Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128           dummy_mask,cutoff_mask;
92     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
93     __m128           one     = _mm_set1_ps(1.0);
94     __m128           two     = _mm_set1_ps(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_ps(fr->epsfac);
107     charge           = mdatoms->chargeA;
108     krf              = _mm_set1_ps(fr->ic->k_rf);
109     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
110     crf              = _mm_set1_ps(fr->ic->c_rf);
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     /* Setup water-specific parameters */
116     inr              = nlist->iinr[0];
117     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
118     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
119     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
120     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
121
122     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123     rcutoff_scalar   = fr->rcoulomb;
124     rcutoff          = _mm_set1_ps(rcutoff_scalar);
125     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
126
127     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
128     rvdw             = _mm_set1_ps(fr->rvdw);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }  
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
162         
163         fix0             = _mm_setzero_ps();
164         fiy0             = _mm_setzero_ps();
165         fiz0             = _mm_setzero_ps();
166         fix1             = _mm_setzero_ps();
167         fiy1             = _mm_setzero_ps();
168         fiz1             = _mm_setzero_ps();
169         fix2             = _mm_setzero_ps();
170         fiy2             = _mm_setzero_ps();
171         fiz2             = _mm_setzero_ps();
172         fix3             = _mm_setzero_ps();
173         fiy3             = _mm_setzero_ps();
174         fiz3             = _mm_setzero_ps();
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_ps();
178         vvdwsum          = _mm_setzero_ps();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               x+j_coord_offsetC,x+j_coord_offsetD,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_ps(ix0,jx0);
201             dy00             = _mm_sub_ps(iy0,jy0);
202             dz00             = _mm_sub_ps(iz0,jz0);
203             dx10             = _mm_sub_ps(ix1,jx0);
204             dy10             = _mm_sub_ps(iy1,jy0);
205             dz10             = _mm_sub_ps(iz1,jz0);
206             dx20             = _mm_sub_ps(ix2,jx0);
207             dy20             = _mm_sub_ps(iy2,jy0);
208             dz20             = _mm_sub_ps(iz2,jz0);
209             dx30             = _mm_sub_ps(ix3,jx0);
210             dy30             = _mm_sub_ps(iy3,jy0);
211             dz30             = _mm_sub_ps(iz3,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
215             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
216             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
217             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
218
219             rinv10           = gmx_mm_invsqrt_ps(rsq10);
220             rinv20           = gmx_mm_invsqrt_ps(rsq20);
221             rinv30           = gmx_mm_invsqrt_ps(rsq30);
222
223             rinvsq00         = gmx_mm_inv_ps(rsq00);
224             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
225             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
226             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
227
228             /* Load parameters for j particles */
229             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
230                                                               charge+jnrC+0,charge+jnrD+0);
231             vdwjidx0A        = 2*vdwtype[jnrA+0];
232             vdwjidx0B        = 2*vdwtype[jnrB+0];
233             vdwjidx0C        = 2*vdwtype[jnrC+0];
234             vdwjidx0D        = 2*vdwtype[jnrD+0];
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             if (gmx_mm_any_lt(rsq00,rcutoff2))
241             {
242
243             /* Compute parameters for interactions between i and j atoms */
244             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
245                                          vdwparam+vdwioffset0+vdwjidx0B,
246                                          vdwparam+vdwioffset0+vdwjidx0C,
247                                          vdwparam+vdwioffset0+vdwjidx0D,
248                                          &c6_00,&c12_00);
249
250             /* LENNARD-JONES DISPERSION/REPULSION */
251
252             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
253             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
254             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
255             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
256                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
257             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
258
259             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
260
261             /* Update potential sum for this i atom from the interaction with this j atom. */
262             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
263             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
264
265             fscal            = fvdw;
266
267             fscal            = _mm_and_ps(fscal,cutoff_mask);
268
269             /* Calculate temporary vectorial force */
270             tx               = _mm_mul_ps(fscal,dx00);
271             ty               = _mm_mul_ps(fscal,dy00);
