Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
78     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
79     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
80     real             rswitch_scalar,d_scalar;
81     __m128           dummy_mask,cutoff_mask;
82     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
83     __m128           one     = _mm_set1_ps(1.0);
84     __m128           two     = _mm_set1_ps(2.0);
85     x                = xx[0];
86     f                = ff[0];
87
88     nri              = nlist->nri;
89     iinr             = nlist->iinr;
90     jindex           = nlist->jindex;
91     jjnr             = nlist->jjnr;
92     shiftidx         = nlist->shift;
93     gid              = nlist->gid;
94     shiftvec         = fr->shift_vec[0];
95     fshift           = fr->fshift[0];
96     facel            = _mm_set1_ps(fr->epsfac);
97     charge           = mdatoms->chargeA;
98     krf              = _mm_set1_ps(fr->ic->k_rf);
99     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
100     crf              = _mm_set1_ps(fr->ic->c_rf);
101     nvdwtype         = fr->ntype;
102     vdwparam         = fr->nbfp;
103     vdwtype          = mdatoms->typeA;
104
105     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
106     rcutoff_scalar   = fr->rcoulomb;
107     rcutoff          = _mm_set1_ps(rcutoff_scalar);
108     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
109
110     rswitch_scalar   = fr->rvdw_switch;
111     rswitch          = _mm_set1_ps(rswitch_scalar);
112     /* Setup switch parameters */
113     d_scalar         = rcutoff_scalar-rswitch_scalar;
114     d                = _mm_set1_ps(d_scalar);
115     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
116     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
117     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
118     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
119     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
120     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137         shX              = shiftvec[i_shift_offset+XX];
138         shY              = shiftvec[i_shift_offset+YY];
139         shZ              = shiftvec[i_shift_offset+ZZ];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
151         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
152         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
153
154         fix0             = _mm_setzero_ps();
155         fiy0             = _mm_setzero_ps();
156         fiz0             = _mm_setzero_ps();
157
158         /* Load parameters for i particles */
159         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
160         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_ps();
164         vvdwsum          = _mm_setzero_ps();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             jnrC             = jjnr[jidx+2];
174             jnrD             = jjnr[jidx+3];
175
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178             j_coord_offsetC  = DIM*jnrC;
179             j_coord_offsetD  = DIM*jnrD;
180
181             /* load j atom coordinates */
182             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
183                                               x+j_coord_offsetC,x+j_coord_offsetD,
184                                               &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm_sub_ps(ix0,jx0);
188             dy00             = _mm_sub_ps(iy0,jy0);
189             dz00             = _mm_sub_ps(iz0,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
193
194             rinv00           = gmx_mm_invsqrt_ps(rsq00);
195
196             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
197
198             /* Load parameters for j particles */
199             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
200                                                               charge+jnrC+0,charge+jnrD+0);
201             vdwjidx0A        = 2*vdwtype[jnrA+0];
202             vdwjidx0B        = 2*vdwtype[jnrB+0];
203             vdwjidx0C        = 2*vdwtype[jnrC+0];
204             vdwjidx0D        = 2*vdwtype[jnrD+0];
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             if (gmx_mm_any_lt(rsq00,rcutoff2))
211             {
212
213             r00              = _mm_mul_ps(rsq00,rinv00);
214
215             /* Compute parameters for interactions between i and j atoms */
216             qq00             = _mm_mul_ps(iq0,jq0);
217             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
218                                          vdwparam+vdwioffset0+vdwjidx0B,
219                                          vdwparam+vdwioffset0+vdwjidx0C,
220                                          vdwparam+vdwioffset0+vdwjidx0D,
221                                          &c6_00,&c12_00);
222
223             /* REACTION-FIELD ELECTROSTATICS */
224             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
225             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
226
227             /* LENNARD-JONES DISPERSION/REPULSION */
228
229             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
230             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
231             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
232             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
233             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
234
235             d                = _mm_sub_ps(r00,rswitch);
236             d                = _mm_max_ps(d,_mm_setzero_ps());
237             d2               = _mm_mul_ps(d,d);
238             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
239
240             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
241
242             /* Evaluate switch function */
243             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
244             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
245             vvdw             = _mm_mul_ps(vvdw,sw);
246             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
247
248             /* Update potential sum for this i atom from the interaction with this j atom. */
249             velec            = _mm_and_ps(velec,cutoff_mask);
250             velecsum         = _mm_add_ps(velecsum,velec);
251             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
252             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
253
254             fscal            = _mm_add_ps(felec,fvdw);
255
256             fscal            = _mm_and_ps(fscal,cutoff_mask);
257
258             /* Calculate temporary vectorial force */
259             tx               = _mm_mul_ps(fscal,dx00);
260             ty               = _mm_mul_ps(fscal,dy00);
261             tz               = _mm_mul_ps(fscal,dz00);
262
263             /* Update vectorial force */
264             fix0             = _mm_add_ps(fix0,tx);
265             fiy0             = _mm_add_ps(fiy0,ty);
266             fiz0             = _mm_add_ps(fiz0,tz);
267
268             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
269                                                    f+j_coord_offsetC,f+j_coord_offsetD,
270                                                    tx,ty,tz);
271
272             }
273
274             /* Inner loop uses 70 flops */
275         }
276
277         if(jidx<j_index_end)
278         {
279
280             /* Get j neighbor index, and coordinate index */
281             jnrA             = jjnr[jidx];
282             jnrB             = jjnr[jidx+1];
283             jnrC             = jjnr[jidx+2];
284             jnrD             = jjnr[jidx+3];
285
286             /* Sign of each element will be negative for non-real atoms.
