __m128           dummy_mask,cutoff_mask;
722     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
723     __m128           one     = _mm_set1_ps(1.0);
724     __m128           two     = _mm_set1_ps(2.0);
725     x                = xx[0];
726     f                = ff[0];
727
728     nri              = nlist->nri;
729     iinr             = nlist->iinr;
730     jindex           = nlist->jindex;
731     jjnr             = nlist->jjnr;
732     shiftidx         = nlist->shift;
733     gid              = nlist->gid;
734     shiftvec         = fr->shift_vec[0];
735     fshift           = fr->fshift[0];
736     facel            = _mm_set1_ps(fr->epsfac);
737     charge           = mdatoms->chargeA;
738     krf              = _mm_set1_ps(fr->ic->k_rf);
739     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
740     crf              = _mm_set1_ps(fr->ic->c_rf);
741     nvdwtype         = fr->ntype;
742     vdwparam         = fr->nbfp;
743     vdwtype          = mdatoms->typeA;
744
745     /* Setup water-specific parameters */
746     inr              = nlist->iinr[0];
747     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
748     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
749     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
750     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
751
752     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
753     rcutoff_scalar   = fr->rcoulomb;
754     rcutoff          = _mm_set1_ps(rcutoff_scalar);
755     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
756
757     rswitch_scalar   = fr->rvdw_switch;
758     rswitch          = _mm_set1_ps(rswitch_scalar);
759     /* Setup switch parameters */
760     d_scalar         = rcutoff_scalar-rswitch_scalar;
761     d                = _mm_set1_ps(d_scalar);
762     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
763     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
764     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
765     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
766     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
767     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
768
769     /* Avoid stupid compiler warnings */
770     jnrA = jnrB = jnrC = jnrD = 0;
771     j_coord_offsetA = 0;
772     j_coord_offsetB = 0;
773     j_coord_offsetC = 0;
774     j_coord_offsetD = 0;
775
776     outeriter        = 0;
777     inneriter        = 0;
778
779     for(iidx=0;iidx<4*DIM;iidx++)
780     {
781         scratch[iidx] = 0.0;
782     }  
783
784     /* Start outer loop over neighborlists */
785     for(iidx=0; iidx<nri; iidx++)
786     {
787         /* Load shift vector for this list */
788         i_shift_offset   = DIM*shiftidx[iidx];
789
790         /* Load limits for loop over neighbors */
791         j_index_start    = jindex[iidx];
792         j_index_end      = jindex[iidx+1];
793
794         /* Get outer coordinate index */
795         inr              = iinr[iidx];
796         i_coord_offset   = DIM*inr;
797
798         /* Load i particle coords and add shift vector */
799         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
800                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
801         
802         fix0             = _mm_setzero_ps();
803         fiy0             = _mm_setzero_ps();
804         fiz0             = _mm_setzero_ps();
805         fix1             = _mm_setzero_ps();
806         fiy1             = _mm_setzero_ps();
807         fiz1             = _mm_setzero_ps();
808         fix2             = _mm_setzero_ps();
809         fiy2             = _mm_setzero_ps();
810         fiz2             = _mm_setzero_ps();
811
812         /* Start inner kernel loop */
813         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
814         {
815
816             /* Get j neighbor index, and coordinate index */
817             jnrA             = jjnr[jidx];
818             jnrB             = jjnr[jidx+1];
819             jnrC             = jjnr[jidx+2];
820             jnrD             = jjnr[jidx+3];
821             j_coord_offsetA  = DIM*jnrA;
822             j_coord_offsetB  = DIM*jnrB;
823             j_coord_offsetC  = DIM*jnrC;
824             j_coord_offsetD  = DIM*jnrD;
825
826             /* load j atom coordinates */
827             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
828                                               x+j_coord_offsetC,x+j_coord_offsetD,
829                                               &jx0,&jy0,&jz0);
830
831             /* Calculate displacement vector */
832             dx00             = _mm_sub_ps(ix0,jx0);
833             dy00             = _mm_sub_ps(iy0,jy0);
834             dz00             = _mm_sub_ps(iz0,jz0);
835             dx10             = _mm_sub_ps(ix1,jx0);
836             dy10             = _mm_sub_ps(iy1,jy0);
837             dz10             = _mm_sub_ps(iz1,jz0);
838             dx20             = _mm_sub_ps(ix2,jx0);
839             dy20             = _mm_sub_ps(iy2,jy0);
840             dz20             = _mm_sub_ps(iz2,jz0);
841
842             /* Calculate squared distance and things based on it */
843             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
844             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
845             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
846
847             rinv00           = gmx_mm_invsqrt_ps(rsq00);
848             rinv10           = gmx_mm_invsqrt_ps(rsq10);
849             rinv20           = gmx_mm_invsqrt_ps(rsq20);
