Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_sse2_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128           dummy_mask,cutoff_mask;
108     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
109     __m128           one     = _mm_set1_ps(1.0);
110     __m128           two     = _mm_set1_ps(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm_set1_ps(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     krf              = _mm_set1_ps(fr->ic->k_rf);
125     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
126     crf              = _mm_set1_ps(fr->ic->c_rf);
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
134     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
135     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
136     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
137
138     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
139     rcutoff_scalar   = fr->rcoulomb;
140     rcutoff          = _mm_set1_ps(rcutoff_scalar);
141     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
142
143     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
144     rvdw             = _mm_set1_ps(fr->rvdw);
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = jnrC = jnrD = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150     j_coord_offsetC = 0;
151     j_coord_offsetD = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     for(iidx=0;iidx<4*DIM;iidx++)
157     {
158         scratch[iidx] = 0.0;
159     }  
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
177                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
178         
179         fix0             = _mm_setzero_ps();
180         fiy0             = _mm_setzero_ps();
181         fiz0             = _mm_setzero_ps();
182         fix1             = _mm_setzero_ps();
183         fiy1             = _mm_setzero_ps();
184         fiz1             = _mm_setzero_ps();
185         fix2             = _mm_setzero_ps();
186         fiy2             = _mm_setzero_ps();
187         fiz2             = _mm_setzero_ps();
188         fix3             = _mm_setzero_ps();
189         fiy3             = _mm_setzero_ps();
190         fiz3             = _mm_setzero_ps();
191
192         /* Reset potential sums */
193         velecsum         = _mm_setzero_ps();
194         vvdwsum          = _mm_setzero_ps();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             jnrC             = jjnr[jidx+2];
204             jnrD             = jjnr[jidx+3];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209
210             /* load j atom coordinates */
211             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
212                                               x+j_coord_offsetC,x+j_coord_offsetD,
213                                               &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx00             = _mm_sub_ps(ix0,jx0);
217             dy00             = _mm_sub_ps(iy0,jy0);
218             dz00             = _mm_sub_ps(iz0,jz0);
219             dx10             = _mm_sub_ps(ix1,jx0);
220             dy10             = _mm_sub_ps(iy1,jy0);
221             dz10             = _mm_sub_ps(iz1,jz0);
222             dx20             = _mm_sub_ps(ix2,jx0);
223             dy20             = _mm_sub_ps(iy2,jy0);
224             dz20             = _mm_sub_ps(iz2,jz0);
225             dx30             = _mm_sub_ps(ix3,jx0);
226             dy30             = _mm_sub_ps(iy3,jy0);
227             dz30             = _mm_sub_ps(iz3,jz0);
228
229             /* Calculate squared distance and things based on it */
230             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
231             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
232             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
233             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
234
235             rinv10           = gmx_mm_invsqrt_ps(rsq10);
236             rinv20           = gmx_mm_invsqrt_ps(rsq20);
237             rinv30           = gmx_mm_invsqrt_ps(rsq30);
238
239             rinvsq00         = gmx_mm_inv_ps(rsq00);
240             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
241             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
242             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
243
244             /* Load parameters for j particles */
245             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
246                                                               charge+jnrC+0,charge+jnrD+0);
247             vdwjidx0A        = 2*vdwtype[jnrA+0];
248             vdwjidx0B        = 2*vdwtype[jnrB+0];
249             vdwjidx0C        = 2*vdwtype[jnrC+0];
250             vdwjidx0D        = 2*vdwtype[jnrD+0];
251
252             fjx0             = _mm_setzero_ps();
253             fjy0             = _mm_setzero_ps();
254             fjz0             = _mm_setzero_ps();
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             if (gmx_mm_any_lt(rsq00,rcutoff2))
261             {
262
263             /* Compute parameters for interactions between i and j atoms */
264             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
265                                          vdwparam+vdwioffset0+vdwjidx0B,
266                                          vdwparam+vdwioffset0+vdwjidx0C,
267                                          vdwparam+vdwioffset0+vdwjidx0D,
268                                          &c6_00,&c12_00);
269
270             /* LENNARD-JONES DISPERSION/REPULSION */
271
272             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
273             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
274             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
275             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
276                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
277             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
278
