Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
83     real             rswitch_scalar,d_scalar;
84     __m128           dummy_mask,cutoff_mask;
85     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
86     __m128           one     = _mm_set1_ps(1.0);
87     __m128           two     = _mm_set1_ps(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm_set1_ps(fr->epsfac);
100     charge           = mdatoms->chargeA;
101     krf              = _mm_set1_ps(fr->ic->k_rf);
102     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
103     crf              = _mm_set1_ps(fr->ic->c_rf);
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
109     rcutoff_scalar   = fr->rcoulomb;
110     rcutoff          = _mm_set1_ps(rcutoff_scalar);
111     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
112
113     rswitch_scalar   = fr->rvdw_switch;
114     rswitch          = _mm_set1_ps(rswitch_scalar);
115     /* Setup switch parameters */
116     d_scalar         = rcutoff_scalar-rswitch_scalar;
117     d                = _mm_set1_ps(d_scalar);
118     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
119     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
120     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
121     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
122     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
123     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = jnrC = jnrD = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129     j_coord_offsetC = 0;
130     j_coord_offsetD = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     for(iidx=0;iidx<4*DIM;iidx++)
136     {
137         scratch[iidx] = 0.0;
138     }  
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
156         
157         fix0             = _mm_setzero_ps();
158         fiy0             = _mm_setzero_ps();
159         fiz0             = _mm_setzero_ps();
160
161         /* Load parameters for i particles */
162         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
163         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
164
165         /* Reset potential sums */
166         velecsum         = _mm_setzero_ps();
167         vvdwsum          = _mm_setzero_ps();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             jnrC             = jjnr[jidx+2];
177             jnrD             = jjnr[jidx+3];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180             j_coord_offsetC  = DIM*jnrC;
181             j_coord_offsetD  = DIM*jnrD;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               x+j_coord_offsetC,x+j_coord_offsetD,
186                                               &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm_sub_ps(ix0,jx0);
190             dy00             = _mm_sub_ps(iy0,jy0);
191             dz00             = _mm_sub_ps(iz0,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
195
196             rinv00           = gmx_mm_invsqrt_ps(rsq00);
197
198             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
199
200             /* Load parameters for j particles */
201             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
202                                                               charge+jnrC+0,charge+jnrD+0);
203             vdwjidx0A        = 2*vdwtype[jnrA+0];
204             vdwjidx0B        = 2*vdwtype[jnrB+0];
205             vdwjidx0C        = 2*vdwtype[jnrC+0];
206             vdwjidx0D        = 2*vdwtype[jnrD+0];
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             if (gmx_mm_any_lt(rsq00,rcutoff2))
213             {
214
215             r00              = _mm_mul_ps(rsq00,rinv00);
216
217             /* Compute parameters for interactions between i and j atoms */
218             qq00             = _mm_mul_ps(iq0,jq0);
219             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
220                                          vdwparam+vdwioffset0+vdwjidx0B,
221                                          vdwparam+vdwioffset0+vdwjidx0C,
222                                          vdwparam+vdwioffset0+vdwjidx0D,
223                                          &c6_00,&c12_00);
224
225             /* REACTION-FIELD ELECTROSTATICS */
226             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
227             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
228
229             /* LENNARD-JONES DISPERSION/REPULSION */
230
231             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
232             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
233             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
234             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
235             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
236
237             d                = _mm_sub_ps(r00,rswitch);
238             d                = _mm_max_ps(d,_mm_setzero_ps());
239             d2               = _mm_mul_ps(d,d);
240             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
241
242             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
243
244             /* Evaluate switch function */
245             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
246             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
247             vvdw             = _mm_mul_ps(vvdw,sw);
248             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             velec            = _mm_and_ps(velec,cutoff_mask);
252             velecsum         = _mm_add_ps(velecsum,velec);
253             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
254             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
255
256             fscal            = _mm_add_ps(felec,fvdw);
257
258             fscal            = _mm_and_ps(fscal,cutoff_mask);
259
260             /* Calculate temporary vectorial force */
261             tx               = _mm_mul_ps(fscal,dx00);
262             ty               = _mm_mul_ps(fscal,dy00);
263             tz               = _mm_mul_ps(fscal,dz00);
264
265             /* Update vectorial force */
266             fix0             = _mm_add_ps(fix0,tx);
267             fiy0             = _mm_add_ps(fiy0,ty);
268             fiz0             = _mm_add_ps(fiz0,tz);
269
270             fjptrA             = f+j_coord_offsetA;
271             fjptrB             = f+j_coord_offsetB;
272             fjptrC             = f+j_coord_offsetC;
273             fjptrD             = f+j_coord_offsetD;
274             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
275             
276             }
277
278             /* Inner loop uses 70 flops */
279         }
280
281         if(jidx<j_index_end)
282         {
283
284             /* Get j neighbor index, and coordinate index */
285             jnrlistA         = jjnr[jidx];
286             jnrlistB         = jjnr[jidx+1];
287             jnrlistC         = jjnr[jidx+2];
288             jnrlistD         = jjnr[jidx+3];
289             /* Sign of each element will be negative for non-real atoms.