272             tz               = _mm_mul_ps(fscal,dz00);
273
274             /* Update vectorial force */
275             fix0             = _mm_add_ps(fix0,tx);
276             fiy0             = _mm_add_ps(fiy0,ty);
277             fiz0             = _mm_add_ps(fiz0,tz);
278
279             fjptrA             = f+j_coord_offsetA;
280             fjptrB             = f+j_coord_offsetB;
281             fjptrC             = f+j_coord_offsetC;
282             fjptrD             = f+j_coord_offsetD;
283             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
284             
285             }
286
287             /**************************
288              * CALCULATE INTERACTIONS *
289              **************************/
290
291             if (gmx_mm_any_lt(rsq10,rcutoff2))
292             {
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq10             = _mm_mul_ps(iq1,jq0);
296
297             /* REACTION-FIELD ELECTROSTATICS */
298             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
299             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
300
301             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velec            = _mm_and_ps(velec,cutoff_mask);
305             velecsum         = _mm_add_ps(velecsum,velec);
306
307             fscal            = felec;
308
309             fscal            = _mm_and_ps(fscal,cutoff_mask);
310
311             /* Calculate temporary vectorial force */
312             tx               = _mm_mul_ps(fscal,dx10);
313             ty               = _mm_mul_ps(fscal,dy10);
314             tz               = _mm_mul_ps(fscal,dz10);
315
316             /* Update vectorial force */
317             fix1             = _mm_add_ps(fix1,tx);
318             fiy1             = _mm_add_ps(fiy1,ty);
319             fiz1             = _mm_add_ps(fiz1,tz);
320
321             fjptrA             = f+j_coord_offsetA;
322             fjptrB             = f+j_coord_offsetB;
323             fjptrC             = f+j_coord_offsetC;
324             fjptrD             = f+j_coord_offsetD;
325             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
326             
327             }
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             if (gmx_mm_any_lt(rsq20,rcutoff2))
334             {
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq20             = _mm_mul_ps(iq2,jq0);
338
339             /* REACTION-FIELD ELECTROSTATICS */
340             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
341             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
342
343             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velec            = _mm_and_ps(velec,cutoff_mask);
347             velecsum         = _mm_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351             fscal            = _mm_and_ps(fscal,cutoff_mask);
352
353             /* Calculate temporary vectorial force */
354             tx               = _mm_mul_ps(fscal,dx20);
355             ty               = _mm_mul_ps(fscal,dy20);
356             tz               = _mm_mul_ps(fscal,dz20);
357
358             /* Update vectorial force */
359             fix2             = _mm_add_ps(fix2,tx);
360             fiy2             = _mm_add_ps(fiy2,ty);
361             fiz2             = _mm_add_ps(fiz2,tz);
362
363             fjptrA             = f+j_coord_offsetA;
364             fjptrB             = f+j_coord_offsetB;
365             fjptrC             = f+j_coord_offsetC;
366             fjptrD             = f+j_coord_offsetD;
367             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
368             
369             }
370
371             /**************************
372              * CALCULATE INTERACTIONS *
373              **************************/
374
375             if (gmx_mm_any_lt(rsq30,rcutoff2))
376             {
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq30             = _mm_mul_ps(iq3,jq0);
380
381             /* REACTION-FIELD ELECTROSTATICS */
382             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
383             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
384
385             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velec            = _mm_and_ps(velec,cutoff_mask);
389             velecsum         = _mm_add_ps(velecsum,velec);
390
391             fscal            = felec;
392
393             fscal            = _mm_and_ps(fscal,cutoff_mask);
394
395             /* Calculate temporary vectorial force */
396             tx               = _mm_mul_ps(fscal,dx30);
397             ty               = _mm_mul_ps(fscal,dy30);
398             tz               = _mm_mul_ps(fscal,dz30);
399
400             /* Update vectorial force */
401             fix3             = _mm_add_ps(fix3,tx);
402             fiy3             = _mm_add_ps(fiy3,ty);
403             fiz3             = _mm_add_ps(fiz3,tz);
404
405             fjptrA             = f+j_coord_offsetA;
406             fjptrB             = f+j_coord_offsetB;
407             fjptrC             = f+j_coord_offsetC;
408             fjptrD             = f+j_coord_offsetD;
409             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
410             
411             }
412
413             /* Inner loop uses 149 flops */
414         }
415
416         if(jidx<j_index_end)
417         {
418
419             /* Get j neighbor index, and coordinate index */
420             jnrlistA         = jjnr[jidx];
421             jnrlistB         = jjnr[jidx+1];
422             jnrlistC         = jjnr[jidx+2];
423             jnrlistD         = jjnr[jidx+3];
424             /* Sign of each element will be negative for non-real atoms.
