Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
84     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
85     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
86     real             rswitch_scalar,d_scalar;
87     __m128           dummy_mask,cutoff_mask;
88     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
89     __m128           one     = _mm_set1_ps(1.0);
90     __m128           two     = _mm_set1_ps(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_ps(fr->epsfac);
103     charge           = mdatoms->chargeA;
104     krf              = _mm_set1_ps(fr->ic->k_rf);
105     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
106     crf              = _mm_set1_ps(fr->ic->c_rf);
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     /* Setup water-specific parameters */
112     inr              = nlist->iinr[0];
113     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
114     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
115     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
116     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
117
118     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
119     rcutoff_scalar   = fr->rcoulomb;
120     rcutoff          = _mm_set1_ps(rcutoff_scalar);
121     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
122
123     rswitch_scalar   = fr->rvdw_switch;
124     rswitch          = _mm_set1_ps(rswitch_scalar);
125     /* Setup switch parameters */
126     d_scalar         = rcutoff_scalar-rswitch_scalar;
127     d                = _mm_set1_ps(d_scalar);
128     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
129     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
130     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
131     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
132     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
133     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150         shX              = shiftvec[i_shift_offset+XX];
151         shY              = shiftvec[i_shift_offset+YY];
152         shZ              = shiftvec[i_shift_offset+ZZ];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
164         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
165         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
166         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
167         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
168         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
169         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
170         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
171         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
172
173         fix0             = _mm_setzero_ps();
174         fiy0             = _mm_setzero_ps();
175         fiz0             = _mm_setzero_ps();
176         fix1             = _mm_setzero_ps();
177         fiy1             = _mm_setzero_ps();
178         fiz1             = _mm_setzero_ps();
179         fix2             = _mm_setzero_ps();
180         fiy2             = _mm_setzero_ps();
181         fiz2             = _mm_setzero_ps();
182
183         /* Reset potential sums */
184         velecsum         = _mm_setzero_ps();
185         vvdwsum          = _mm_setzero_ps();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201
202             /* load j atom coordinates */
203             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
204                                               x+j_coord_offsetC,x+j_coord_offsetD,
205                                               &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm_sub_ps(ix0,jx0);
209             dy00             = _mm_sub_ps(iy0,jy0);
210             dz00             = _mm_sub_ps(iz0,jz0);
211             dx10             = _mm_sub_ps(ix1,jx0);
212             dy10             = _mm_sub_ps(iy1,jy0);
213             dz10             = _mm_sub_ps(iz1,jz0);
214             dx20             = _mm_sub_ps(ix2,jx0);
215             dy20             = _mm_sub_ps(iy2,jy0);
216             dz20             = _mm_sub_ps(iz2,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
220             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
221             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
222
223             rinv00           = gmx_mm_invsqrt_ps(rsq00);
224             rinv10           = gmx_mm_invsqrt_ps(rsq10);
225             rinv20           = gmx_mm_invsqrt_ps(rsq20);
226
227             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
228             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
229             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
233                                                               charge+jnrC+0,charge+jnrD+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235             vdwjidx0B        = 2*vdwtype[jnrB+0];
236             vdwjidx0C        = 2*vdwtype[jnrC+0];
237             vdwjidx0D        = 2*vdwtype[jnrD+0];
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             if (gmx_mm_any_lt(rsq00,rcutoff2))
244             {
245
246             r00              = _mm_mul_ps(rsq00,rinv00);
247
248             /* Compute parameters for interactions between i and j atoms */
249             qq00             = _mm_mul_ps(iq0,jq0);
250             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
251                                          vdwparam+vdwioffset0+vdwjidx0B,
252                                          vdwparam+vdwioffset0+vdwjidx0C,
253                                          vdwparam+vdwioffset0+vdwjidx0D,
254                                          &c6_00,&c12_00);
255
256             /* REACTION-FIELD ELECTROSTATICS */
257             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
