Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse2_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
99     real             rswitch_scalar,d_scalar;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     krf              = _mm_set1_ps(fr->ic->k_rf);
118     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
119     crf              = _mm_set1_ps(fr->ic->c_rf);
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm_set1_ps(rcutoff_scalar);
127     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
128
129     rswitch_scalar   = fr->rvdw_switch;
130     rswitch          = _mm_set1_ps(rswitch_scalar);
131     /* Setup switch parameters */
132     d_scalar         = rcutoff_scalar-rswitch_scalar;
133     d                = _mm_set1_ps(d_scalar);
134     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
135     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
138     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }  
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
172         
173         fix0             = _mm_setzero_ps();
174         fiy0             = _mm_setzero_ps();
175         fiz0             = _mm_setzero_ps();
176
177         /* Load parameters for i particles */
178         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
179         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
180
181         /* Reset potential sums */
182         velecsum         = _mm_setzero_ps();
183         vvdwsum          = _mm_setzero_ps();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             jnrC             = jjnr[jidx+2];
193             jnrD             = jjnr[jidx+3];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198
199             /* load j atom coordinates */
200             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
201                                               x+j_coord_offsetC,x+j_coord_offsetD,
202                                               &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm_sub_ps(ix0,jx0);
206             dy00             = _mm_sub_ps(iy0,jy0);
207             dz00             = _mm_sub_ps(iz0,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
211
212             rinv00           = gmx_mm_invsqrt_ps(rsq00);
213
214             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
218                                                               charge+jnrC+0,charge+jnrD+0);
219             vdwjidx0A        = 2*vdwtype[jnrA+0];
220             vdwjidx0B        = 2*vdwtype[jnrB+0];
221             vdwjidx0C        = 2*vdwtype[jnrC+0];
222             vdwjidx0D        = 2*vdwtype[jnrD+0];
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             if (gmx_mm_any_lt(rsq00,rcutoff2))
229             {
230
231             r00              = _mm_mul_ps(rsq00,rinv00);
232
233             /* Compute parameters for interactions between i and j atoms */
234             qq00             = _mm_mul_ps(iq0,jq0);
235             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
236                                          vdwparam+vdwioffset0+vdwjidx0B,
237                                          vdwparam+vdwioffset0+vdwjidx0C,
238                                          vdwparam+vdwioffset0+vdwjidx0D,
239                                          &c6_00,&c12_00);
240
241             /* REACTION-FIELD ELECTROSTATICS */
242             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
243             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
244
245             /* LENNARD-JONES DISPERSION/REPULSION */
246
247             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
248             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
249             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
250             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
251             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
252
253             d                = _mm_sub_ps(r00,rswitch);
254             d                = _mm_max_ps(d,_mm_setzero_ps());
255             d2               = _mm_mul_ps(d,d);
256             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
257
258             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
259
260             /* Evaluate switch function */
261             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
262             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
263             vvdw             = _mm_mul_ps(vvdw,sw);
264             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             velec            = _mm_and_ps(velec,cutoff_mask);
268             velecsum         = _mm_add_ps(velecsum,velec);
269             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
270             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
271
272             fscal            = _mm_add_ps(felec,fvdw);
273
274             fscal            = _mm_and_ps(fscal,cutoff_mask);
275
276             /* Calculate temporary vectorial force */
277             tx               = _mm_mul_ps(fscal,dx00);
278             ty               = _mm_mul_ps(fscal,dy00);
279             tz               = _mm_mul_ps(fscal,dz00);
280
281             /* Update vectorial force */
282             fix0             = _mm_add_ps(fix0,tx);
283             fiy0             = _mm_add_ps(fiy0,ty);
284             fiz0             = _mm_add_ps(fiz0,tz);
285
286             fjptrA             = f+j_coord_offsetA;
287             fjptrB             = f+j_coord_offsetB;
288             fjptrC             = f+j_coord_offsetC;
289             fjptrD             = f+j_coord_offsetD;
290             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
291             
292             }
293
294             /* Inner loop uses 70 flops */
295         }
296
297         if(jidx<j_index_end)
298         {
299
300             /* Get j neighbor index, and coordinate index */
301             jnrlistA         = jjnr[jidx];
302             jnrlistB         = jjnr[jidx+1];
303             jnrlistC         = jjnr[jidx+2];
304             jnrlistD         = jjnr[jidx+3];
305             /* Sign of each element will be negative for non-real atoms.