425              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
426              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
427              */
428             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
429             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
430             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
431             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
432             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
433             j_coord_offsetA  = DIM*jnrA;
434             j_coord_offsetB  = DIM*jnrB;
435             j_coord_offsetC  = DIM*jnrC;
436             j_coord_offsetD  = DIM*jnrD;
437
438             /* load j atom coordinates */
439             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
440                                               x+j_coord_offsetC,x+j_coord_offsetD,
441                                               &jx0,&jy0,&jz0);
442
443             /* Calculate displacement vector */
444             dx00             = _mm_sub_ps(ix0,jx0);
445             dy00             = _mm_sub_ps(iy0,jy0);
446             dz00             = _mm_sub_ps(iz0,jz0);
447             dx10             = _mm_sub_ps(ix1,jx0);
448             dy10             = _mm_sub_ps(iy1,jy0);
449             dz10             = _mm_sub_ps(iz1,jz0);
450             dx20             = _mm_sub_ps(ix2,jx0);
451             dy20             = _mm_sub_ps(iy2,jy0);
452             dz20             = _mm_sub_ps(iz2,jz0);
453             dx30             = _mm_sub_ps(ix3,jx0);
454             dy30             = _mm_sub_ps(iy3,jy0);
455             dz30             = _mm_sub_ps(iz3,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
459             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
460             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
461             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
462
463             rinv10           = gmx_mm_invsqrt_ps(rsq10);
464             rinv20           = gmx_mm_invsqrt_ps(rsq20);
465             rinv30           = gmx_mm_invsqrt_ps(rsq30);
466
467             rinvsq00         = gmx_mm_inv_ps(rsq00);
468             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
469             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
470             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
471
472             /* Load parameters for j particles */
473             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
474                                                               charge+jnrC+0,charge+jnrD+0);
475             vdwjidx0A        = 2*vdwtype[jnrA+0];
476             vdwjidx0B        = 2*vdwtype[jnrB+0];
477             vdwjidx0C        = 2*vdwtype[jnrC+0];
478             vdwjidx0D        = 2*vdwtype[jnrD+0];
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             if (gmx_mm_any_lt(rsq00,rcutoff2))
485             {
486
487             /* Compute parameters for interactions between i and j atoms */
488             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
489                                          vdwparam+vdwioffset0+vdwjidx0B,
490                                          vdwparam+vdwioffset0+vdwjidx0C,
491                                          vdwparam+vdwioffset0+vdwjidx0D,
492                                          &c6_00,&c12_00);
493
494             /* LENNARD-JONES DISPERSION/REPULSION */
495
496             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
497             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
498             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
499             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
500                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
501             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
502
503             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
504
505             /* Update potential sum for this i atom from the interaction with this j atom. */
506             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
507             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
508             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
509
510             fscal            = fvdw;
511
512             fscal            = _mm_and_ps(fscal,cutoff_mask);
513
514             fscal            = _mm_andnot_ps(dummy_mask,fscal);
515
516             /* Calculate temporary vectorial force */
517             tx               = _mm_mul_ps(fscal,dx00);
518             ty               = _mm_mul_ps(fscal,dy00);
519             tz               = _mm_mul_ps(fscal,dz00);
520
521             /* Update vectorial force */
522             fix0             = _mm_add_ps(fix0,tx);
523             fiy0             = _mm_add_ps(fiy0,ty);
524             fiz0             = _mm_add_ps(fiz0,tz);
525
526             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
527             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
528             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
529             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
530             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
531             
532             }
533
534             /**************************
535              * CALCULATE INTERACTIONS *
536              **************************/
537
538             if (gmx_mm_any_lt(rsq10,rcutoff2))
539             {
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq10             = _mm_mul_ps(iq1,jq0);
543
544             /* REACTION-FIELD ELECTROSTATICS */
545             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
546             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
547
548             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
549
550             /* Update potential sum for this i atom from the interaction with this j atom. */
551             velec            = _mm_and_ps(velec,cutoff_mask);
552             velec            = _mm_andnot_ps(dummy_mask,velec);
553             velecsum         = _mm_add_ps(velecsum,velec);
554
555             fscal            = felec;
556
557             fscal            = _mm_and_ps(fscal,cutoff_mask);
558
559             fscal            = _mm_andnot_ps(dummy_mask,fscal);
560
561             /* Calculate temporary vectorial force */