258             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
259
260             /* LENNARD-JONES DISPERSION/REPULSION */
261
262             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
263             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
264             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
265             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
266             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
267
268             d                = _mm_sub_ps(r00,rswitch);
269             d                = _mm_max_ps(d,_mm_setzero_ps());
270             d2               = _mm_mul_ps(d,d);
271             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
272
273             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
274
275             /* Evaluate switch function */
276             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
277             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
278             vvdw             = _mm_mul_ps(vvdw,sw);
279             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velec            = _mm_and_ps(velec,cutoff_mask);
283             velecsum         = _mm_add_ps(velecsum,velec);
284             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
285             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
286
287             fscal            = _mm_add_ps(felec,fvdw);
288
289             fscal            = _mm_and_ps(fscal,cutoff_mask);
290
291             /* Calculate temporary vectorial force */
292             tx               = _mm_mul_ps(fscal,dx00);
293             ty               = _mm_mul_ps(fscal,dy00);
294             tz               = _mm_mul_ps(fscal,dz00);
295
296             /* Update vectorial force */
297             fix0             = _mm_add_ps(fix0,tx);
298             fiy0             = _mm_add_ps(fiy0,ty);
299             fiz0             = _mm_add_ps(fiz0,tz);
300
301             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
302                                                    f+j_coord_offsetC,f+j_coord_offsetD,
303                                                    tx,ty,tz);
304
305             }
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             if (gmx_mm_any_lt(rsq10,rcutoff2))
312             {
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq10             = _mm_mul_ps(iq1,jq0);
316
317             /* REACTION-FIELD ELECTROSTATICS */
318             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
319             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
320
321             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
322
323             /* Update potential sum for this i atom from the interaction with this j atom. */
324             velec            = _mm_and_ps(velec,cutoff_mask);
325             velecsum         = _mm_add_ps(velecsum,velec);
326
327             fscal            = felec;
328
329             fscal            = _mm_and_ps(fscal,cutoff_mask);
330
331             /* Calculate temporary vectorial force */
332             tx               = _mm_mul_ps(fscal,dx10);
333             ty               = _mm_mul_ps(fscal,dy10);
334             tz               = _mm_mul_ps(fscal,dz10);
335
336             /* Update vectorial force */
337             fix1             = _mm_add_ps(fix1,tx);
338             fiy1             = _mm_add_ps(fiy1,ty);
339             fiz1             = _mm_add_ps(fiz1,tz);
340
341             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
342                                                    f+j_coord_offsetC,f+j_coord_offsetD,
343                                                    tx,ty,tz);
344
345             }
346
347             /**************************
348              * CALCULATE INTERACTIONS *
349              **************************/
350
351             if (gmx_mm_any_lt(rsq20,rcutoff2))
352             {
353
354             /* Compute parameters for interactions between i and j atoms */
355             qq20             = _mm_mul_ps(iq2,jq0);
356
357             /* REACTION-FIELD ELECTROSTATICS */
358             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
359             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
360
361             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velec            = _mm_and_ps(velec,cutoff_mask);
365             velecsum         = _mm_add_ps(velecsum,velec);
366
367             fscal            = felec;
368
369             fscal            = _mm_and_ps(fscal,cutoff_mask);
370
371             /* Calculate temporary vectorial force */
372             tx               = _mm_mul_ps(fscal,dx20);
373             ty               = _mm_mul_ps(fscal,dy20);
374             tz               = _mm_mul_ps(fscal,dz20);
375
376             /* Update vectorial force */
377             fix2             = _mm_add_ps(fix2,tx);
378             fiy2             = _mm_add_ps(fiy2,ty);
379             fiz2             = _mm_add_ps(fiz2,tz);
380
381             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
382                                                    f+j_coord_offsetC,f+j_coord_offsetD,
383                                                    tx,ty,tz);
384
385             }
386
387             /* Inner loop uses 142 flops */
388         }
389
390         if(jidx<j_index_end)
391         {
392
393             /* Get j neighbor index, and coordinate index */
394             jnrA             = jjnr[jidx];
395             jnrB             = jjnr[jidx+1];
396             jnrC             = jjnr[jidx+2];
397             jnrD             = jjnr[jidx+3];
398
399             /* Sign of each element will be negative for non-real atoms.