306              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
307              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
308              */
309             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
310             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
311             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
312             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
313             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
314             j_coord_offsetA  = DIM*jnrA;
315             j_coord_offsetB  = DIM*jnrB;
316             j_coord_offsetC  = DIM*jnrC;
317             j_coord_offsetD  = DIM*jnrD;
318
319             /* load j atom coordinates */
320             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
321                                               x+j_coord_offsetC,x+j_coord_offsetD,
322                                               &jx0,&jy0,&jz0);
323
324             /* Calculate displacement vector */
325             dx00             = _mm_sub_ps(ix0,jx0);
326             dy00             = _mm_sub_ps(iy0,jy0);
327             dz00             = _mm_sub_ps(iz0,jz0);
328
329             /* Calculate squared distance and things based on it */
330             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
331
332             rinv00           = gmx_mm_invsqrt_ps(rsq00);
333
334             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
335
336             /* Load parameters for j particles */
337             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
338                                                               charge+jnrC+0,charge+jnrD+0);
339             vdwjidx0A        = 2*vdwtype[jnrA+0];
340             vdwjidx0B        = 2*vdwtype[jnrB+0];
341             vdwjidx0C        = 2*vdwtype[jnrC+0];
342             vdwjidx0D        = 2*vdwtype[jnrD+0];
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             if (gmx_mm_any_lt(rsq00,rcutoff2))
349             {
350
351             r00              = _mm_mul_ps(rsq00,rinv00);
352             r00              = _mm_andnot_ps(dummy_mask,r00);
353
354             /* Compute parameters for interactions between i and j atoms */
355             qq00             = _mm_mul_ps(iq0,jq0);
356             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
357                                          vdwparam+vdwioffset0+vdwjidx0B,
358                                          vdwparam+vdwioffset0+vdwjidx0C,
359                                          vdwparam+vdwioffset0+vdwjidx0D,
360                                          &c6_00,&c12_00);
361
362             /* REACTION-FIELD ELECTROSTATICS */
363             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
364             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
365
366             /* LENNARD-JONES DISPERSION/REPULSION */
367
368             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
369             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
370             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
371             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
372             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
373
374             d                = _mm_sub_ps(r00,rswitch);
375             d                = _mm_max_ps(d,_mm_setzero_ps());
376             d2               = _mm_mul_ps(d,d);
377             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
378
379             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
380
381             /* Evaluate switch function */
382             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
383             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
384             vvdw             = _mm_mul_ps(vvdw,sw);
385             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velec            = _mm_and_ps(velec,cutoff_mask);
389             velec            = _mm_andnot_ps(dummy_mask,velec);
390             velecsum         = _mm_add_ps(velecsum,velec);
391             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
392             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
393             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
394
395             fscal            = _mm_add_ps(felec,fvdw);
396
397             fscal            = _mm_and_ps(fscal,cutoff_mask);
398
399             fscal            = _mm_andnot_ps(dummy_mask,fscal);
400
401             /* Calculate temporary vectorial force */
402             tx               = _mm_mul_ps(fscal,dx00);
403             ty               = _mm_mul_ps(fscal,dy00);
404             tz               = _mm_mul_ps(fscal,dz00);
405
406             /* Update vectorial force */
407             fix0             = _mm_add_ps(fix0,tx);
408             fiy0             = _mm_add_ps(fiy0,ty);
409             fiz0             = _mm_add_ps(fiz0,tz);
410
411             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
412             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
413             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
414             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
415             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
416             
417             }
418
419             /* Inner loop uses 71 flops */
420         }
421
422         /* End of innermost loop */
423
424         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
425                                               f+i_coord_offset,fshift+i_shift_offset);
426
427         ggid                        = gid[iidx];
428         /* Update potential energies */
429         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
430         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
431
432         /* Increment number of inner iterations */
433         inneriter                  += j_index_end - j_index_start;
434
435         /* Outer loop uses 9 flops */
436     }
437
438     /* Increment number of outer iterations */
439     outeriter        += nri;
440
441     /* Update outer/inner flops */
442
443     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71);
444 }
445 /*
446  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse2_single
447  * Electrostatics interaction: ReactionField
448  * VdW interaction:            LennardJones
449  * Geometry:                   Particle-Particle
450  * Calculate force/pot:        Force
451  */
452 void
453 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse2_single
454                     (t_nblist                    * gmx_restrict       nlist,
455                      rvec                        * gmx_restrict          xx,
456                      rvec                        * gmx_restrict          ff,
457                      t_forcerec                  * gmx_restrict          fr,
458                      t_mdatoms                   * gmx_restrict     mdatoms,
459                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
460                      t_nrnb                      * gmx_restrict        nrnb)
461 {
462     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
463      * just 0 for non-waters.