850
851             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
852             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
853             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
854
855             /* Load parameters for j particles */
856             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
857                                                               charge+jnrC+0,charge+jnrD+0);
858             vdwjidx0A        = 2*vdwtype[jnrA+0];
859             vdwjidx0B        = 2*vdwtype[jnrB+0];
860             vdwjidx0C        = 2*vdwtype[jnrC+0];
861             vdwjidx0D        = 2*vdwtype[jnrD+0];
862
863             fjx0             = _mm_setzero_ps();
864             fjy0             = _mm_setzero_ps();
865             fjz0             = _mm_setzero_ps();
866
867             /**************************
868              * CALCULATE INTERACTIONS *
869              **************************/
870
871             if (gmx_mm_any_lt(rsq00,rcutoff2))
872             {
873
874             r00              = _mm_mul_ps(rsq00,rinv00);
875
876             /* Compute parameters for interactions between i and j atoms */
877             qq00             = _mm_mul_ps(iq0,jq0);
878             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
879                                          vdwparam+vdwioffset0+vdwjidx0B,
880                                          vdwparam+vdwioffset0+vdwjidx0C,
881                                          vdwparam+vdwioffset0+vdwjidx0D,
882                                          &c6_00,&c12_00);
883
884             /* REACTION-FIELD ELECTROSTATICS */
885             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
886
887             /* LENNARD-JONES DISPERSION/REPULSION */
888
889             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
890             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
891             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
892             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
893             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
894
895             d                = _mm_sub_ps(r00,rswitch);
896             d                = _mm_max_ps(d,_mm_setzero_ps());
897             d2               = _mm_mul_ps(d,d);
898             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
899
900             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
901
902             /* Evaluate switch function */
903             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
904             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
905             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
906
907             fscal            = _mm_add_ps(felec,fvdw);
908
909             fscal            = _mm_and_ps(fscal,cutoff_mask);
910
911             /* Calculate temporary vectorial force */
912             tx               = _mm_mul_ps(fscal,dx00);
913             ty               = _mm_mul_ps(fscal,dy00);
914             tz               = _mm_mul_ps(fscal,dz00);
915
916             /* Update vectorial force */
917             fix0             = _mm_add_ps(fix0,tx);
918             fiy0             = _mm_add_ps(fiy0,ty);
919             fiz0             = _mm_add_ps(fiz0,tz);
920
921             fjx0             = _mm_add_ps(fjx0,tx);
922             fjy0             = _mm_add_ps(fjy0,ty);
923             fjz0             = _mm_add_ps(fjz0,tz);
924             
925             }
926
927             /**************************
928              * CALCULATE INTERACTIONS *
929              **************************/
930
931             if (gmx_mm_any_lt(rsq10,rcutoff2))
932             {
933
934             /* Compute parameters for interactions between i and j atoms */
935             qq10             = _mm_mul_ps(iq1,jq0);
936
937             /* REACTION-FIELD ELECTROSTATICS */
938             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
939
940             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
941
942             fscal            = felec;
943
944             fscal            = _mm_and_ps(fscal,cutoff_mask);
945
946             /* Calculate temporary vectorial force */
947             tx               = _mm_mul_ps(fscal,dx10);
948             ty               = _mm_mul_ps(fscal,dy10);
949             tz               = _mm_mul_ps(fscal,dz10);
950
951             /* Update vectorial force */
952             fix1             = _mm_add_ps(fix1,tx);
953             fiy1             = _mm_add_ps(fiy1,ty);
954             fiz1             = _mm_add_ps(fiz1,tz);
955
956             fjx0             = _mm_add_ps(fjx0,tx);
957             fjy0             = _mm_add_ps(fjy0,ty);
958             fjz0             = _mm_add_ps(fjz0,tz);
959             
960             }
961
962             /**************************
963              * CALCULATE INTERACTIONS *
964              **************************/
965
966             if (gmx_mm_any_lt(rsq20,rcutoff2))
967             {
968
969             /* Compute parameters for interactions between i and j atoms */
970             qq20             = _mm_mul_ps(iq2,jq0);
971
972             /* REACTION-FIELD ELECTROSTATICS */
973             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
974
975             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
976
977             fscal            = felec;
978
979             fscal            = _mm_and_ps(fscal,cutoff_mask);
980