400              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
401              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
402              */
403             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
404             jnrA       = (jnrA>=0) ? jnrA : 0;
405             jnrB       = (jnrB>=0) ? jnrB : 0;
406             jnrC       = (jnrC>=0) ? jnrC : 0;
407             jnrD       = (jnrD>=0) ? jnrD : 0;
408
409             j_coord_offsetA  = DIM*jnrA;
410             j_coord_offsetB  = DIM*jnrB;
411             j_coord_offsetC  = DIM*jnrC;
412             j_coord_offsetD  = DIM*jnrD;
413
414             /* load j atom coordinates */
415             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
416                                               x+j_coord_offsetC,x+j_coord_offsetD,
417                                               &jx0,&jy0,&jz0);
418
419             /* Calculate displacement vector */
420             dx00             = _mm_sub_ps(ix0,jx0);
421             dy00             = _mm_sub_ps(iy0,jy0);
422             dz00             = _mm_sub_ps(iz0,jz0);
423             dx10             = _mm_sub_ps(ix1,jx0);
424             dy10             = _mm_sub_ps(iy1,jy0);
425             dz10             = _mm_sub_ps(iz1,jz0);
426             dx20             = _mm_sub_ps(ix2,jx0);
427             dy20             = _mm_sub_ps(iy2,jy0);
428             dz20             = _mm_sub_ps(iz2,jz0);
429
430             /* Calculate squared distance and things based on it */
431             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
432             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
433             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
434
435             rinv00           = gmx_mm_invsqrt_ps(rsq00);
436             rinv10           = gmx_mm_invsqrt_ps(rsq10);
437             rinv20           = gmx_mm_invsqrt_ps(rsq20);
438
439             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
440             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
441             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
442
443             /* Load parameters for j particles */
444             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
445                                                               charge+jnrC+0,charge+jnrD+0);
446             vdwjidx0A        = 2*vdwtype[jnrA+0];
447             vdwjidx0B        = 2*vdwtype[jnrB+0];
448             vdwjidx0C        = 2*vdwtype[jnrC+0];
449             vdwjidx0D        = 2*vdwtype[jnrD+0];
450
451             /**************************
452              * CALCULATE INTERACTIONS *
453              **************************/
454
455             if (gmx_mm_any_lt(rsq00,rcutoff2))
456             {
457
458             r00              = _mm_mul_ps(rsq00,rinv00);
459             r00              = _mm_andnot_ps(dummy_mask,r00);
460
461             /* Compute parameters for interactions between i and j atoms */
462             qq00             = _mm_mul_ps(iq0,jq0);
463             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
464                                          vdwparam+vdwioffset0+vdwjidx0B,
465                                          vdwparam+vdwioffset0+vdwjidx0C,
466                                          vdwparam+vdwioffset0+vdwjidx0D,
467                                          &c6_00,&c12_00);
468
469             /* REACTION-FIELD ELECTROSTATICS */
470             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
471             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
472
473             /* LENNARD-JONES DISPERSION/REPULSION */
474
475             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
476             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
477             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
478             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
479             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
480
481             d                = _mm_sub_ps(r00,rswitch);
482             d                = _mm_max_ps(d,_mm_setzero_ps());
483             d2               = _mm_mul_ps(d,d);
484             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
485
486             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
487
488             /* Evaluate switch function */
489             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
490             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
491             vvdw             = _mm_mul_ps(vvdw,sw);
492             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
493
494             /* Update potential sum for this i atom from the interaction with this j atom. */
495             velec            = _mm_and_ps(velec,cutoff_mask);
496             velec            = _mm_andnot_ps(dummy_mask,velec);
497             velecsum         = _mm_add_ps(velecsum,velec);
498             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
499             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
500             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
501
502             fscal            = _mm_add_ps(felec,fvdw);
503
504             fscal            = _mm_and_ps(fscal,cutoff_mask);
505
506             fscal            = _mm_andnot_ps(dummy_mask,fscal);
507
508             /* Calculate temporary vectorial force */
509             tx               = _mm_mul_ps(fscal,dx00);
510             ty               = _mm_mul_ps(fscal,dy00);
511             tz               = _mm_mul_ps(fscal,dz00);
512
513             /* Update vectorial force */
514             fix0             = _mm_add_ps(fix0,tx);
515             fiy0             = _mm_add_ps(fiy0,ty);
516             fiz0             = _mm_add_ps(fiz0,tz);