279             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
283             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
284
285             fscal            = fvdw;
286
287             fscal            = _mm_and_ps(fscal,cutoff_mask);
288
289             /* Calculate temporary vectorial force */
290             tx               = _mm_mul_ps(fscal,dx00);
291             ty               = _mm_mul_ps(fscal,dy00);
292             tz               = _mm_mul_ps(fscal,dz00);
293
294             /* Update vectorial force */
295             fix0             = _mm_add_ps(fix0,tx);
296             fiy0             = _mm_add_ps(fiy0,ty);
297             fiz0             = _mm_add_ps(fiz0,tz);
298
299             fjx0             = _mm_add_ps(fjx0,tx);
300             fjy0             = _mm_add_ps(fjy0,ty);
301             fjz0             = _mm_add_ps(fjz0,tz);
302             
303             }
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             if (gmx_mm_any_lt(rsq10,rcutoff2))
310             {
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq10             = _mm_mul_ps(iq1,jq0);
314
315             /* REACTION-FIELD ELECTROSTATICS */
316             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
317             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
318
319             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velec            = _mm_and_ps(velec,cutoff_mask);
323             velecsum         = _mm_add_ps(velecsum,velec);
324
325             fscal            = felec;
326
327             fscal            = _mm_and_ps(fscal,cutoff_mask);
328
329             /* Calculate temporary vectorial force */
330             tx               = _mm_mul_ps(fscal,dx10);
331             ty               = _mm_mul_ps(fscal,dy10);
332             tz               = _mm_mul_ps(fscal,dz10);
333
334             /* Update vectorial force */
335             fix1             = _mm_add_ps(fix1,tx);
336             fiy1             = _mm_add_ps(fiy1,ty);
337             fiz1             = _mm_add_ps(fiz1,tz);
338
339             fjx0             = _mm_add_ps(fjx0,tx);
340             fjy0             = _mm_add_ps(fjy0,ty);
341             fjz0             = _mm_add_ps(fjz0,tz);
342             
343             }
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             if (gmx_mm_any_lt(rsq20,rcutoff2))
350             {
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq20             = _mm_mul_ps(iq2,jq0);
354
355             /* REACTION-FIELD ELECTROSTATICS */
356             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
357             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
358
359             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velec            = _mm_and_ps(velec,cutoff_mask);
363             velecsum         = _mm_add_ps(velecsum,velec);
364
365             fscal            = felec;
366
367             fscal            = _mm_and_ps(fscal,cutoff_mask);
368
369             /* Calculate temporary vectorial force */
370             tx               = _mm_mul_ps(fscal,dx20);
371             ty               = _mm_mul_ps(fscal,dy20);
372             tz               = _mm_mul_ps(fscal,dz20);
373
374             /* Update vectorial force */
375             fix2             = _mm_add_ps(fix2,tx);
376             fiy2             = _mm_add_ps(fiy2,ty);
377             fiz2             = _mm_add_ps(fiz2,tz);
378
379             fjx0             = _mm_add_ps(fjx0,tx);
380             fjy0             = _mm_add_ps(fjy0,ty);
381             fjz0             = _mm_add_ps(fjz0,tz);
382             
383             }
384
385             /**************************
386              * CALCULATE INTERACTIONS *
387              **************************/
388
389             if (gmx_mm_any_lt(rsq30,rcutoff2))
390             {
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq30             = _mm_mul_ps(iq3,jq0);
394
395             /* REACTION-FIELD ELECTROSTATICS */
396             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
397             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
398
399             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
400
401             /* Update potential sum for this i atom from the interaction with this j atom. */
402             velec            = _mm_and_ps(velec,cutoff_mask);
403             velecsum         = _mm_add_ps(velecsum,velec);
404
405             fscal            = felec;
406
407             fscal            = _mm_and_ps(fscal,cutoff_mask);
408
409             /* Calculate temporary vectorial force */
410             tx               = _mm_mul_ps(fscal,dx30);
411             ty               = _mm_mul_ps(fscal,dy30);
412             tz               = _mm_mul_ps(fscal,dz30);
413
414             /* Update vectorial force */
415             fix3             = _mm_add_ps(fix3,tx);
416             fiy3             = _mm_add_ps(fiy3,ty);
417             fiz3             = _mm_add_ps(fiz3,tz);
418
419             fjx0             = _mm_add_ps(fjx0,tx);
420             fjy0             = _mm_add_ps(fjy0,ty);
421             fjz0             = _mm_add_ps(fjz0,tz);
422             
423             }
424
425             fjptrA             = f+j_coord_offsetA;
426             fjptrB             = f+j_coord_offsetB;
427             fjptrC             = f+j_coord_offsetC;
428             fjptrD             = f+j_coord_offsetD;
429
430             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
431
432             /* Inner loop uses 149 flops */
433         }
434
435         if(jidx<j_index_end)
436         {
437
438             /* Get j neighbor index, and coordinate index */
439             jnrlistA         = jjnr[jidx];
440             jnrlistB         = jjnr[jidx+1];
441             jnrlistC         = jjnr[jidx+2];
442             jnrlistD         = jjnr[jidx+3];
443             /* Sign of each element will be negative for non-real atoms.