981             /* Calculate temporary vectorial force */
982             tx               = _mm_mul_ps(fscal,dx20);
983             ty               = _mm_mul_ps(fscal,dy20);
984             tz               = _mm_mul_ps(fscal,dz20);
985
986             /* Update vectorial force */
987             fix2             = _mm_add_ps(fix2,tx);
988             fiy2             = _mm_add_ps(fiy2,ty);
989             fiz2             = _mm_add_ps(fiz2,tz);
990
991             fjx0             = _mm_add_ps(fjx0,tx);
992             fjy0             = _mm_add_ps(fjy0,ty);
993             fjz0             = _mm_add_ps(fjz0,tz);
994             
995             }
996
997             fjptrA             = f+j_coord_offsetA;
998             fjptrB             = f+j_coord_offsetB;
999             fjptrC             = f+j_coord_offsetC;
1000             fjptrD             = f+j_coord_offsetD;
1001
1002             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1003
1004             /* Inner loop uses 121 flops */
1005         }
1006
1007         if(jidx<j_index_end)
1008         {
1009
1010             /* Get j neighbor index, and coordinate index */
1011             jnrlistA         = jjnr[jidx];
1012             jnrlistB         = jjnr[jidx+1];
1013             jnrlistC         = jjnr[jidx+2];
1014             jnrlistD         = jjnr[jidx+3];
1015             /* Sign of each element will be negative for non-real atoms.
1016              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1017              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1018              */
1019             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1020             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1021             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1022             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1023             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1024             j_coord_offsetA  = DIM*jnrA;
1025             j_coord_offsetB  = DIM*jnrB;
1026             j_coord_offsetC  = DIM*jnrC;
1027             j_coord_offsetD  = DIM*jnrD;
1028
1029             /* load j atom coordinates */
1030             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1031                                               x+j_coord_offsetC,x+j_coord_offsetD,
1032                                               &jx0,&jy0,&jz0);
1033
1034             /* Calculate displacement vector */
1035             dx00             = _mm_sub_ps(ix0,jx0);
1036             dy00             = _mm_sub_ps(iy0,jy0);
1037             dz00             = _mm_sub_ps(iz0,jz0);
1038             dx10             = _mm_sub_ps(ix1,jx0);
1039             dy10             = _mm_sub_ps(iy1,jy0);
1040             dz10             = _mm_sub_ps(iz1,jz0);
1041             dx20             = _mm_sub_ps(ix2,jx0);
1042             dy20             = _mm_sub_ps(iy2,jy0);
1043             dz20             = _mm_sub_ps(iz2,jz0);
1044
1045             /* Calculate squared distance and things based on it */
1046             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1047             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1048             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1049
1050             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1051             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1052             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1053
1054             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1055             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1056             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1057
1058             /* Load parameters for j particles */
1059             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1060                                                               charge+jnrC+0,charge+jnrD+0);
1061             vdwjidx0A        = 2*vdwtype[jnrA+0];
1062             vdwjidx0B        = 2*vdwtype[jnrB+0];
1063             vdwjidx0C        = 2*vdwtype[jnrC+0];
1064             vdwjidx0D        = 2*vdwtype[jnrD+0];
1065
1066             fjx0             = _mm_setzero_ps();
1067             fjy0             = _mm_setzero_ps();
1068             fjz0             = _mm_setzero_ps();
1069
1070             /**************************
1071              * CALCULATE INTERACTIONS *
1072              **************************/
1073
1074             if (gmx_mm_any_lt(rsq00,rcutoff2))
1075             {
1076
1077             r00              = _mm_mul_ps(rsq00,rinv00);
1078             r00              = _mm_andnot_ps(dummy_mask,r00);
1079
1080             /* Compute parameters for interactions between i and j atoms */
1081             qq00             = _mm_mul_ps(iq0,jq0);
1082             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1083                                          vdwparam+vdwioffset0+vdwjidx0B,
1084                                          vdwparam+vdwioffset0+vdwjidx0C,
1085                                          vdwparam+vdwioffset0+vdwjidx0D,
1086                                          &c6_00,&c12_00);
1087
1088             /* REACTION-FIELD ELECTROSTATICS */
1089             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1090
1091             /* LENNARD-JONES DISPERSION/REPULSION */
1092
1093             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1094             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1095             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1096             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1097             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1098