517
518             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
519                                                    f+j_coord_offsetC,f+j_coord_offsetD,
520                                                    tx,ty,tz);
521
522             }
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             if (gmx_mm_any_lt(rsq10,rcutoff2))
529             {
530
531             /* Compute parameters for interactions between i and j atoms */
532             qq10             = _mm_mul_ps(iq1,jq0);
533
534             /* REACTION-FIELD ELECTROSTATICS */
535             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
536             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
537
538             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
539
540             /* Update potential sum for this i atom from the interaction with this j atom. */
541             velec            = _mm_and_ps(velec,cutoff_mask);
542             velec            = _mm_andnot_ps(dummy_mask,velec);
543             velecsum         = _mm_add_ps(velecsum,velec);
544
545             fscal            = felec;
546
547             fscal            = _mm_and_ps(fscal,cutoff_mask);
548
549             fscal            = _mm_andnot_ps(dummy_mask,fscal);
550
551             /* Calculate temporary vectorial force */
552             tx               = _mm_mul_ps(fscal,dx10);
553             ty               = _mm_mul_ps(fscal,dy10);
554             tz               = _mm_mul_ps(fscal,dz10);
555
556             /* Update vectorial force */
557             fix1             = _mm_add_ps(fix1,tx);
558             fiy1             = _mm_add_ps(fiy1,ty);
559             fiz1             = _mm_add_ps(fiz1,tz);
560
561             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
562                                                    f+j_coord_offsetC,f+j_coord_offsetD,
563                                                    tx,ty,tz);
564
565             }
566
567             /**************************
568              * CALCULATE INTERACTIONS *
569              **************************/
570
571             if (gmx_mm_any_lt(rsq20,rcutoff2))
572             {
573
574             /* Compute parameters for interactions between i and j atoms */
575             qq20             = _mm_mul_ps(iq2,jq0);
576
577             /* REACTION-FIELD ELECTROSTATICS */
578             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
579             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
580
581             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
582
583             /* Update potential sum for this i atom from the interaction with this j atom. */
584             velec            = _mm_and_ps(velec,cutoff_mask);
585             velec            = _mm_andnot_ps(dummy_mask,velec);
586             velecsum         = _mm_add_ps(velecsum,velec);
587
588             fscal            = felec;
589
590             fscal            = _mm_and_ps(fscal,cutoff_mask);
591
592             fscal            = _mm_andnot_ps(dummy_mask,fscal);
593
594             /* Calculate temporary vectorial force */
595             tx               = _mm_mul_ps(fscal,dx20);
596             ty               = _mm_mul_ps(fscal,dy20);
597             tz               = _mm_mul_ps(fscal,dz20);
598
599             /* Update vectorial force */
600             fix2             = _mm_add_ps(fix2,tx);
601             fiy2             = _mm_add_ps(fiy2,ty);
602             fiz2             = _mm_add_ps(fiz2,tz);
603
604             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
605                                                    f+j_coord_offsetC,f+j_coord_offsetD,
606                                                    tx,ty,tz);
607
608             }
609
610             /* Inner loop uses 143 flops */
611         }
612
613         /* End of innermost loop */
614
615         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
616                                               f+i_coord_offset,fshift+i_shift_offset);
617
618         ggid                        = gid[iidx];
619         /* Update potential energies */
620         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
621         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
622
623         /* Increment number of inner iterations */
624         inneriter                  += j_index_end - j_index_start;
625
626         /* Outer loop uses 29 flops */
627     }
628
629     /* Increment number of outer iterations */
630     outeriter        += nri;
631
632     /* Update outer/inner flops */
633
634     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*29 + inneriter*143);
635 }
636 /*
637  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse2_single
638  * Electrostatics interaction: ReactionField
639  * VdW interaction:            LennardJones
640  * Geometry:                   Water3-Particle
641  * Calculate force/pot:        Force
642  */
643 void
644 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse2_single
645                     (t_nblist * gmx_restrict                nlist,
646                      rvec * gmx_restrict                    xx,
647                      rvec * gmx_restrict                    ff,
648                      t_forcerec * gmx_restrict              fr,
649                      t_mdatoms * gmx_restrict               mdatoms,
650                      nb_kernel_data_t * gmx_restrict        kernel_data,
651                      t_nrnb * gmx_restrict                  nrnb)
652 {
653     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
654      * just 0 for non-waters.
655      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
656      * jnr indices corresponding to data put in the four positions in the SIMD register.