287              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
288              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
289              */
290             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
291             jnrA       = (jnrA>=0) ? jnrA : 0;
292             jnrB       = (jnrB>=0) ? jnrB : 0;
293             jnrC       = (jnrC>=0) ? jnrC : 0;
294             jnrD       = (jnrD>=0) ? jnrD : 0;
295
296             j_coord_offsetA  = DIM*jnrA;
297             j_coord_offsetB  = DIM*jnrB;
298             j_coord_offsetC  = DIM*jnrC;
299             j_coord_offsetD  = DIM*jnrD;
300
301             /* load j atom coordinates */
302             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
303                                               x+j_coord_offsetC,x+j_coord_offsetD,
304                                               &jx0,&jy0,&jz0);
305
306             /* Calculate displacement vector */
307             dx00             = _mm_sub_ps(ix0,jx0);
308             dy00             = _mm_sub_ps(iy0,jy0);
309             dz00             = _mm_sub_ps(iz0,jz0);
310
311             /* Calculate squared distance and things based on it */
312             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
313
314             rinv00           = gmx_mm_invsqrt_ps(rsq00);
315
316             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
317
318             /* Load parameters for j particles */
319             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
320                                                               charge+jnrC+0,charge+jnrD+0);
321             vdwjidx0A        = 2*vdwtype[jnrA+0];
322             vdwjidx0B        = 2*vdwtype[jnrB+0];
323             vdwjidx0C        = 2*vdwtype[jnrC+0];
324             vdwjidx0D        = 2*vdwtype[jnrD+0];
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             if (gmx_mm_any_lt(rsq00,rcutoff2))
331             {
332
333             r00              = _mm_mul_ps(rsq00,rinv00);
334             r00              = _mm_andnot_ps(dummy_mask,r00);
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq00             = _mm_mul_ps(iq0,jq0);
338             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
339                                          vdwparam+vdwioffset0+vdwjidx0B,
340                                          vdwparam+vdwioffset0+vdwjidx0C,
341                                          vdwparam+vdwioffset0+vdwjidx0D,
342                                          &c6_00,&c12_00);
343
344             /* REACTION-FIELD ELECTROSTATICS */
345             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
346             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
347
348             /* LENNARD-JONES DISPERSION/REPULSION */
349
350             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
351             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
352             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
353             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
354             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
355
356             d                = _mm_sub_ps(r00,rswitch);
357             d                = _mm_max_ps(d,_mm_setzero_ps());
358             d2               = _mm_mul_ps(d,d);
359             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
360
361             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
362
363             /* Evaluate switch function */
364             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
365             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
366             vvdw             = _mm_mul_ps(vvdw,sw);
367             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velec            = _mm_and_ps(velec,cutoff_mask);
371             velec            = _mm_andnot_ps(dummy_mask,velec);
372             velecsum         = _mm_add_ps(velecsum,velec);
373             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
374             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
375             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
376
377             fscal            = _mm_add_ps(felec,fvdw);
378
379             fscal            = _mm_and_ps(fscal,cutoff_mask);
380
381             fscal            = _mm_andnot_ps(dummy_mask,fscal);
382
383             /* Calculate temporary vectorial force */
384             tx               = _mm_mul_ps(fscal,dx00);
385             ty               = _mm_mul_ps(fscal,dy00);
386             tz               = _mm_mul_ps(fscal,dz00);
387
388             /* Update vectorial force */
389             fix0             = _mm_add_ps(fix0,tx);
390             fiy0             = _mm_add_ps(fiy0,ty);
391             fiz0             = _mm_add_ps(fiz0,tz);
392
393             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
394                                                    f+j_coord_offsetC,f+j_coord_offsetD,
395                                                    tx,ty,tz);
396
397             }
398
399             /* Inner loop uses 71 flops */
400         }
401
402         /* End of innermost loop */
403
404         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
405                                               f+i_coord_offset,fshift+i_shift_offset);
406
407         ggid                        = gid[iidx];
408         /* Update potential energies */
409         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
410         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