1099             d                = _mm_sub_ps(r00,rswitch);
1100             d                = _mm_max_ps(d,_mm_setzero_ps());
1101             d2               = _mm_mul_ps(d,d);
1102             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1103
1104             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1105
1106             /* Evaluate switch function */
1107             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1108             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1109             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1110
1111             fscal            = _mm_add_ps(felec,fvdw);
1112
1113             fscal            = _mm_and_ps(fscal,cutoff_mask);
1114
1115             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1116
1117             /* Calculate temporary vectorial force */
1118             tx               = _mm_mul_ps(fscal,dx00);
1119             ty               = _mm_mul_ps(fscal,dy00);
1120             tz               = _mm_mul_ps(fscal,dz00);
1121
1122             /* Update vectorial force */
1123             fix0             = _mm_add_ps(fix0,tx);
1124             fiy0             = _mm_add_ps(fiy0,ty);
1125             fiz0             = _mm_add_ps(fiz0,tz);
1126
1127             fjx0             = _mm_add_ps(fjx0,tx);
1128             fjy0             = _mm_add_ps(fjy0,ty);
1129             fjz0             = _mm_add_ps(fjz0,tz);
1130             
1131             }
1132
1133             /**************************
1134              * CALCULATE INTERACTIONS *
1135              **************************/
1136
1137             if (gmx_mm_any_lt(rsq10,rcutoff2))
1138             {
1139
1140             /* Compute parameters for interactions between i and j atoms */
1141             qq10             = _mm_mul_ps(iq1,jq0);
1142
1143             /* REACTION-FIELD ELECTROSTATICS */
1144             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1145
1146             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1147
1148             fscal            = felec;
1149
1150             fscal            = _mm_and_ps(fscal,cutoff_mask);
1151
1152             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1153
1154             /* Calculate temporary vectorial force */
1155             tx               = _mm_mul_ps(fscal,dx10);
1156             ty               = _mm_mul_ps(fscal,dy10);
1157             tz               = _mm_mul_ps(fscal,dz10);
1158
1159             /* Update vectorial force */
1160             fix1             = _mm_add_ps(fix1,tx);
1161             fiy1             = _mm_add_ps(fiy1,ty);
1162             fiz1             = _mm_add_ps(fiz1,tz);
1163
1164             fjx0             = _mm_add_ps(fjx0,tx);
1165             fjy0             = _mm_add_ps(fjy0,ty);
1166             fjz0             = _mm_add_ps(fjz0,tz);
1167             
1168             }
1169
1170             /**************************
1171              * CALCULATE INTERACTIONS *
1172              **************************/
1173
1174             if (gmx_mm_any_lt(rsq20,rcutoff2))
1175             {
1176
1177             /* Compute parameters for interactions between i and j atoms */
1178             qq20             = _mm_mul_ps(iq2,jq0);
1179
1180             /* REACTION-FIELD ELECTROSTATICS */
1181             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1182
1183             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1184
1185             fscal            = felec;
1186
1187             fscal            = _mm_and_ps(fscal,cutoff_mask);
1188
1189             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1190
1191             /* Calculate temporary vectorial force */
1192             tx               = _mm_mul_ps(fscal,dx20);
1193             ty               = _mm_mul_ps(fscal,dy20);
1194             tz               = _mm_mul_ps(fscal,dz20);
1195
1196             /* Update vectorial force */
1197             fix2             = _mm_add_ps(fix2,tx);
1198             fiy2             = _mm_add_ps(fiy2,ty);
1199             fiz2             = _mm_add_ps(fiz2,tz);
1200
1201             fjx0             = _mm_add_ps(fjx0,tx);
1202             fjy0             = _mm_add_ps(fjy0,ty);
1203             fjz0             = _mm_add_ps(fjz0,tz);
1204             
1205             }
1206
1207             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1208             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1209             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1210             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1211
1212             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1213
1214             /* Inner loop uses 122 flops */
1215         }
1216
1217         /* End of innermost loop */
1218
1219         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1220                                               f+i_coord_offset,fshift+i_shift_offset);
1221
1222         /* Increment number of inner iterations */
1223         inneriter                  += j_index_end - j_index_start;
1224
1225         /* Outer loop uses 18 flops */
1226     }
1227
1228     /* Increment number of outer iterations */
1229     outeriter        += nri;
1230
1231     /* Update outer/inner flops */
1232
1233     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*122);
1234 }