290              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
291              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
292              */
293             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
294             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
295             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
296             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
297             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
298             j_coord_offsetA  = DIM*jnrA;
299             j_coord_offsetB  = DIM*jnrB;
300             j_coord_offsetC  = DIM*jnrC;
301             j_coord_offsetD  = DIM*jnrD;
302
303             /* load j atom coordinates */
304             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
305                                               x+j_coord_offsetC,x+j_coord_offsetD,
306                                               &jx0,&jy0,&jz0);
307
308             /* Calculate displacement vector */
309             dx00             = _mm_sub_ps(ix0,jx0);
310             dy00             = _mm_sub_ps(iy0,jy0);
311             dz00             = _mm_sub_ps(iz0,jz0);
312
313             /* Calculate squared distance and things based on it */
314             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
315
316             rinv00           = gmx_mm_invsqrt_ps(rsq00);
317
318             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
319
320             /* Load parameters for j particles */
321             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
322                                                               charge+jnrC+0,charge+jnrD+0);
323             vdwjidx0A        = 2*vdwtype[jnrA+0];
324             vdwjidx0B        = 2*vdwtype[jnrB+0];
325             vdwjidx0C        = 2*vdwtype[jnrC+0];
326             vdwjidx0D        = 2*vdwtype[jnrD+0];
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             if (gmx_mm_any_lt(rsq00,rcutoff2))
333             {
334
335             r00              = _mm_mul_ps(rsq00,rinv00);
336             r00              = _mm_andnot_ps(dummy_mask,r00);
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq00             = _mm_mul_ps(iq0,jq0);
340             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
341                                          vdwparam+vdwioffset0+vdwjidx0B,
342                                          vdwparam+vdwioffset0+vdwjidx0C,
343                                          vdwparam+vdwioffset0+vdwjidx0D,
344                                          &c6_00,&c12_00);
345
346             /* REACTION-FIELD ELECTROSTATICS */
347             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
348             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
349
350             /* LENNARD-JONES DISPERSION/REPULSION */
351
352             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
353             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
354             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
355             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
356             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
357
358             d                = _mm_sub_ps(r00,rswitch);
359             d                = _mm_max_ps(d,_mm_setzero_ps());
360             d2               = _mm_mul_ps(d,d);
361             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
362
363             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
364
365             /* Evaluate switch function */
366             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
367             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
368             vvdw             = _mm_mul_ps(vvdw,sw);
369             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velec            = _mm_and_ps(velec,cutoff_mask);
373             velec            = _mm_andnot_ps(dummy_mask,velec);
374             velecsum         = _mm_add_ps(velecsum,velec);
375             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
376             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
377             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
378
379             fscal            = _mm_add_ps(felec,fvdw);
380
381             fscal            = _mm_and_ps(fscal,cutoff_mask);
382
383             fscal            = _mm_andnot_ps(dummy_mask,fscal);
384
385             /* Calculate temporary vectorial force */
386             tx               = _mm_mul_ps(fscal,dx00);
387             ty               = _mm_mul_ps(fscal,dy00);
388             tz               = _mm_mul_ps(fscal,dz00);
389
390             /* Update vectorial force */
391             fix0             = _mm_add_ps(fix0,tx);
392             fiy0             = _mm_add_ps(fiy0,ty);
393             fiz0             = _mm_add_ps(fiz0,tz);
394
395             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
396             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
397             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
398             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
399             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
400             
401             }
402
403             /* Inner loop uses 71 flops */
404         }
405
406         /* End of innermost loop */
407
408         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
409                                               f+i_coord_offset,fshift+i_shift_offset);
410
411         ggid                        = gid[iidx];