411
412         /* Increment number of inner iterations */
413         inneriter                  += j_index_end - j_index_start;
414
415         /* Outer loop uses 12 flops */
416     }
417
418     /* Increment number of outer iterations */
419     outeriter        += nri;
420
421     /* Update outer/inner flops */
422
423     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*12 + inneriter*71);
424 }
425 /*
426  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse2_single
427  * Electrostatics interaction: ReactionField
428  * VdW interaction:            LennardJones
429  * Geometry:                   Particle-Particle
430  * Calculate force/pot:        Force
431  */
432 void
433 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse2_single
434                     (t_nblist * gmx_restrict                nlist,
435                      rvec * gmx_restrict                    xx,
436                      rvec * gmx_restrict                    ff,
437                      t_forcerec * gmx_restrict              fr,
438                      t_mdatoms * gmx_restrict               mdatoms,
439                      nb_kernel_data_t * gmx_restrict        kernel_data,
440                      t_nrnb * gmx_restrict                  nrnb)
441 {
442     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
443      * just 0 for non-waters.
444      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
445      * jnr indices corresponding to data put in the four positions in the SIMD register.
446      */
447     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
448     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
449     int              jnrA,jnrB,jnrC,jnrD;
450     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
451     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
452     real             shX,shY,shZ,rcutoff_scalar;
453     real             *shiftvec,*fshift,*x,*f;
454     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
455     int              vdwioffset0;
456     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
457     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
458     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
459     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
460     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
461     real             *charge;
462     int              nvdwtype;
463     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
464     int              *vdwtype;
465     real             *vdwparam;
466     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
467     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
468     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
469     real             rswitch_scalar,d_scalar;
470     __m128           dummy_mask,cutoff_mask;
471     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
472     __m128           one     = _mm_set1_ps(1.0);
473     __m128           two     = _mm_set1_ps(2.0);
474     x                = xx[0];
475     f                = ff[0];
476
477     nri              = nlist->nri;
478     iinr             = nlist->iinr;
479     jindex           = nlist->jindex;
480     jjnr             = nlist->jjnr;
481     shiftidx         = nlist->shift;
482     gid              = nlist->gid;
483     shiftvec         = fr->shift_vec[0];
484     fshift           = fr->fshift[0];
485     facel            = _mm_set1_ps(fr->epsfac);
486     charge           = mdatoms->chargeA;
487     krf              = _mm_set1_ps(fr->ic->k_rf);
488     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
489     crf              = _mm_set1_ps(fr->ic->c_rf);
490     nvdwtype         = fr->ntype;
491     vdwparam         = fr->nbfp;
492     vdwtype          = mdatoms->typeA;
493
494     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
495     rcutoff_scalar   = fr->rcoulomb;
496     rcutoff          = _mm_set1_ps(rcutoff_scalar);
497     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
498
499     rswitch_scalar   = fr->rvdw_switch;
500     rswitch          = _mm_set1_ps(rswitch_scalar);
501     /* Setup switch parameters */
502     d_scalar         = rcutoff_scalar-rswitch_scalar;
503     d                = _mm_set1_ps(d_scalar);
504     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
505     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
506     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
507     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
508     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
509     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
510
511     /* Avoid stupid compiler warnings */
512     jnrA = jnrB = jnrC = jnrD = 0;
513     j_coord_offsetA = 0;
514     j_coord_offsetB = 0;
515     j_coord_offsetC = 0;
516     j_coord_offsetD = 0;
517
518     outeriter        = 0;
519     inneriter        = 0;
520
521     /* Start outer loop over neighborlists */
522     for(iidx=0; iidx<nri; iidx++)
523     {
524         /* Load shift vector for this list */
525         i_shift_offset   = DIM*shiftidx[iidx];
526         shX              = shiftvec[i_shift_offset+XX];
527         shY              = shiftvec[i_shift_offset+YY];
528         shZ              = shiftvec[i_shift_offset+ZZ];
529
530         /* Load limits for loop over neighbors */
531         j_index_start    = jindex[iidx];
532         j_index_end      = jindex[iidx+1];
533
534         /* Get outer coordinate index */
535         inr              = iinr[iidx];
536         i_coord_offset   = DIM*inr;
537