657      */
658     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
659     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
660     int              jnrA,jnrB,jnrC,jnrD;
661     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
662     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
663     real             shX,shY,shZ,rcutoff_scalar;
664     real             *shiftvec,*fshift,*x,*f;
665     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
666     int              vdwioffset0;
667     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
668     int              vdwioffset1;
669     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
670     int              vdwioffset2;
671     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
672     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
673     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
674     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
675     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
676     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
677     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
678     real             *charge;
679     int              nvdwtype;
680     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
681     int              *vdwtype;
682     real             *vdwparam;
683     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
684     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
685     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
686     real             rswitch_scalar,d_scalar;
687     __m128           dummy_mask,cutoff_mask;
688     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
689     __m128           one     = _mm_set1_ps(1.0);
690     __m128           two     = _mm_set1_ps(2.0);
691     x                = xx[0];
692     f                = ff[0];
693
694     nri              = nlist->nri;
695     iinr             = nlist->iinr;
696     jindex           = nlist->jindex;
697     jjnr             = nlist->jjnr;
698     shiftidx         = nlist->shift;
699     gid              = nlist->gid;
700     shiftvec         = fr->shift_vec[0];
701     fshift           = fr->fshift[0];
702     facel            = _mm_set1_ps(fr->epsfac);
703     charge           = mdatoms->chargeA;
704     krf              = _mm_set1_ps(fr->ic->k_rf);
705     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
706     crf              = _mm_set1_ps(fr->ic->c_rf);
707     nvdwtype         = fr->ntype;
708     vdwparam         = fr->nbfp;
709     vdwtype          = mdatoms->typeA;
710
711     /* Setup water-specific parameters */
712     inr              = nlist->iinr[0];
713     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
714     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
715     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
716     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
717
718     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
719     rcutoff_scalar   = fr->rcoulomb;
720     rcutoff          = _mm_set1_ps(rcutoff_scalar);
721     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
722
723     rswitch_scalar   = fr->rvdw_switch;
724     rswitch          = _mm_set1_ps(rswitch_scalar);
725     /* Setup switch parameters */
726     d_scalar         = rcutoff_scalar-rswitch_scalar;
727     d                = _mm_set1_ps(d_scalar);
728     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
729     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
730     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
731     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
732     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
733     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
734
735     /* Avoid stupid compiler warnings */
736     jnrA = jnrB = jnrC = jnrD = 0;
737     j_coord_offsetA = 0;
738     j_coord_offsetB = 0;
739     j_coord_offsetC = 0;
740     j_coord_offsetD = 0;
741
742     outeriter        = 0;
743     inneriter        = 0;
744
745     /* Start outer loop over neighborlists */
746     for(iidx=0; iidx<nri; iidx++)
747     {
748         /* Load shift vector for this list */
749         i_shift_offset   = DIM*shiftidx[iidx];
750         shX              = shiftvec[i_shift_offset+XX];
751         shY              = shiftvec[i_shift_offset+YY];
752         shZ              = shiftvec[i_shift_offset+ZZ];
753
754         /* Load limits for loop over neighbors */
755         j_index_start    = jindex[iidx];
756         j_index_end      = jindex[iidx+1];
757
758         /* Get outer coordinate index */
759         inr              = iinr[iidx];
760         i_coord_offset   = DIM*inr;
761
762         /* Load i particle coords and add shift vector */
763         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
764         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
765         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
766         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
767         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
768         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
769         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
770         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
771         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
772
773         fix0             = _mm_setzero_ps();
774         fiy0             = _mm_setzero_ps();
775         fiz0             = _mm_setzero_ps();
776         fix1             = _mm_setzero_ps();
777         fiy1             = _mm_setzero_ps();
778         fiz1             = _mm_setzero_ps();
779         fix2             = _mm_setzero_ps();
780         fiy2             = _mm_setzero_ps();
781         fiz2             = _mm_setzero_ps();
782
783         /* Start inner kernel loop */