562             tx               = _mm_mul_ps(fscal,dx10);
563             ty               = _mm_mul_ps(fscal,dy10);
564             tz               = _mm_mul_ps(fscal,dz10);
565
566             /* Update vectorial force */
567             fix1             = _mm_add_ps(fix1,tx);
568             fiy1             = _mm_add_ps(fiy1,ty);
569             fiz1             = _mm_add_ps(fiz1,tz);
570
571             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
572             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
573             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
574             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
575             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
576             
577             }
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             if (gmx_mm_any_lt(rsq20,rcutoff2))
584             {
585
586             /* Compute parameters for interactions between i and j atoms */
587             qq20             = _mm_mul_ps(iq2,jq0);
588
589             /* REACTION-FIELD ELECTROSTATICS */
590             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
591             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
592
593             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
594
595             /* Update potential sum for this i atom from the interaction with this j atom. */
596             velec            = _mm_and_ps(velec,cutoff_mask);
597             velec            = _mm_andnot_ps(dummy_mask,velec);
598             velecsum         = _mm_add_ps(velecsum,velec);
599
600             fscal            = felec;
601
602             fscal            = _mm_and_ps(fscal,cutoff_mask);
603
604             fscal            = _mm_andnot_ps(dummy_mask,fscal);
605
606             /* Calculate temporary vectorial force */
607             tx               = _mm_mul_ps(fscal,dx20);
608             ty               = _mm_mul_ps(fscal,dy20);
609             tz               = _mm_mul_ps(fscal,dz20);
610
611             /* Update vectorial force */
612             fix2             = _mm_add_ps(fix2,tx);
613             fiy2             = _mm_add_ps(fiy2,ty);
614             fiz2             = _mm_add_ps(fiz2,tz);
615
616             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
617             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
618             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
619             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
620             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
621             
622             }
623
624             /**************************
625              * CALCULATE INTERACTIONS *
626              **************************/
627
628             if (gmx_mm_any_lt(rsq30,rcutoff2))
629             {
630
631             /* Compute parameters for interactions between i and j atoms */
632             qq30             = _mm_mul_ps(iq3,jq0);
633
634             /* REACTION-FIELD ELECTROSTATICS */
635             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
636             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
637
638             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
639
640             /* Update potential sum for this i atom from the interaction with this j atom. */
641             velec            = _mm_and_ps(velec,cutoff_mask);
642             velec            = _mm_andnot_ps(dummy_mask,velec);
643             velecsum         = _mm_add_ps(velecsum,velec);
644
645             fscal            = felec;
646
647             fscal            = _mm_and_ps(fscal,cutoff_mask);
648
649             fscal            = _mm_andnot_ps(dummy_mask,fscal);
650
651             /* Calculate temporary vectorial force */
652             tx               = _mm_mul_ps(fscal,dx30);
653             ty               = _mm_mul_ps(fscal,dy30);
654             tz               = _mm_mul_ps(fscal,dz30);
655
656             /* Update vectorial force */
657             fix3             = _mm_add_ps(fix3,tx);
658             fiy3             = _mm_add_ps(fiy3,ty);
659             fiz3             = _mm_add_ps(fiz3,tz);
660
661             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
662             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
663             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
664             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
665             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
666             
667             }
668
669             /* Inner loop uses 149 flops */
670         }
671
672         /* End of innermost loop */
673
674         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
675                                               f+i_coord_offset,fshift+i_shift_offset);
676
677         ggid                        = gid[iidx];
678         /* Update potential energies */
679         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
680         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
681
682         /* Increment number of inner iterations */
683         inneriter                  += j_index_end - j_index_start;
684
685         /* Outer loop uses 26 flops */
686     }
687
688     /* Increment number of outer iterations */
689     outeriter        += nri;
690
691     /* Update outer/inner flops */
692
693     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*149);
694 }
695 /*
696  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_sse2_single
697  * Electrostatics interaction: ReactionField
698  * VdW interaction:            LennardJones
699  * Geometry:                   Water4-Particle
700  * Calculate force/pot:        Force
701  */
702 void
703 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_sse2_single
704                     (t_nblist * gmx_restrict                nlist,
705                      rvec * gmx_restrict                    xx,
706                      rvec * gmx_restrict                    ff,
707                      t_forcerec * gmx_restrict              fr,
708                      t_mdatoms * gmx_restrict               mdatoms,
709                      nb_kernel_data_t * gmx_restrict        kernel_data,
710                      t_nrnb * gmx_restrict                  nrnb)
711 {
712     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
713      * just 0 for non-waters.