444              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
445              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
446              */
447             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
448             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
449             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
450             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
451             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
452             j_coord_offsetA  = DIM*jnrA;
453             j_coord_offsetB  = DIM*jnrB;
454             j_coord_offsetC  = DIM*jnrC;
455             j_coord_offsetD  = DIM*jnrD;
456
457             /* load j atom coordinates */
458             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
459                                               x+j_coord_offsetC,x+j_coord_offsetD,
460                                               &jx0,&jy0,&jz0);
461
462             /* Calculate displacement vector */
463             dx00             = _mm_sub_ps(ix0,jx0);
464             dy00             = _mm_sub_ps(iy0,jy0);
465             dz00             = _mm_sub_ps(iz0,jz0);
466             dx10             = _mm_sub_ps(ix1,jx0);
467             dy10             = _mm_sub_ps(iy1,jy0);
468             dz10             = _mm_sub_ps(iz1,jz0);
469             dx20             = _mm_sub_ps(ix2,jx0);
470             dy20             = _mm_sub_ps(iy2,jy0);
471             dz20             = _mm_sub_ps(iz2,jz0);
472             dx30             = _mm_sub_ps(ix3,jx0);
473             dy30             = _mm_sub_ps(iy3,jy0);
474             dz30             = _mm_sub_ps(iz3,jz0);
475
476             /* Calculate squared distance and things based on it */
477             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
478             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
479             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
480             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
481
482             rinv10           = gmx_mm_invsqrt_ps(rsq10);
483             rinv20           = gmx_mm_invsqrt_ps(rsq20);
484             rinv30           = gmx_mm_invsqrt_ps(rsq30);
485
486             rinvsq00         = gmx_mm_inv_ps(rsq00);
487             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
488             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
489             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
490
491             /* Load parameters for j particles */
492             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
493                                                               charge+jnrC+0,charge+jnrD+0);
494             vdwjidx0A        = 2*vdwtype[jnrA+0];
495             vdwjidx0B        = 2*vdwtype[jnrB+0];
496             vdwjidx0C        = 2*vdwtype[jnrC+0];
497             vdwjidx0D        = 2*vdwtype[jnrD+0];
498
499             fjx0             = _mm_setzero_ps();
500             fjy0             = _mm_setzero_ps();
501             fjz0             = _mm_setzero_ps();
502
503             /**************************
504              * CALCULATE INTERACTIONS *
505              **************************/
506
507             if (gmx_mm_any_lt(rsq00,rcutoff2))
508             {
509
510             /* Compute parameters for interactions between i and j atoms */
511             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
512                                          vdwparam+vdwioffset0+vdwjidx0B,
513                                          vdwparam+vdwioffset0+vdwjidx0C,
514                                          vdwparam+vdwioffset0+vdwjidx0D,
515                                          &c6_00,&c12_00);
516
517             /* LENNARD-JONES DISPERSION/REPULSION */
518
519             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
520             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
521             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
522             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
523                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
524             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
525
526             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
527
528             /* Update potential sum for this i atom from the interaction with this j atom. */
529             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
530             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
531             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
532
533             fscal            = fvdw;
534
535             fscal            = _mm_and_ps(fscal,cutoff_mask);
536
537             fscal            = _mm_andnot_ps(dummy_mask,fscal);
538
539             /* Calculate temporary vectorial force */
540             tx               = _mm_mul_ps(fscal,dx00);
541             ty               = _mm_mul_ps(fscal,dy00);
542             tz               = _mm_mul_ps(fscal,dz00);
543
544             /* Update vectorial force */
545             fix0             = _mm_add_ps(fix0,tx);
546             fiy0             = _mm_add_ps(fiy0,ty);
547             fiz0             = _mm_add_ps(fiz0,tz);
548
549             fjx0             = _mm_add_ps(fjx0,tx);
550             fjy0             = _mm_add_ps(fjy0,ty);
551             fjz0             = _mm_add_ps(fjz0,tz);
552             
553             }
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             if (gmx_mm_any_lt(rsq10,rcutoff2))
560             {
561
562             /* Compute parameters for interactions between i and j atoms */
563             qq10             = _mm_mul_ps(iq1,jq0);
564
565             /* REACTION-FIELD ELECTROSTATICS */
566             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
567             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
568
569             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
570
571             /* Update potential sum for this i atom from the interaction with this j atom. */
572             velec            = _mm_and_ps(velec,cutoff_mask);
573             velec            = _mm_andnot_ps(dummy_mask,velec);
574             velecsum         = _mm_add_ps(velecsum,velec);
575
576             fscal            = felec;
577
578             fscal            = _mm_and_ps(fscal,cutoff_mask);
579
580             fscal            = _mm_andnot_ps(dummy_mask,fscal);