538         /* Load i particle coords and add shift vector */
539         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
540         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
541         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
542
543         fix0             = _mm_setzero_ps();
544         fiy0             = _mm_setzero_ps();
545         fiz0             = _mm_setzero_ps();
546
547         /* Load parameters for i particles */
548         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
549         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
550
551         /* Start inner kernel loop */
552         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
553         {
554
555             /* Get j neighbor index, and coordinate index */
556             jnrA             = jjnr[jidx];
557             jnrB             = jjnr[jidx+1];
558             jnrC             = jjnr[jidx+2];
559             jnrD             = jjnr[jidx+3];
560
561             j_coord_offsetA  = DIM*jnrA;
562             j_coord_offsetB  = DIM*jnrB;
563             j_coord_offsetC  = DIM*jnrC;
564             j_coord_offsetD  = DIM*jnrD;
565
566             /* load j atom coordinates */
567             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
568                                               x+j_coord_offsetC,x+j_coord_offsetD,
569                                               &jx0,&jy0,&jz0);
570
571             /* Calculate displacement vector */
572             dx00             = _mm_sub_ps(ix0,jx0);
573             dy00             = _mm_sub_ps(iy0,jy0);
574             dz00             = _mm_sub_ps(iz0,jz0);
575
576             /* Calculate squared distance and things based on it */
577             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
578
579             rinv00           = gmx_mm_invsqrt_ps(rsq00);
580
581             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
582
583             /* Load parameters for j particles */
584             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
585                                                               charge+jnrC+0,charge+jnrD+0);
586             vdwjidx0A        = 2*vdwtype[jnrA+0];
587             vdwjidx0B        = 2*vdwtype[jnrB+0];
588             vdwjidx0C        = 2*vdwtype[jnrC+0];
589             vdwjidx0D        = 2*vdwtype[jnrD+0];
590
591             /**************************
592              * CALCULATE INTERACTIONS *
593              **************************/
594
595             if (gmx_mm_any_lt(rsq00,rcutoff2))
596             {
597
598             r00              = _mm_mul_ps(rsq00,rinv00);
599
600             /* Compute parameters for interactions between i and j atoms */
601             qq00             = _mm_mul_ps(iq0,jq0);
602             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
603                                          vdwparam+vdwioffset0+vdwjidx0B,
604                                          vdwparam+vdwioffset0+vdwjidx0C,
605                                          vdwparam+vdwioffset0+vdwjidx0D,
606                                          &c6_00,&c12_00);
607
608             /* REACTION-FIELD ELECTROSTATICS */
609             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
610
611             /* LENNARD-JONES DISPERSION/REPULSION */
612
613             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
614             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
615             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
616             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
617             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
618
619             d                = _mm_sub_ps(r00,rswitch);
620             d                = _mm_max_ps(d,_mm_setzero_ps());
621             d2               = _mm_mul_ps(d,d);
622             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
623
624             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
625
626             /* Evaluate switch function */
627             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
628             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
629             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
630
631             fscal            = _mm_add_ps(felec,fvdw);
632
633             fscal            = _mm_and_ps(fscal,cutoff_mask);
634
635             /* Calculate temporary vectorial force */
636             tx               = _mm_mul_ps(fscal,dx00);
637             ty               = _mm_mul_ps(fscal,dy00);
638             tz               = _mm_mul_ps(fscal,dz00);
639
640             /* Update vectorial force */
641             fix0             = _mm_add_ps(fix0,tx);
642             fiy0             = _mm_add_ps(fiy0,ty);
643             fiz0             = _mm_add_ps(fiz0,tz);
644
645             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
646                                                    f+j_coord_offsetC,f+j_coord_offsetD,
647                                                    tx,ty,tz);
648
649             }
650
651             /* Inner loop uses 61 flops */
652         }
653
654         if(jidx<j_index_end)
655         {
656
657             /* Get j neighbor index, and coordinate index */
658             jnrA             = jjnr[jidx];
659             jnrB             = jjnr[jidx+1];
660             jnrC             = jjnr[jidx+2];
661             jnrD             = jjnr[jidx+3];
662
663             /* Sign of each element will be negative for non-real atoms.