714      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
715      * jnr indices corresponding to data put in the four positions in the SIMD register.
716      */
717     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
718     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
719     int              jnrA,jnrB,jnrC,jnrD;
720     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
721     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
722     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
723     real             rcutoff_scalar;
724     real             *shiftvec,*fshift,*x,*f;
725     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
726     real             scratch[4*DIM];
727     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
728     int              vdwioffset0;
729     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
730     int              vdwioffset1;
731     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
732     int              vdwioffset2;
733     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
734     int              vdwioffset3;
735     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
736     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
737     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
738     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
739     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
740     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
741     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
742     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
743     real             *charge;
744     int              nvdwtype;
745     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
746     int              *vdwtype;
747     real             *vdwparam;
748     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
749     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
750     __m128           dummy_mask,cutoff_mask;
751     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
752     __m128           one     = _mm_set1_ps(1.0);
753     __m128           two     = _mm_set1_ps(2.0);
754     x                = xx[0];
755     f                = ff[0];
756
757     nri              = nlist->nri;
758     iinr             = nlist->iinr;
759     jindex           = nlist->jindex;
760     jjnr             = nlist->jjnr;
761     shiftidx         = nlist->shift;
762     gid              = nlist->gid;
763     shiftvec         = fr->shift_vec[0];
764     fshift           = fr->fshift[0];
765     facel            = _mm_set1_ps(fr->epsfac);
766     charge           = mdatoms->chargeA;
767     krf              = _mm_set1_ps(fr->ic->k_rf);
768     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
769     crf              = _mm_set1_ps(fr->ic->c_rf);
770     nvdwtype         = fr->ntype;
771     vdwparam         = fr->nbfp;
772     vdwtype          = mdatoms->typeA;
773
774     /* Setup water-specific parameters */
775     inr              = nlist->iinr[0];
776     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
777     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
778     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
779     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
780
781     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
782     rcutoff_scalar   = fr->rcoulomb;
783     rcutoff          = _mm_set1_ps(rcutoff_scalar);
784     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
785
786     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
787     rvdw             = _mm_set1_ps(fr->rvdw);
788
789     /* Avoid stupid compiler warnings */
790     jnrA = jnrB = jnrC = jnrD = 0;
791     j_coord_offsetA = 0;
792     j_coord_offsetB = 0;
793     j_coord_offsetC = 0;
794     j_coord_offsetD = 0;
795
796     outeriter        = 0;
797     inneriter        = 0;
798
799     for(iidx=0;iidx<4*DIM;iidx++)
800     {
801         scratch[iidx] = 0.0;
802     }  
803
804     /* Start outer loop over neighborlists */
805     for(iidx=0; iidx<nri; iidx++)
806     {
807         /* Load shift vector for this list */
808         i_shift_offset   = DIM*shiftidx[iidx];
809
810         /* Load limits for loop over neighbors */
811         j_index_start    = jindex[iidx];
812         j_index_end      = jindex[iidx+1];
813
814         /* Get outer coordinate index */
815         inr              = iinr[iidx];
816         i_coord_offset   = DIM*inr;
817
818         /* Load i particle coords and add shift vector */
819         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
820                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
821         
822         fix0             = _mm_setzero_ps();
823         fiy0             = _mm_setzero_ps();
824         fiz0             = _mm_setzero_ps();
825         fix1             = _mm_setzero_ps();
826         fiy1             = _mm_setzero_ps();
827         fiz1             = _mm_setzero_ps();
828         fix2             = _mm_setzero_ps();
829         fiy2             = _mm_setzero_ps();
830         fiz2             = _mm_setzero_ps();
831         fix3             = _mm_setzero_ps();
832         fiy3             = _mm_setzero_ps();
833         fiz3             = _mm_setzero_ps();
834
835         /* Start inner kernel loop */