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm_mul_ps(fscal,dx10);
584             ty               = _mm_mul_ps(fscal,dy10);
585             tz               = _mm_mul_ps(fscal,dz10);
586
587             /* Update vectorial force */
588             fix1             = _mm_add_ps(fix1,tx);
589             fiy1             = _mm_add_ps(fiy1,ty);
590             fiz1             = _mm_add_ps(fiz1,tz);
591
592             fjx0             = _mm_add_ps(fjx0,tx);
593             fjy0             = _mm_add_ps(fjy0,ty);
594             fjz0             = _mm_add_ps(fjz0,tz);
595             
596             }
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             if (gmx_mm_any_lt(rsq20,rcutoff2))
603             {
604
605             /* Compute parameters for interactions between i and j atoms */
606             qq20             = _mm_mul_ps(iq2,jq0);
607
608             /* REACTION-FIELD ELECTROSTATICS */
609             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
610             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
611
612             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
613
614             /* Update potential sum for this i atom from the interaction with this j atom. */
615             velec            = _mm_and_ps(velec,cutoff_mask);
616             velec            = _mm_andnot_ps(dummy_mask,velec);
617             velecsum         = _mm_add_ps(velecsum,velec);
618
619             fscal            = felec;
620
621             fscal            = _mm_and_ps(fscal,cutoff_mask);
622
623             fscal            = _mm_andnot_ps(dummy_mask,fscal);
624
625             /* Calculate temporary vectorial force */
626             tx               = _mm_mul_ps(fscal,dx20);
627             ty               = _mm_mul_ps(fscal,dy20);
628             tz               = _mm_mul_ps(fscal,dz20);
629
630             /* Update vectorial force */
631             fix2             = _mm_add_ps(fix2,tx);
632             fiy2             = _mm_add_ps(fiy2,ty);
633             fiz2             = _mm_add_ps(fiz2,tz);
634
635             fjx0             = _mm_add_ps(fjx0,tx);
636             fjy0             = _mm_add_ps(fjy0,ty);
637             fjz0             = _mm_add_ps(fjz0,tz);
638             
639             }
640
641             /**************************
642              * CALCULATE INTERACTIONS *
643              **************************/
644
645             if (gmx_mm_any_lt(rsq30,rcutoff2))
646             {
647
648             /* Compute parameters for interactions between i and j atoms */
649             qq30             = _mm_mul_ps(iq3,jq0);
650
651             /* REACTION-FIELD ELECTROSTATICS */
652             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
653             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
654
655             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
656
657             /* Update potential sum for this i atom from the interaction with this j atom. */
658             velec            = _mm_and_ps(velec,cutoff_mask);
659             velec            = _mm_andnot_ps(dummy_mask,velec);
660             velecsum         = _mm_add_ps(velecsum,velec);
661
662             fscal            = felec;
663
664             fscal            = _mm_and_ps(fscal,cutoff_mask);
665
666             fscal            = _mm_andnot_ps(dummy_mask,fscal);
667
668             /* Calculate temporary vectorial force */
669             tx               = _mm_mul_ps(fscal,dx30);
670             ty               = _mm_mul_ps(fscal,dy30);
671             tz               = _mm_mul_ps(fscal,dz30);
672
673             /* Update vectorial force */
674             fix3             = _mm_add_ps(fix3,tx);
675             fiy3             = _mm_add_ps(fiy3,ty);
676             fiz3             = _mm_add_ps(fiz3,tz);
677
678             fjx0             = _mm_add_ps(fjx0,tx);
679             fjy0             = _mm_add_ps(fjy0,ty);
680             fjz0             = _mm_add_ps(fjz0,tz);
681             
682             }
683
684             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
685             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
686             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
687             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
688
689             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
690
691             /* Inner loop uses 149 flops */
692         }
693
694         /* End of innermost loop */
695
696         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
697                                               f+i_coord_offset,fshift+i_shift_offset);
698
699         ggid                        = gid[iidx];
700         /* Update potential energies */
701         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
702         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
703
704         /* Increment number of inner iterations */
705         inneriter                  += j_index_end - j_index_start;
706
707         /* Outer loop uses 26 flops */
708     }
709
710     /* Increment number of outer iterations */
711     outeriter        += nri;
712
713     /* Update outer/inner flops */
714
715     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*149);
716 }
717 /*
718  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_sse2_single
719  * Electrostatics interaction: ReactionField
720  * VdW interaction:            LennardJones
721  * Geometry:                   Water4-Particle
722  * Calculate force/pot:        Force
723  */
724 void
725 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_sse2_single
726                     (t_nblist                    * gmx_restrict       nlist,
727                      rvec                        * gmx_restrict          xx,
728                      rvec                        * gmx_restrict          ff,
729                      t_forcerec                  * gmx_restrict          fr,
730                      t_mdatoms                   * gmx_restrict     mdatoms,
731                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
732                      t_nrnb                      * gmx_restrict        nrnb)
733 {
734     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
735      * just 0 for non-waters.
736      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
737      * jnr indices corresponding to data put in the four positions in the SIMD register.