664              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
665              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
666              */
667             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
668             jnrA       = (jnrA>=0) ? jnrA : 0;
669             jnrB       = (jnrB>=0) ? jnrB : 0;
670             jnrC       = (jnrC>=0) ? jnrC : 0;
671             jnrD       = (jnrD>=0) ? jnrD : 0;
672
673             j_coord_offsetA  = DIM*jnrA;
674             j_coord_offsetB  = DIM*jnrB;
675             j_coord_offsetC  = DIM*jnrC;
676             j_coord_offsetD  = DIM*jnrD;
677
678             /* load j atom coordinates */
679             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
680                                               x+j_coord_offsetC,x+j_coord_offsetD,
681                                               &jx0,&jy0,&jz0);
682
683             /* Calculate displacement vector */
684             dx00             = _mm_sub_ps(ix0,jx0);
685             dy00             = _mm_sub_ps(iy0,jy0);
686             dz00             = _mm_sub_ps(iz0,jz0);
687
688             /* Calculate squared distance and things based on it */
689             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
690
691             rinv00           = gmx_mm_invsqrt_ps(rsq00);
692
693             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
694
695             /* Load parameters for j particles */
696             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
697                                                               charge+jnrC+0,charge+jnrD+0);
698             vdwjidx0A        = 2*vdwtype[jnrA+0];
699             vdwjidx0B        = 2*vdwtype[jnrB+0];
700             vdwjidx0C        = 2*vdwtype[jnrC+0];
701             vdwjidx0D        = 2*vdwtype[jnrD+0];
702
703             /**************************
704              * CALCULATE INTERACTIONS *
705              **************************/
706
707             if (gmx_mm_any_lt(rsq00,rcutoff2))
708             {
709
710             r00              = _mm_mul_ps(rsq00,rinv00);
711             r00              = _mm_andnot_ps(dummy_mask,r00);
712
713             /* Compute parameters for interactions between i and j atoms */
714             qq00             = _mm_mul_ps(iq0,jq0);
715             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
716                                          vdwparam+vdwioffset0+vdwjidx0B,
717                                          vdwparam+vdwioffset0+vdwjidx0C,
718                                          vdwparam+vdwioffset0+vdwjidx0D,
719                                          &c6_00,&c12_00);
720
721             /* REACTION-FIELD ELECTROSTATICS */
722             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
723
724             /* LENNARD-JONES DISPERSION/REPULSION */
725
726             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
727             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
728             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
729             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
730             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
731
732             d                = _mm_sub_ps(r00,rswitch);
733             d                = _mm_max_ps(d,_mm_setzero_ps());
734             d2               = _mm_mul_ps(d,d);
735             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
736
737             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
738
739             /* Evaluate switch function */
740             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
741             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
742             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
743
744             fscal            = _mm_add_ps(felec,fvdw);
745
746             fscal            = _mm_and_ps(fscal,cutoff_mask);
747
748             fscal            = _mm_andnot_ps(dummy_mask,fscal);
749
750             /* Calculate temporary vectorial force */
751             tx               = _mm_mul_ps(fscal,dx00);
752             ty               = _mm_mul_ps(fscal,dy00);
753             tz               = _mm_mul_ps(fscal,dz00);
754
755             /* Update vectorial force */
756             fix0             = _mm_add_ps(fix0,tx);
757             fiy0             = _mm_add_ps(fiy0,ty);
758             fiz0             = _mm_add_ps(fiz0,tz);
759
760             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
761                                                    f+j_coord_offsetC,f+j_coord_offsetD,
762                                                    tx,ty,tz);
763
764             }
765
766             /* Inner loop uses 62 flops */
767         }
768
769         /* End of innermost loop */
770
771         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
772                                               f+i_coord_offset,fshift+i_shift_offset);
773
774         /* Increment number of inner iterations */
775         inneriter                  += j_index_end - j_index_start;
776
777         /* Outer loop uses 10 flops */
778     }
779
780     /* Increment number of outer iterations */
781     outeriter        += nri;
782
783     /* Update outer/inner flops */
784
785     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*10 + inneriter*62);
786 }