464      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
465      * jnr indices corresponding to data put in the four positions in the SIMD register.
466      */
467     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
468     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
469     int              jnrA,jnrB,jnrC,jnrD;
470     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
471     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
472     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
473     real             rcutoff_scalar;
474     real             *shiftvec,*fshift,*x,*f;
475     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
476     real             scratch[4*DIM];
477     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
478     int              vdwioffset0;
479     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
480     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
481     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
482     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
483     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
484     real             *charge;
485     int              nvdwtype;
486     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
487     int              *vdwtype;
488     real             *vdwparam;
489     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
490     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
491     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
492     real             rswitch_scalar,d_scalar;
493     __m128           dummy_mask,cutoff_mask;
494     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
495     __m128           one     = _mm_set1_ps(1.0);
496     __m128           two     = _mm_set1_ps(2.0);
497     x                = xx[0];
498     f                = ff[0];
499
500     nri              = nlist->nri;
501     iinr             = nlist->iinr;
502     jindex           = nlist->jindex;
503     jjnr             = nlist->jjnr;
504     shiftidx         = nlist->shift;
505     gid              = nlist->gid;
506     shiftvec         = fr->shift_vec[0];
507     fshift           = fr->fshift[0];
508     facel            = _mm_set1_ps(fr->epsfac);
509     charge           = mdatoms->chargeA;
510     krf              = _mm_set1_ps(fr->ic->k_rf);
511     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
512     crf              = _mm_set1_ps(fr->ic->c_rf);
513     nvdwtype         = fr->ntype;
514     vdwparam         = fr->nbfp;
515     vdwtype          = mdatoms->typeA;
516
517     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
518     rcutoff_scalar   = fr->rcoulomb;
519     rcutoff          = _mm_set1_ps(rcutoff_scalar);
520     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
521
522     rswitch_scalar   = fr->rvdw_switch;
523     rswitch          = _mm_set1_ps(rswitch_scalar);
524     /* Setup switch parameters */
525     d_scalar         = rcutoff_scalar-rswitch_scalar;
526     d                = _mm_set1_ps(d_scalar);
527     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
528     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
529     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
530     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
531     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
532     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
533
534     /* Avoid stupid compiler warnings */
535     jnrA = jnrB = jnrC = jnrD = 0;
536     j_coord_offsetA = 0;
537     j_coord_offsetB = 0;
538     j_coord_offsetC = 0;
539     j_coord_offsetD = 0;
540
541     outeriter        = 0;
542     inneriter        = 0;
543
544     for(iidx=0;iidx<4*DIM;iidx++)
545     {
546         scratch[iidx] = 0.0;
547     }  
548
549     /* Start outer loop over neighborlists */
550     for(iidx=0; iidx<nri; iidx++)
551     {
552         /* Load shift vector for this list */
553         i_shift_offset   = DIM*shiftidx[iidx];
554
555         /* Load limits for loop over neighbors */
556         j_index_start    = jindex[iidx];
557         j_index_end      = jindex[iidx+1];
558
559         /* Get outer coordinate index */
560         inr              = iinr[iidx];
561         i_coord_offset   = DIM*inr;
562
563         /* Load i particle coords and add shift vector */
564         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
565         
566         fix0             = _mm_setzero_ps();
567         fiy0             = _mm_setzero_ps();
568         fiz0             = _mm_setzero_ps();
569
570         /* Load parameters for i particles */
571         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
572         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
573
574         /* Start inner kernel loop */
575         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
576         {
577
578             /* Get j neighbor index, and coordinate index */