738      */
739     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
740     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
741     int              jnrA,jnrB,jnrC,jnrD;
742     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
743     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
744     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
745     real             rcutoff_scalar;
746     real             *shiftvec,*fshift,*x,*f;
747     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
748     real             scratch[4*DIM];
749     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
750     int              vdwioffset0;
751     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
752     int              vdwioffset1;
753     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
754     int              vdwioffset2;
755     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
756     int              vdwioffset3;
757     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
758     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
759     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
760     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
761     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
762     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
763     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
764     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
765     real             *charge;
766     int              nvdwtype;
767     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
768     int              *vdwtype;
769     real             *vdwparam;
770     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
771     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
772     __m128           dummy_mask,cutoff_mask;
773     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
774     __m128           one     = _mm_set1_ps(1.0);
775     __m128           two     = _mm_set1_ps(2.0);
776     x                = xx[0];
777     f                = ff[0];
778
779     nri              = nlist->nri;
780     iinr             = nlist->iinr;
781     jindex           = nlist->jindex;
782     jjnr             = nlist->jjnr;
783     shiftidx         = nlist->shift;
784     gid              = nlist->gid;
785     shiftvec         = fr->shift_vec[0];
786     fshift           = fr->fshift[0];
787     facel            = _mm_set1_ps(fr->epsfac);
788     charge           = mdatoms->chargeA;
789     krf              = _mm_set1_ps(fr->ic->k_rf);
790     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
791     crf              = _mm_set1_ps(fr->ic->c_rf);
792     nvdwtype         = fr->ntype;
793     vdwparam         = fr->nbfp;
794     vdwtype          = mdatoms->typeA;
795
796     /* Setup water-specific parameters */
797     inr              = nlist->iinr[0];
798     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
799     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
800     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
801     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
802
803     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
804     rcutoff_scalar   = fr->rcoulomb;
805     rcutoff          = _mm_set1_ps(rcutoff_scalar);
806     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
807
808     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
809     rvdw             = _mm_set1_ps(fr->rvdw);
810
811     /* Avoid stupid compiler warnings */
812     jnrA = jnrB = jnrC = jnrD = 0;
813     j_coord_offsetA = 0;
814     j_coord_offsetB = 0;
815     j_coord_offsetC = 0;
816     j_coord_offsetD = 0;
817
818     outeriter        = 0;
819     inneriter        = 0;
820
821     for(iidx=0;iidx<4*DIM;iidx++)
822     {
823         scratch[iidx] = 0.0;
824     }  
825
826     /* Start outer loop over neighborlists */
827     for(iidx=0; iidx<nri; iidx++)
828     {
829         /* Load shift vector for this list */
830         i_shift_offset   = DIM*shiftidx[iidx];
831
832         /* Load limits for loop over neighbors */
833         j_index_start    = jindex[iidx];
834         j_index_end      = jindex[iidx+1];
835
836         /* Get outer coordinate index */
837         inr              = iinr[iidx];
838         i_coord_offset   = DIM*inr;
839
840         /* Load i particle coords and add shift vector */
841         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
842                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
843         
844         fix0             = _mm_setzero_ps();
845         fiy0             = _mm_setzero_ps();
846         fiz0             = _mm_setzero_ps();
847         fix1             = _mm_setzero_ps();
848         fiy1             = _mm_setzero_ps();
849         fiz1             = _mm_setzero_ps();
850         fix2             = _mm_setzero_ps();
851         fiy2             = _mm_setzero_ps();
852         fiz2             = _mm_setzero_ps();
853         fix3             = _mm_setzero_ps();
854         fiy3             = _mm_setzero_ps();
855         fiz3             = _mm_setzero_ps();
856
857         /* Start inner kernel loop */
858         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
859         {
860
861             /* Get j neighbor index, and coordinate index */
862             jnrA             = jjnr[jidx];
863             jnrB             = jjnr[jidx+1];
864             jnrC             = jjnr[jidx+2];
865             jnrD             = jjnr[jidx+3];
866             j_coord_offsetA  = DIM*jnrA;
867             j_coord_offsetB  = DIM*jnrB;
868             j_coord_offsetC  = DIM*jnrC;
869             j_coord_offsetD  = DIM*jnrD;
870
871             /* load j atom coordinates */
872             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
873                                               x+j_coord_offsetC,x+j_coord_offsetD,
874                                               &jx0,&jy0,&jz0);
875
876             /* Calculate displacement vector */
877             dx00             = _mm_sub_ps(ix0,jx0);
878             dy00             = _mm_sub_ps(iy0,jy0);
879             dz00             = _mm_sub_ps(iz0,jz0);
880             dx10             = _mm_sub_ps(ix1,jx0);