412         /* Update potential energies */
413         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
414         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
415
416         /* Increment number of inner iterations */
417         inneriter                  += j_index_end - j_index_start;
418
419         /* Outer loop uses 9 flops */
420     }
421
422     /* Increment number of outer iterations */
423     outeriter        += nri;
424
425     /* Update outer/inner flops */
426
427     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71);
428 }
429 /*
430  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse2_single
431  * Electrostatics interaction: ReactionField
432  * VdW interaction:            LennardJones
433  * Geometry:                   Particle-Particle
434  * Calculate force/pot:        Force
435  */
436 void
437 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse2_single
438                     (t_nblist * gmx_restrict                nlist,
439                      rvec * gmx_restrict                    xx,
440                      rvec * gmx_restrict                    ff,
441                      t_forcerec * gmx_restrict              fr,
442                      t_mdatoms * gmx_restrict               mdatoms,
443                      nb_kernel_data_t * gmx_restrict        kernel_data,
444                      t_nrnb * gmx_restrict                  nrnb)
445 {
446     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
447      * just 0 for non-waters.
448      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
449      * jnr indices corresponding to data put in the four positions in the SIMD register.
450      */
451     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
452     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
453     int              jnrA,jnrB,jnrC,jnrD;
454     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
455     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
456     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
457     real             rcutoff_scalar;
458     real             *shiftvec,*fshift,*x,*f;
459     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
460     real             scratch[4*DIM];
461     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
462     int              vdwioffset0;
463     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
464     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
465     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
466     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
467     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
468     real             *charge;
469     int              nvdwtype;
470     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
471     int              *vdwtype;
472     real             *vdwparam;
473     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
474     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
475     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
476     real             rswitch_scalar,d_scalar;
477     __m128           dummy_mask,cutoff_mask;
478     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
479     __m128           one     = _mm_set1_ps(1.0);
480     __m128           two     = _mm_set1_ps(2.0);
481     x                = xx[0];
482     f                = ff[0];
483
484     nri              = nlist->nri;
485     iinr             = nlist->iinr;
486     jindex           = nlist->jindex;
487     jjnr             = nlist->jjnr;
488     shiftidx         = nlist->shift;
489     gid              = nlist->gid;
490     shiftvec         = fr->shift_vec[0];
491     fshift           = fr->fshift[0];
492     facel            = _mm_set1_ps(fr->epsfac);
493     charge           = mdatoms->chargeA;
494     krf              = _mm_set1_ps(fr->ic->k_rf);
495     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
496     crf              = _mm_set1_ps(fr->ic->c_rf);
497     nvdwtype         = fr->ntype;
498     vdwparam         = fr->nbfp;
499     vdwtype          = mdatoms->typeA;
500
501     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
502     rcutoff_scalar   = fr->rcoulomb;
503     rcutoff          = _mm_set1_ps(rcutoff_scalar);
504     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
505
506     rswitch_scalar   = fr->rvdw_switch;
507     rswitch          = _mm_set1_ps(rswitch_scalar);
508     /* Setup switch parameters */
509     d_scalar         = rcutoff_scalar-rswitch_scalar;
510     d                = _mm_set1_ps(d_scalar);
511     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
512     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
513     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
514     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
515     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
516     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
517
518     /* Avoid stupid compiler warnings */
519     jnrA = jnrB = jnrC = jnrD = 0;
520     j_coord_offsetA = 0;
521     j_coord_offsetB = 0;
522     j_coord_offsetC = 0;
523     j_coord_offsetD = 0;
524
525     outeriter        = 0;
526     inneriter        = 0;
527
528     for(iidx=0;iidx<4*DIM;iidx++)
529     {
530         scratch[iidx] = 0.0;
531     }  
532
533     /* Start outer loop over neighborlists */
534     for(iidx=0; iidx<nri; iidx++)
535     {
536         /* Load shift vector for this list */
537         i_shift_offset   = DIM*shiftidx[iidx];
538
539         /* Load limits for loop over neighbors */
540         j_index_start    = jindex[iidx];