784         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
785         {
786
787             /* Get j neighbor index, and coordinate index */
788             jnrA             = jjnr[jidx];
789             jnrB             = jjnr[jidx+1];
790             jnrC             = jjnr[jidx+2];
791             jnrD             = jjnr[jidx+3];
792
793             j_coord_offsetA  = DIM*jnrA;
794             j_coord_offsetB  = DIM*jnrB;
795             j_coord_offsetC  = DIM*jnrC;
796             j_coord_offsetD  = DIM*jnrD;
797
798             /* load j atom coordinates */
799             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
800                                               x+j_coord_offsetC,x+j_coord_offsetD,
801                                               &jx0,&jy0,&jz0);
802
803             /* Calculate displacement vector */
804             dx00             = _mm_sub_ps(ix0,jx0);
805             dy00             = _mm_sub_ps(iy0,jy0);
806             dz00             = _mm_sub_ps(iz0,jz0);
807             dx10             = _mm_sub_ps(ix1,jx0);
808             dy10             = _mm_sub_ps(iy1,jy0);
809             dz10             = _mm_sub_ps(iz1,jz0);
810             dx20             = _mm_sub_ps(ix2,jx0);
811             dy20             = _mm_sub_ps(iy2,jy0);
812             dz20             = _mm_sub_ps(iz2,jz0);
813
814             /* Calculate squared distance and things based on it */
815             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
816             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
817             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
818
819             rinv00           = gmx_mm_invsqrt_ps(rsq00);
820             rinv10           = gmx_mm_invsqrt_ps(rsq10);
821             rinv20           = gmx_mm_invsqrt_ps(rsq20);
822
823             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
824             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
825             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
826
827             /* Load parameters for j particles */
828             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
829                                                               charge+jnrC+0,charge+jnrD+0);
830             vdwjidx0A        = 2*vdwtype[jnrA+0];
831             vdwjidx0B        = 2*vdwtype[jnrB+0];
832             vdwjidx0C        = 2*vdwtype[jnrC+0];
833             vdwjidx0D        = 2*vdwtype[jnrD+0];
834
835             /**************************
836              * CALCULATE INTERACTIONS *
837              **************************/
838
839             if (gmx_mm_any_lt(rsq00,rcutoff2))
840             {
841
842             r00              = _mm_mul_ps(rsq00,rinv00);
843
844             /* Compute parameters for interactions between i and j atoms */
845             qq00             = _mm_mul_ps(iq0,jq0);
846             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
847                                          vdwparam+vdwioffset0+vdwjidx0B,
848                                          vdwparam+vdwioffset0+vdwjidx0C,
849                                          vdwparam+vdwioffset0+vdwjidx0D,
850                                          &c6_00,&c12_00);
851
852             /* REACTION-FIELD ELECTROSTATICS */
853             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
854
855             /* LENNARD-JONES DISPERSION/REPULSION */
856
857             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
858             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
859             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
860             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
861             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
862
863             d                = _mm_sub_ps(r00,rswitch);
864             d                = _mm_max_ps(d,_mm_setzero_ps());
865             d2               = _mm_mul_ps(d,d);
866             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
867
868             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
869
870             /* Evaluate switch function */
871             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
872             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
873             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
874
875             fscal            = _mm_add_ps(felec,fvdw);
876
877             fscal            = _mm_and_ps(fscal,cutoff_mask);
878
879             /* Calculate temporary vectorial force */
880             tx               = _mm_mul_ps(fscal,dx00);
881             ty               = _mm_mul_ps(fscal,dy00);
882             tz               = _mm_mul_ps(fscal,dz00);
883
884             /* Update vectorial force */
885             fix0             = _mm_add_ps(fix0,tx);
886             fiy0             = _mm_add_ps(fiy0,ty);
887             fiz0             = _mm_add_ps(fiz0,tz);
888
889             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
890                                                    f+j_coord_offsetC,f+j_coord_offsetD,
891                                                    tx,ty,tz);
892
893             }
894
895             /**************************
896              * CALCULATE INTERACTIONS *
897              **************************/
898
899             if (gmx_mm_any_lt(rsq10,rcutoff2))
900             {
901
902             /* Compute parameters for interactions between i and j atoms */
903             qq10             = _mm_mul_ps(iq1,jq0);
904
905             /* REACTION-FIELD ELECTROSTATICS */
906             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
907
908             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
909
910             fscal            = felec;