881             dy10             = _mm_sub_ps(iy1,jy0);
882             dz10             = _mm_sub_ps(iz1,jz0);
883             dx20             = _mm_sub_ps(ix2,jx0);
884             dy20             = _mm_sub_ps(iy2,jy0);
885             dz20             = _mm_sub_ps(iz2,jz0);
886             dx30             = _mm_sub_ps(ix3,jx0);
887             dy30             = _mm_sub_ps(iy3,jy0);
888             dz30             = _mm_sub_ps(iz3,jz0);
889
890             /* Calculate squared distance and things based on it */
891             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
892             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
893             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
894             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
895
896             rinv10           = gmx_mm_invsqrt_ps(rsq10);
897             rinv20           = gmx_mm_invsqrt_ps(rsq20);
898             rinv30           = gmx_mm_invsqrt_ps(rsq30);
899
900             rinvsq00         = gmx_mm_inv_ps(rsq00);
901             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
902             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
903             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
904
905             /* Load parameters for j particles */
906             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
907                                                               charge+jnrC+0,charge+jnrD+0);
908             vdwjidx0A        = 2*vdwtype[jnrA+0];
909             vdwjidx0B        = 2*vdwtype[jnrB+0];
910             vdwjidx0C        = 2*vdwtype[jnrC+0];
911             vdwjidx0D        = 2*vdwtype[jnrD+0];
912
913             fjx0             = _mm_setzero_ps();
914             fjy0             = _mm_setzero_ps();
915             fjz0             = _mm_setzero_ps();
916
917             /**************************
918              * CALCULATE INTERACTIONS *
919              **************************/
920
921             if (gmx_mm_any_lt(rsq00,rcutoff2))
922             {
923
924             /* Compute parameters for interactions between i and j atoms */
925             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
926                                          vdwparam+vdwioffset0+vdwjidx0B,
927                                          vdwparam+vdwioffset0+vdwjidx0C,
928                                          vdwparam+vdwioffset0+vdwjidx0D,
929                                          &c6_00,&c12_00);
930
931             /* LENNARD-JONES DISPERSION/REPULSION */
932
933             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
934             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
935
936             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
937
938             fscal            = fvdw;
939
940             fscal            = _mm_and_ps(fscal,cutoff_mask);
941
942             /* Calculate temporary vectorial force */
943             tx               = _mm_mul_ps(fscal,dx00);
944             ty               = _mm_mul_ps(fscal,dy00);
945             tz               = _mm_mul_ps(fscal,dz00);
946
947             /* Update vectorial force */
948             fix0             = _mm_add_ps(fix0,tx);
949             fiy0             = _mm_add_ps(fiy0,ty);
950             fiz0             = _mm_add_ps(fiz0,tz);
951
952             fjx0             = _mm_add_ps(fjx0,tx);
953             fjy0             = _mm_add_ps(fjy0,ty);
954             fjz0             = _mm_add_ps(fjz0,tz);
955             
956             }
957
958             /**************************
959              * CALCULATE INTERACTIONS *
960              **************************/
961
962             if (gmx_mm_any_lt(rsq10,rcutoff2))
963             {
964
965             /* Compute parameters for interactions between i and j atoms */
966             qq10             = _mm_mul_ps(iq1,jq0);
967
968             /* REACTION-FIELD ELECTROSTATICS */
969             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
970
971             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
972
973             fscal            = felec;
974
975             fscal            = _mm_and_ps(fscal,cutoff_mask);
976
977             /* Calculate temporary vectorial force */
978             tx               = _mm_mul_ps(fscal,dx10);
979             ty               = _mm_mul_ps(fscal,dy10);
980             tz               = _mm_mul_ps(fscal,dz10);
981
982             /* Update vectorial force */
983             fix1             = _mm_add_ps(fix1,tx);
984             fiy1             = _mm_add_ps(fiy1,ty);
985             fiz1             = _mm_add_ps(fiz1,tz);
986
987             fjx0             = _mm_add_ps(fjx0,tx);
988             fjy0             = _mm_add_ps(fjy0,ty);
989             fjz0             = _mm_add_ps(fjz0,tz);
990             
991             }
992
993             /**************************
994              * CALCULATE INTERACTIONS *
995              **************************/
996
997             if (gmx_mm_any_lt(rsq20,rcutoff2))
998             {
999
1000             /* Compute parameters for interactions between i and j atoms */
1001             qq20             = _mm_mul_ps(iq2,jq0);
1002
1003             /* REACTION-FIELD ELECTROSTATICS */
1004             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1005
1006             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1007
1008             fscal            = felec;
1009
1010             fscal            = _mm_and_ps(fscal,cutoff_mask);
1011
1012             /* Calculate temporary vectorial force */
1013             tx               = _mm_mul_ps(fscal,dx20);
1014             ty               = _mm_mul_ps(fscal,dy20);
1015             tz               = _mm_mul_ps(fscal,dz20);
1016
1017             /* Update vectorial force */
1018             fix2             = _mm_add_ps(fix2,tx);
1019             fiy2             = _mm_add_ps(fiy2,ty);
1020             fiz2             = _mm_add_ps(fiz2,tz);
1021
1022             fjx0             = _mm_add_ps(fjx0,tx);
1023             fjy0             = _mm_add_ps(fjy0,ty);
1024             fjz0             = _mm_add_ps(fjz0,tz);
1025             
1026             }