579             jnrA             = jjnr[jidx];
580             jnrB             = jjnr[jidx+1];
581             jnrC             = jjnr[jidx+2];
582             jnrD             = jjnr[jidx+3];
583             j_coord_offsetA  = DIM*jnrA;
584             j_coord_offsetB  = DIM*jnrB;
585             j_coord_offsetC  = DIM*jnrC;
586             j_coord_offsetD  = DIM*jnrD;
587
588             /* load j atom coordinates */
589             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
590                                               x+j_coord_offsetC,x+j_coord_offsetD,
591                                               &jx0,&jy0,&jz0);
592
593             /* Calculate displacement vector */
594             dx00             = _mm_sub_ps(ix0,jx0);
595             dy00             = _mm_sub_ps(iy0,jy0);
596             dz00             = _mm_sub_ps(iz0,jz0);
597
598             /* Calculate squared distance and things based on it */
599             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
600
601             rinv00           = gmx_mm_invsqrt_ps(rsq00);
602
603             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
604
605             /* Load parameters for j particles */
606             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
607                                                               charge+jnrC+0,charge+jnrD+0);
608             vdwjidx0A        = 2*vdwtype[jnrA+0];
609             vdwjidx0B        = 2*vdwtype[jnrB+0];
610             vdwjidx0C        = 2*vdwtype[jnrC+0];
611             vdwjidx0D        = 2*vdwtype[jnrD+0];
612
613             /**************************
614              * CALCULATE INTERACTIONS *
615              **************************/
616
617             if (gmx_mm_any_lt(rsq00,rcutoff2))
618             {
619
620             r00              = _mm_mul_ps(rsq00,rinv00);
621
622             /* Compute parameters for interactions between i and j atoms */
623             qq00             = _mm_mul_ps(iq0,jq0);
624             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
625                                          vdwparam+vdwioffset0+vdwjidx0B,
626                                          vdwparam+vdwioffset0+vdwjidx0C,
627                                          vdwparam+vdwioffset0+vdwjidx0D,
628                                          &c6_00,&c12_00);
629
630             /* REACTION-FIELD ELECTROSTATICS */
631             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
632
633             /* LENNARD-JONES DISPERSION/REPULSION */
634
635             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
636             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
637             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
638             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
639             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
640
641             d                = _mm_sub_ps(r00,rswitch);
642             d                = _mm_max_ps(d,_mm_setzero_ps());
643             d2               = _mm_mul_ps(d,d);
644             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
645
646             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
647
648             /* Evaluate switch function */
649             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
650             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
651             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
652
653             fscal            = _mm_add_ps(felec,fvdw);
654
655             fscal            = _mm_and_ps(fscal,cutoff_mask);
656
657             /* Calculate temporary vectorial force */
658             tx               = _mm_mul_ps(fscal,dx00);
659             ty               = _mm_mul_ps(fscal,dy00);
660             tz               = _mm_mul_ps(fscal,dz00);
661
662             /* Update vectorial force */
663             fix0             = _mm_add_ps(fix0,tx);
664             fiy0             = _mm_add_ps(fiy0,ty);
665             fiz0             = _mm_add_ps(fiz0,tz);
666
667             fjptrA             = f+j_coord_offsetA;
668             fjptrB             = f+j_coord_offsetB;
669             fjptrC             = f+j_coord_offsetC;
670             fjptrD             = f+j_coord_offsetD;
671             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
672             
673             }
674
675             /* Inner loop uses 61 flops */
676         }
677
678         if(jidx<j_index_end)
679         {
680
681             /* Get j neighbor index, and coordinate index */
682             jnrlistA         = jjnr[jidx];
683             jnrlistB         = jjnr[jidx+1];
684             jnrlistC         = jjnr[jidx+2];
685             jnrlistD         = jjnr[jidx+3];
686             /* Sign of each element will be negative for non-real atoms.