911
912             fscal            = _mm_and_ps(fscal,cutoff_mask);
913
914             /* Calculate temporary vectorial force */
915             tx               = _mm_mul_ps(fscal,dx10);
916             ty               = _mm_mul_ps(fscal,dy10);
917             tz               = _mm_mul_ps(fscal,dz10);
918
919             /* Update vectorial force */
920             fix1             = _mm_add_ps(fix1,tx);
921             fiy1             = _mm_add_ps(fiy1,ty);
922             fiz1             = _mm_add_ps(fiz1,tz);
923
924             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
925                                                    f+j_coord_offsetC,f+j_coord_offsetD,
926                                                    tx,ty,tz);
927
928             }
929
930             /**************************
931              * CALCULATE INTERACTIONS *
932              **************************/
933
934             if (gmx_mm_any_lt(rsq20,rcutoff2))
935             {
936
937             /* Compute parameters for interactions between i and j atoms */
938             qq20             = _mm_mul_ps(iq2,jq0);
939
940             /* REACTION-FIELD ELECTROSTATICS */
941             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
942
943             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
944
945             fscal            = felec;
946
947             fscal            = _mm_and_ps(fscal,cutoff_mask);
948
949             /* Calculate temporary vectorial force */
950             tx               = _mm_mul_ps(fscal,dx20);
951             ty               = _mm_mul_ps(fscal,dy20);
952             tz               = _mm_mul_ps(fscal,dz20);
953
954             /* Update vectorial force */
955             fix2             = _mm_add_ps(fix2,tx);
956             fiy2             = _mm_add_ps(fiy2,ty);
957             fiz2             = _mm_add_ps(fiz2,tz);
958
959             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
960                                                    f+j_coord_offsetC,f+j_coord_offsetD,
961                                                    tx,ty,tz);
962
963             }
964
965             /* Inner loop uses 121 flops */
966         }
967
968         if(jidx<j_index_end)
969         {
970
971             /* Get j neighbor index, and coordinate index */
972             jnrA             = jjnr[jidx];
973             jnrB             = jjnr[jidx+1];
974             jnrC             = jjnr[jidx+2];
975             jnrD             = jjnr[jidx+3];
976
977             /* Sign of each element will be negative for non-real atoms.
978              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
979              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
980              */
981             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
982             jnrA       = (jnrA>=0) ? jnrA : 0;
983             jnrB       = (jnrB>=0) ? jnrB : 0;
984             jnrC       = (jnrC>=0) ? jnrC : 0;
985             jnrD       = (jnrD>=0) ? jnrD : 0;
986
987             j_coord_offsetA  = DIM*jnrA;
988             j_coord_offsetB  = DIM*jnrB;
989             j_coord_offsetC  = DIM*jnrC;
990             j_coord_offsetD  = DIM*jnrD;
991
992             /* load j atom coordinates */
993             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
994                                               x+j_coord_offsetC,x+j_coord_offsetD,
995                                               &jx0,&jy0,&jz0);
996
997             /* Calculate displacement vector */
998             dx00             = _mm_sub_ps(ix0,jx0);
999             dy00             = _mm_sub_ps(iy0,jy0);
1000             dz00             = _mm_sub_ps(iz0,jz0);
1001             dx10             = _mm_sub_ps(ix1,jx0);
1002             dy10             = _mm_sub_ps(iy1,jy0);
1003             dz10             = _mm_sub_ps(iz1,jz0);
1004             dx20             = _mm_sub_ps(ix2,jx0);
1005             dy20             = _mm_sub_ps(iy2,jy0);
1006             dz20             = _mm_sub_ps(iz2,jz0);
1007
1008             /* Calculate squared distance and things based on it */
1009             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1010             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1011             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1012
1013             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1014             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1015             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1016
1017             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1018             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1019             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1020
1021             /* Load parameters for j particles */
1022             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1023                                                               charge+jnrC+0,charge+jnrD+0);
1024             vdwjidx0A        = 2*vdwtype[jnrA+0];
1025             vdwjidx0B        = 2*vdwtype[jnrB+0];
1026             vdwjidx0C        = 2*vdwtype[jnrC+0];
1027             vdwjidx0D        = 2*vdwtype[jnrD+0];
1028
1029             /**************************
1030              * CALCULATE INTERACTIONS *
1031              **************************/
1032
1033             if (gmx_mm_any_lt(rsq00,rcutoff2))
1034             {
1035
1036             r00              = _mm_mul_ps(rsq00,rinv00);
1037             r00              = _mm_andnot_ps(dummy_mask,r00);
1038
1039             /* Compute parameters for interactions between i and j atoms */
1040             qq00             = _mm_mul_ps(iq0,jq0);
1041             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1042                                          vdwparam+vdwioffset0+vdwjidx0B,