836         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
837         {
838
839             /* Get j neighbor index, and coordinate index */
840             jnrA             = jjnr[jidx];
841             jnrB             = jjnr[jidx+1];
842             jnrC             = jjnr[jidx+2];
843             jnrD             = jjnr[jidx+3];
844             j_coord_offsetA  = DIM*jnrA;
845             j_coord_offsetB  = DIM*jnrB;
846             j_coord_offsetC  = DIM*jnrC;
847             j_coord_offsetD  = DIM*jnrD;
848
849             /* load j atom coordinates */
850             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
851                                               x+j_coord_offsetC,x+j_coord_offsetD,
852                                               &jx0,&jy0,&jz0);
853
854             /* Calculate displacement vector */
855             dx00             = _mm_sub_ps(ix0,jx0);
856             dy00             = _mm_sub_ps(iy0,jy0);
857             dz00             = _mm_sub_ps(iz0,jz0);
858             dx10             = _mm_sub_ps(ix1,jx0);
859             dy10             = _mm_sub_ps(iy1,jy0);
860             dz10             = _mm_sub_ps(iz1,jz0);
861             dx20             = _mm_sub_ps(ix2,jx0);
862             dy20             = _mm_sub_ps(iy2,jy0);
863             dz20             = _mm_sub_ps(iz2,jz0);
864             dx30             = _mm_sub_ps(ix3,jx0);
865             dy30             = _mm_sub_ps(iy3,jy0);
866             dz30             = _mm_sub_ps(iz3,jz0);
867
868             /* Calculate squared distance and things based on it */
869             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
870             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
871             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
872             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
873
874             rinv10           = gmx_mm_invsqrt_ps(rsq10);
875             rinv20           = gmx_mm_invsqrt_ps(rsq20);
876             rinv30           = gmx_mm_invsqrt_ps(rsq30);
877
878             rinvsq00         = gmx_mm_inv_ps(rsq00);
879             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
880             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
881             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
882
883             /* Load parameters for j particles */
884             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
885                                                               charge+jnrC+0,charge+jnrD+0);
886             vdwjidx0A        = 2*vdwtype[jnrA+0];
887             vdwjidx0B        = 2*vdwtype[jnrB+0];
888             vdwjidx0C        = 2*vdwtype[jnrC+0];
889             vdwjidx0D        = 2*vdwtype[jnrD+0];
890
891             /**************************
892              * CALCULATE INTERACTIONS *
893              **************************/
894
895             if (gmx_mm_any_lt(rsq00,rcutoff2))
896             {
897
898             /* Compute parameters for interactions between i and j atoms */
899             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
900                                          vdwparam+vdwioffset0+vdwjidx0B,
901                                          vdwparam+vdwioffset0+vdwjidx0C,
902                                          vdwparam+vdwioffset0+vdwjidx0D,
903                                          &c6_00,&c12_00);
904
905             /* LENNARD-JONES DISPERSION/REPULSION */
906
907             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
908             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
909
910             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
911
912             fscal            = fvdw;
913
914             fscal            = _mm_and_ps(fscal,cutoff_mask);
915
916             /* Calculate temporary vectorial force */
917             tx               = _mm_mul_ps(fscal,dx00);
918             ty               = _mm_mul_ps(fscal,dy00);
919             tz               = _mm_mul_ps(fscal,dz00);
920
921             /* Update vectorial force */
922             fix0             = _mm_add_ps(fix0,tx);
923             fiy0             = _mm_add_ps(fiy0,ty);
924             fiz0             = _mm_add_ps(fiz0,tz);
925
926             fjptrA             = f+j_coord_offsetA;
927             fjptrB             = f+j_coord_offsetB;
928             fjptrC             = f+j_coord_offsetC;
929             fjptrD             = f+j_coord_offsetD;
930             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
931             
932             }
933
934             /**************************
935              * CALCULATE INTERACTIONS *
936              **************************/
937
938             if (gmx_mm_any_lt(rsq10,rcutoff2))
939             {
940
941             /* Compute parameters for interactions between i and j atoms */
942             qq10             = _mm_mul_ps(iq1,jq0);
943
944             /* REACTION-FIELD ELECTROSTATICS */
945             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
946
947             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
948
949             fscal            = felec;
950
951             fscal            = _mm_and_ps(fscal,cutoff_mask);
952
953             /* Calculate temporary vectorial force */
954             tx               = _mm_mul_ps(fscal,dx10);