687              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
688              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
689              */
690             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
691             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
692             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
693             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
694             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
695             j_coord_offsetA  = DIM*jnrA;
696             j_coord_offsetB  = DIM*jnrB;
697             j_coord_offsetC  = DIM*jnrC;
698             j_coord_offsetD  = DIM*jnrD;
699
700             /* load j atom coordinates */
701             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
702                                               x+j_coord_offsetC,x+j_coord_offsetD,
703                                               &jx0,&jy0,&jz0);
704
705             /* Calculate displacement vector */
706             dx00             = _mm_sub_ps(ix0,jx0);
707             dy00             = _mm_sub_ps(iy0,jy0);
708             dz00             = _mm_sub_ps(iz0,jz0);
709
710             /* Calculate squared distance and things based on it */
711             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
712
713             rinv00           = gmx_mm_invsqrt_ps(rsq00);
714
715             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
716
717             /* Load parameters for j particles */
718             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
719                                                               charge+jnrC+0,charge+jnrD+0);
720             vdwjidx0A        = 2*vdwtype[jnrA+0];
721             vdwjidx0B        = 2*vdwtype[jnrB+0];
722             vdwjidx0C        = 2*vdwtype[jnrC+0];
723             vdwjidx0D        = 2*vdwtype[jnrD+0];
724
725             /**************************
726              * CALCULATE INTERACTIONS *
727              **************************/
728
729             if (gmx_mm_any_lt(rsq00,rcutoff2))
730             {
731
732             r00              = _mm_mul_ps(rsq00,rinv00);
733             r00              = _mm_andnot_ps(dummy_mask,r00);
734
735             /* Compute parameters for interactions between i and j atoms */
736             qq00             = _mm_mul_ps(iq0,jq0);
737             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
738                                          vdwparam+vdwioffset0+vdwjidx0B,
739                                          vdwparam+vdwioffset0+vdwjidx0C,
740                                          vdwparam+vdwioffset0+vdwjidx0D,
741                                          &c6_00,&c12_00);
742
743             /* REACTION-FIELD ELECTROSTATICS */
744             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
745
746             /* LENNARD-JONES DISPERSION/REPULSION */
747
748             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
749             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
750             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
751             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
752             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
753
754             d                = _mm_sub_ps(r00,rswitch);
755             d                = _mm_max_ps(d,_mm_setzero_ps());
756             d2               = _mm_mul_ps(d,d);
757             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
758
759             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
760
761             /* Evaluate switch function */
762             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
763             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
764             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
765
766             fscal            = _mm_add_ps(felec,fvdw);
767
768             fscal            = _mm_and_ps(fscal,cutoff_mask);
769
770             fscal            = _mm_andnot_ps(dummy_mask,fscal);
771
772             /* Calculate temporary vectorial force */
773             tx               = _mm_mul_ps(fscal,dx00);
774             ty               = _mm_mul_ps(fscal,dy00);
775             tz               = _mm_mul_ps(fscal,dz00);
776
777             /* Update vectorial force */
778             fix0             = _mm_add_ps(fix0,tx);
779             fiy0             = _mm_add_ps(fiy0,ty);
780             fiz0             = _mm_add_ps(fiz0,tz);
781
782             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
783             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
784             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
785             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
786             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
787             
788             }
789
790             /* Inner loop uses 62 flops */
791         }
792
793         /* End of innermost loop */
794
795         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
796                                               f+i_coord_offset,fshift+i_shift_offset);
797
798         /* Increment number of inner iterations */
799         inneriter                  += j_index_end - j_index_start;
800
801         /* Outer loop uses 7 flops */
802     }
803
804     /* Increment number of outer iterations */
805     outeriter        += nri;
806
807     /* Update outer/inner flops */
808
809     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
810 }