1027
1028             /**************************
1029              * CALCULATE INTERACTIONS *
1030              **************************/
1031
1032             if (gmx_mm_any_lt(rsq30,rcutoff2))
1033             {
1034
1035             /* Compute parameters for interactions between i and j atoms */
1036             qq30             = _mm_mul_ps(iq3,jq0);
1037
1038             /* REACTION-FIELD ELECTROSTATICS */
1039             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1040
1041             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1042
1043             fscal            = felec;
1044
1045             fscal            = _mm_and_ps(fscal,cutoff_mask);
1046
1047             /* Calculate temporary vectorial force */
1048             tx               = _mm_mul_ps(fscal,dx30);
1049             ty               = _mm_mul_ps(fscal,dy30);
1050             tz               = _mm_mul_ps(fscal,dz30);
1051
1052             /* Update vectorial force */
1053             fix3             = _mm_add_ps(fix3,tx);
1054             fiy3             = _mm_add_ps(fiy3,ty);
1055             fiz3             = _mm_add_ps(fiz3,tz);
1056
1057             fjx0             = _mm_add_ps(fjx0,tx);
1058             fjy0             = _mm_add_ps(fjy0,ty);
1059             fjz0             = _mm_add_ps(fjz0,tz);
1060             
1061             }
1062
1063             fjptrA             = f+j_coord_offsetA;
1064             fjptrB             = f+j_coord_offsetB;
1065             fjptrC             = f+j_coord_offsetC;
1066             fjptrD             = f+j_coord_offsetD;
1067
1068             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1069
1070             /* Inner loop uses 120 flops */
1071         }
1072
1073         if(jidx<j_index_end)
1074         {
1075
1076             /* Get j neighbor index, and coordinate index */
1077             jnrlistA         = jjnr[jidx];
1078             jnrlistB         = jjnr[jidx+1];
1079             jnrlistC         = jjnr[jidx+2];
1080             jnrlistD         = jjnr[jidx+3];
1081             /* Sign of each element will be negative for non-real atoms.
1082              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1083              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1084              */
1085             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1086             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1087             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1088             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1089             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1090             j_coord_offsetA  = DIM*jnrA;
1091             j_coord_offsetB  = DIM*jnrB;
1092             j_coord_offsetC  = DIM*jnrC;
1093             j_coord_offsetD  = DIM*jnrD;
1094
1095             /* load j atom coordinates */
1096             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1097                                               x+j_coord_offsetC,x+j_coord_offsetD,
1098                                               &jx0,&jy0,&jz0);
1099
1100             /* Calculate displacement vector */
1101             dx00             = _mm_sub_ps(ix0,jx0);
1102             dy00             = _mm_sub_ps(iy0,jy0);
1103             dz00             = _mm_sub_ps(iz0,jz0);
1104             dx10             = _mm_sub_ps(ix1,jx0);
1105             dy10             = _mm_sub_ps(iy1,jy0);
1106             dz10             = _mm_sub_ps(iz1,jz0);
1107             dx20             = _mm_sub_ps(ix2,jx0);
1108             dy20             = _mm_sub_ps(iy2,jy0);
1109             dz20             = _mm_sub_ps(iz2,jz0);
1110             dx30             = _mm_sub_ps(ix3,jx0);
1111             dy30             = _mm_sub_ps(iy3,jy0);
1112             dz30             = _mm_sub_ps(iz3,jz0);
1113
1114             /* Calculate squared distance and things based on it */
1115             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1116             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1117             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1118             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1119
1120             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1121             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1122             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1123
1124             rinvsq00         = gmx_mm_inv_ps(rsq00);
1125             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1126             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1127             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1128
1129             /* Load parameters for j particles */
1130             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1131                                                               charge+jnrC+0,charge+jnrD+0);
1132             vdwjidx0A        = 2*vdwtype[jnrA+0];
1133             vdwjidx0B        = 2*vdwtype[jnrB+0];
1134             vdwjidx0C        = 2*vdwtype[jnrC+0];
1135             vdwjidx0D        = 2*vdwtype[jnrD+0];
1136
1137             fjx0             = _mm_setzero_ps();
1138             fjy0             = _mm_setzero_ps();
1139             fjz0             = _mm_setzero_ps();
1140
1141             /**************************
1142              * CALCULATE INTERACTIONS *
1143              **************************/
1144
1145             if (gmx_mm_any_lt(rsq00,rcutoff2))
1146             {
1147
1148             /* Compute parameters for interactions between i and j atoms */
1149             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1150                                          vdwparam+vdwioffset0+vdwjidx0B,
1151                                          vdwparam+vdwioffset0+vdwjidx0C,
1152                                          vdwparam+vdwioffset0+vdwjidx0D,
1153                                          &c6_00,&c12_00);
1154
1155             /* LENNARD-JONES DISPERSION/REPULSION */
1156
1157             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1158             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1159
1160             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1161