1043                                          vdwparam+vdwioffset0+vdwjidx0C,
1044                                          vdwparam+vdwioffset0+vdwjidx0D,
1045                                          &c6_00,&c12_00);
1046
1047             /* REACTION-FIELD ELECTROSTATICS */
1048             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1049
1050             /* LENNARD-JONES DISPERSION/REPULSION */
1051
1052             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1053             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1054             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1055             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1056             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1057
1058             d                = _mm_sub_ps(r00,rswitch);
1059             d                = _mm_max_ps(d,_mm_setzero_ps());
1060             d2               = _mm_mul_ps(d,d);
1061             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1062
1063             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1064
1065             /* Evaluate switch function */
1066             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1067             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1068             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1069
1070             fscal            = _mm_add_ps(felec,fvdw);
1071
1072             fscal            = _mm_and_ps(fscal,cutoff_mask);
1073
1074             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1075
1076             /* Calculate temporary vectorial force */
1077             tx               = _mm_mul_ps(fscal,dx00);
1078             ty               = _mm_mul_ps(fscal,dy00);
1079             tz               = _mm_mul_ps(fscal,dz00);
1080
1081             /* Update vectorial force */
1082             fix0             = _mm_add_ps(fix0,tx);
1083             fiy0             = _mm_add_ps(fiy0,ty);
1084             fiz0             = _mm_add_ps(fiz0,tz);
1085
1086             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1087                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1088                                                    tx,ty,tz);
1089
1090             }
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             if (gmx_mm_any_lt(rsq10,rcutoff2))
1097             {
1098
1099             /* Compute parameters for interactions between i and j atoms */
1100             qq10             = _mm_mul_ps(iq1,jq0);
1101
1102             /* REACTION-FIELD ELECTROSTATICS */
1103             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1104
1105             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1106
1107             fscal            = felec;
1108
1109             fscal            = _mm_and_ps(fscal,cutoff_mask);
1110
1111             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1112
1113             /* Calculate temporary vectorial force */
1114             tx               = _mm_mul_ps(fscal,dx10);
1115             ty               = _mm_mul_ps(fscal,dy10);
1116             tz               = _mm_mul_ps(fscal,dz10);
1117
1118             /* Update vectorial force */
1119             fix1             = _mm_add_ps(fix1,tx);
1120             fiy1             = _mm_add_ps(fiy1,ty);
1121             fiz1             = _mm_add_ps(fiz1,tz);
1122
1123             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1124                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1125                                                    tx,ty,tz);
1126
1127             }
1128
1129             /**************************
1130              * CALCULATE INTERACTIONS *
1131              **************************/
1132
1133             if (gmx_mm_any_lt(rsq20,rcutoff2))
1134             {
1135
1136             /* Compute parameters for interactions between i and j atoms */
1137             qq20             = _mm_mul_ps(iq2,jq0);
1138
1139             /* REACTION-FIELD ELECTROSTATICS */
1140             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1141
1142             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1143
1144             fscal            = felec;
1145
1146             fscal            = _mm_and_ps(fscal,cutoff_mask);
1147
1148             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1149
1150             /* Calculate temporary vectorial force */
1151             tx               = _mm_mul_ps(fscal,dx20);
1152             ty               = _mm_mul_ps(fscal,dy20);
1153             tz               = _mm_mul_ps(fscal,dz20);
1154
1155             /* Update vectorial force */
1156             fix2             = _mm_add_ps(fix2,tx);
1157             fiy2             = _mm_add_ps(fiy2,ty);
1158             fiz2             = _mm_add_ps(fiz2,tz);
1159
1160             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1161                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1162                                                    tx,ty,tz);
1163
1164             }
1165
1166             /* Inner loop uses 122 flops */
1167         }
1168
1169         /* End of innermost loop */
1170
1171         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1172                                               f+i_coord_offset,fshift+i_shift_offset);
1173
1174         /* Increment number of inner iterations */
1175         inneriter                  += j_index_end - j_index_start;
1176
1177         /* Outer loop uses 27 flops */
1178     }
1179
1180     /* Increment number of outer iterations */
1181     outeriter        += nri;
1182
1183     /* Update outer/inner flops */
1184
1185     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*27 + inneriter*122);
1186 }