541         j_index_end      = jindex[iidx+1];
542
543         /* Get outer coordinate index */
544         inr              = iinr[iidx];
545         i_coord_offset   = DIM*inr;
546
547         /* Load i particle coords and add shift vector */
548         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
549         
550         fix0             = _mm_setzero_ps();
551         fiy0             = _mm_setzero_ps();
552         fiz0             = _mm_setzero_ps();
553
554         /* Load parameters for i particles */
555         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
556         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
557
558         /* Start inner kernel loop */
559         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
560         {
561
562             /* Get j neighbor index, and coordinate index */
563             jnrA             = jjnr[jidx];
564             jnrB             = jjnr[jidx+1];
565             jnrC             = jjnr[jidx+2];
566             jnrD             = jjnr[jidx+3];
567             j_coord_offsetA  = DIM*jnrA;
568             j_coord_offsetB  = DIM*jnrB;
569             j_coord_offsetC  = DIM*jnrC;
570             j_coord_offsetD  = DIM*jnrD;
571
572             /* load j atom coordinates */
573             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
574                                               x+j_coord_offsetC,x+j_coord_offsetD,
575                                               &jx0,&jy0,&jz0);
576
577             /* Calculate displacement vector */
578             dx00             = _mm_sub_ps(ix0,jx0);
579             dy00             = _mm_sub_ps(iy0,jy0);
580             dz00             = _mm_sub_ps(iz0,jz0);
581
582             /* Calculate squared distance and things based on it */
583             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
584
585             rinv00           = gmx_mm_invsqrt_ps(rsq00);
586
587             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
588
589             /* Load parameters for j particles */
590             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
591                                                               charge+jnrC+0,charge+jnrD+0);
592             vdwjidx0A        = 2*vdwtype[jnrA+0];
593             vdwjidx0B        = 2*vdwtype[jnrB+0];
594             vdwjidx0C        = 2*vdwtype[jnrC+0];
595             vdwjidx0D        = 2*vdwtype[jnrD+0];
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             if (gmx_mm_any_lt(rsq00,rcutoff2))
602             {
603
604             r00              = _mm_mul_ps(rsq00,rinv00);
605
606             /* Compute parameters for interactions between i and j atoms */
607             qq00             = _mm_mul_ps(iq0,jq0);
608             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
609                                          vdwparam+vdwioffset0+vdwjidx0B,
610                                          vdwparam+vdwioffset0+vdwjidx0C,
611                                          vdwparam+vdwioffset0+vdwjidx0D,
612                                          &c6_00,&c12_00);
613
614             /* REACTION-FIELD ELECTROSTATICS */
615             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
616
617             /* LENNARD-JONES DISPERSION/REPULSION */
618
619             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
620             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
621             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
622             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
623             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
624
625             d                = _mm_sub_ps(r00,rswitch);
626             d                = _mm_max_ps(d,_mm_setzero_ps());
627             d2               = _mm_mul_ps(d,d);
628             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
629
630             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
631
632             /* Evaluate switch function */
633             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
634             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
635             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
636
637             fscal            = _mm_add_ps(felec,fvdw);
638
639             fscal            = _mm_and_ps(fscal,cutoff_mask);
640
641             /* Calculate temporary vectorial force */
642             tx               = _mm_mul_ps(fscal,dx00);
643             ty               = _mm_mul_ps(fscal,dy00);
644             tz               = _mm_mul_ps(fscal,dz00);
645
646             /* Update vectorial force */
647             fix0             = _mm_add_ps(fix0,tx);
648             fiy0             = _mm_add_ps(fiy0,ty);
649             fiz0             = _mm_add_ps(fiz0,tz);
650
651             fjptrA             = f+j_coord_offsetA;
652             fjptrB             = f+j_coord_offsetB;
653             fjptrC             = f+j_coord_offsetC;
654             fjptrD             = f+j_coord_offsetD;
655             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
656             
657             }
658
659             /* Inner loop uses 61 flops */
660         }
661
662         if(jidx<j_index_end)
663         {
664
665             /* Get j neighbor index, and coordinate index */
666             jnrlistA         = jjnr[jidx];
667             jnrlistB         = jjnr[jidx+1];
668             jnrlistC         = jjnr[jidx+2];
669             jnrlistD         = jjnr[jidx+3];
670             /* Sign of each element will be negative for non-real atoms.