1162             fscal            = fvdw;
1163
1164             fscal            = _mm_and_ps(fscal,cutoff_mask);
1165
1166             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1167
1168             /* Calculate temporary vectorial force */
1169             tx               = _mm_mul_ps(fscal,dx00);
1170             ty               = _mm_mul_ps(fscal,dy00);
1171             tz               = _mm_mul_ps(fscal,dz00);
1172
1173             /* Update vectorial force */
1174             fix0             = _mm_add_ps(fix0,tx);
1175             fiy0             = _mm_add_ps(fiy0,ty);
1176             fiz0             = _mm_add_ps(fiz0,tz);
1177
1178             fjx0             = _mm_add_ps(fjx0,tx);
1179             fjy0             = _mm_add_ps(fjy0,ty);
1180             fjz0             = _mm_add_ps(fjz0,tz);
1181             
1182             }
1183
1184             /**************************
1185              * CALCULATE INTERACTIONS *
1186              **************************/
1187
1188             if (gmx_mm_any_lt(rsq10,rcutoff2))
1189             {
1190
1191             /* Compute parameters for interactions between i and j atoms */
1192             qq10             = _mm_mul_ps(iq1,jq0);
1193
1194             /* REACTION-FIELD ELECTROSTATICS */
1195             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1196
1197             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1198
1199             fscal            = felec;
1200
1201             fscal            = _mm_and_ps(fscal,cutoff_mask);
1202
1203             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1204
1205             /* Calculate temporary vectorial force */
1206             tx               = _mm_mul_ps(fscal,dx10);
1207             ty               = _mm_mul_ps(fscal,dy10);
1208             tz               = _mm_mul_ps(fscal,dz10);
1209
1210             /* Update vectorial force */
1211             fix1             = _mm_add_ps(fix1,tx);
1212             fiy1             = _mm_add_ps(fiy1,ty);
1213             fiz1             = _mm_add_ps(fiz1,tz);
1214
1215             fjx0             = _mm_add_ps(fjx0,tx);
1216             fjy0             = _mm_add_ps(fjy0,ty);
1217             fjz0             = _mm_add_ps(fjz0,tz);
1218             
1219             }
1220
1221             /**************************
1222              * CALCULATE INTERACTIONS *
1223              **************************/
1224
1225             if (gmx_mm_any_lt(rsq20,rcutoff2))
1226             {
1227
1228             /* Compute parameters for interactions between i and j atoms */
1229             qq20             = _mm_mul_ps(iq2,jq0);
1230
1231             /* REACTION-FIELD ELECTROSTATICS */
1232             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1233
1234             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1235
1236             fscal            = felec;
1237
1238             fscal            = _mm_and_ps(fscal,cutoff_mask);
1239
1240             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1241
1242             /* Calculate temporary vectorial force */
1243             tx               = _mm_mul_ps(fscal,dx20);
1244             ty               = _mm_mul_ps(fscal,dy20);
1245             tz               = _mm_mul_ps(fscal,dz20);
1246
1247             /* Update vectorial force */
1248             fix2             = _mm_add_ps(fix2,tx);
1249             fiy2             = _mm_add_ps(fiy2,ty);
1250             fiz2             = _mm_add_ps(fiz2,tz);
1251
1252             fjx0             = _mm_add_ps(fjx0,tx);
1253             fjy0             = _mm_add_ps(fjy0,ty);
1254             fjz0             = _mm_add_ps(fjz0,tz);
1255             
1256             }
1257
1258             /**************************
1259              * CALCULATE INTERACTIONS *
1260              **************************/
1261
1262             if (gmx_mm_any_lt(rsq30,rcutoff2))
1263             {
1264
1265             /* Compute parameters for interactions between i and j atoms */
1266             qq30             = _mm_mul_ps(iq3,jq0);
1267
1268             /* REACTION-FIELD ELECTROSTATICS */
1269             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1270
1271             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1272
1273             fscal            = felec;
1274
1275             fscal            = _mm_and_ps(fscal,cutoff_mask);
1276
1277             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1278
1279             /* Calculate temporary vectorial force */
1280             tx               = _mm_mul_ps(fscal,dx30);
1281             ty               = _mm_mul_ps(fscal,dy30);
1282             tz               = _mm_mul_ps(fscal,dz30);
1283
1284             /* Update vectorial force */
1285             fix3             = _mm_add_ps(fix3,tx);
1286             fiy3             = _mm_add_ps(fiy3,ty);
1287             fiz3             = _mm_add_ps(fiz3,tz);
1288
1289             fjx0             = _mm_add_ps(fjx0,tx);
1290             fjy0             = _mm_add_ps(fjy0,ty);
1291             fjz0             = _mm_add_ps(fjz0,tz);
1292             
1293             }
1294
1295             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1296             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1297             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1298             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1299
1300             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1301
1302             /* Inner loop uses 120 flops */
1303         }
1304
1305         /* End of innermost loop */
1306
1307         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1308                                               f+i_coord_offset,fshift+i_shift_offset);
1309
1310         /* Increment number of inner iterations */
1311         inneriter                  += j_index_end - j_index_start;
1312
1313         /* Outer loop uses 24 flops */
1314     }
1315
1316     /* Increment number of outer iterations */
1317     outeriter        += nri;
1318
1319     /* Update outer/inner flops */
1320
1321     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*120);
1322 }