671              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
672              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
673              */
674             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
675             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
676             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
677             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
678             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
679             j_coord_offsetA  = DIM*jnrA;
680             j_coord_offsetB  = DIM*jnrB;
681             j_coord_offsetC  = DIM*jnrC;
682             j_coord_offsetD  = DIM*jnrD;
683
684             /* load j atom coordinates */
685             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
686                                               x+j_coord_offsetC,x+j_coord_offsetD,
687                                               &jx0,&jy0,&jz0);
688
689             /* Calculate displacement vector */
690             dx00             = _mm_sub_ps(ix0,jx0);
691             dy00             = _mm_sub_ps(iy0,jy0);
692             dz00             = _mm_sub_ps(iz0,jz0);
693
694             /* Calculate squared distance and things based on it */
695             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
696
697             rinv00           = gmx_mm_invsqrt_ps(rsq00);
698
699             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
700
701             /* Load parameters for j particles */
702             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
703                                                               charge+jnrC+0,charge+jnrD+0);
704             vdwjidx0A        = 2*vdwtype[jnrA+0];
705             vdwjidx0B        = 2*vdwtype[jnrB+0];
706             vdwjidx0C        = 2*vdwtype[jnrC+0];
707             vdwjidx0D        = 2*vdwtype[jnrD+0];
708
709             /**************************
710              * CALCULATE INTERACTIONS *
711              **************************/
712
713             if (gmx_mm_any_lt(rsq00,rcutoff2))
714             {
715
716             r00              = _mm_mul_ps(rsq00,rinv00);
717             r00              = _mm_andnot_ps(dummy_mask,r00);
718
719             /* Compute parameters for interactions between i and j atoms */
720             qq00             = _mm_mul_ps(iq0,jq0);
721             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
722                                          vdwparam+vdwioffset0+vdwjidx0B,
723                                          vdwparam+vdwioffset0+vdwjidx0C,
724                                          vdwparam+vdwioffset0+vdwjidx0D,
725                                          &c6_00,&c12_00);
726
727             /* REACTION-FIELD ELECTROSTATICS */
728             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
729
730             /* LENNARD-JONES DISPERSION/REPULSION */
731
732             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
733             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
734             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
735             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
736             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
737
738             d                = _mm_sub_ps(r00,rswitch);
739             d                = _mm_max_ps(d,_mm_setzero_ps());
740             d2               = _mm_mul_ps(d,d);
741             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
742
743             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
744
745             /* Evaluate switch function */
746             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
747             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
748             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
749
750             fscal            = _mm_add_ps(felec,fvdw);
751
752             fscal            = _mm_and_ps(fscal,cutoff_mask);
753
754             fscal            = _mm_andnot_ps(dummy_mask,fscal);
755
756             /* Calculate temporary vectorial force */
757             tx               = _mm_mul_ps(fscal,dx00);
758             ty               = _mm_mul_ps(fscal,dy00);
759             tz               = _mm_mul_ps(fscal,dz00);
760
761             /* Update vectorial force */
762             fix0             = _mm_add_ps(fix0,tx);
763             fiy0             = _mm_add_ps(fiy0,ty);
764             fiz0             = _mm_add_ps(fiz0,tz);
765
766             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
767             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
768             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
769             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
770             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
771             
772             }
773
774             /* Inner loop uses 62 flops */
775         }
776
777         /* End of innermost loop */
778
779         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
780                                               f+i_coord_offset,fshift+i_shift_offset);
781
782         /* Increment number of inner iterations */
783         inneriter                  += j_index_end - j_index_start;
784
785         /* Outer loop uses 7 flops */
786     }
787
788     /* Increment number of outer iterations */
789     outeriter        += nri;
790
791     /* Update outer/inner flops */
792
793     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
794 }