955             ty               = _mm_mul_ps(fscal,dy10);
956             tz               = _mm_mul_ps(fscal,dz10);
957
958             /* Update vectorial force */
959             fix1             = _mm_add_ps(fix1,tx);
960             fiy1             = _mm_add_ps(fiy1,ty);
961             fiz1             = _mm_add_ps(fiz1,tz);
962
963             fjptrA             = f+j_coord_offsetA;
964             fjptrB             = f+j_coord_offsetB;
965             fjptrC             = f+j_coord_offsetC;
966             fjptrD             = f+j_coord_offsetD;
967             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
968             
969             }
970
971             /**************************
972              * CALCULATE INTERACTIONS *
973              **************************/
974
975             if (gmx_mm_any_lt(rsq20,rcutoff2))
976             {
977
978             /* Compute parameters for interactions between i and j atoms */
979             qq20             = _mm_mul_ps(iq2,jq0);
980
981             /* REACTION-FIELD ELECTROSTATICS */
982             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
983
984             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
985
986             fscal            = felec;
987
988             fscal            = _mm_and_ps(fscal,cutoff_mask);
989
990             /* Calculate temporary vectorial force */
991             tx               = _mm_mul_ps(fscal,dx20);
992             ty               = _mm_mul_ps(fscal,dy20);
993             tz               = _mm_mul_ps(fscal,dz20);
994
995             /* Update vectorial force */
996             fix2             = _mm_add_ps(fix2,tx);
997             fiy2             = _mm_add_ps(fiy2,ty);
998             fiz2             = _mm_add_ps(fiz2,tz);
999
1000             fjptrA             = f+j_coord_offsetA;
1001             fjptrB             = f+j_coord_offsetB;
1002             fjptrC             = f+j_coord_offsetC;
1003             fjptrD             = f+j_coord_offsetD;
1004             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1005             
1006             }
1007
1008             /**************************
1009              * CALCULATE INTERACTIONS *
1010              **************************/
1011
1012             if (gmx_mm_any_lt(rsq30,rcutoff2))
1013             {
1014
1015             /* Compute parameters for interactions between i and j atoms */
1016             qq30             = _mm_mul_ps(iq3,jq0);
1017
1018             /* REACTION-FIELD ELECTROSTATICS */
1019             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1020
1021             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1022
1023             fscal            = felec;
1024
1025             fscal            = _mm_and_ps(fscal,cutoff_mask);
1026
1027             /* Calculate temporary vectorial force */
1028             tx               = _mm_mul_ps(fscal,dx30);
1029             ty               = _mm_mul_ps(fscal,dy30);
1030             tz               = _mm_mul_ps(fscal,dz30);
1031
1032             /* Update vectorial force */
1033             fix3             = _mm_add_ps(fix3,tx);
1034             fiy3             = _mm_add_ps(fiy3,ty);
1035             fiz3             = _mm_add_ps(fiz3,tz);
1036
1037             fjptrA             = f+j_coord_offsetA;
1038             fjptrB             = f+j_coord_offsetB;
1039             fjptrC             = f+j_coord_offsetC;
1040             fjptrD             = f+j_coord_offsetD;
1041             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1042             
1043             }
1044
1045             /* Inner loop uses 120 flops */
1046         }
1047
1048         if(jidx<j_index_end)
1049         {
1050
1051             /* Get j neighbor index, and coordinate index */
1052             jnrlistA         = jjnr[jidx];
1053             jnrlistB         = jjnr[jidx+1];
1054             jnrlistC         = jjnr[jidx+2];
1055             jnrlistD         = jjnr[jidx+3];
1056             /* Sign of each element will be negative for non-real atoms.
1057              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1058              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1059              */
1060             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1061             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1062             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1063             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1064             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1065             j_coord_offsetA  = DIM*jnrA;
1066             j_coord_offsetB  = DIM*jnrB;
1067             j_coord_offsetC  = DIM*jnrC;
1068             j_coord_offsetD  = DIM*jnrD;
1069
1070             /* load j atom coordinates */
1071             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1072                                               x+j_coord_offsetC,x+j_coord_offsetD,
1073                                               &jx0,&jy0,&jz0);
1074
1075             /* Calculate displacement vector */
1076             dx00             = _mm_sub_ps(ix0,jx0);
1077             dy00             = _mm_sub_ps(iy0,jy0);
1078             dz00             = _mm_sub_ps(iz0,jz0);
1079             dx10             = _mm_sub_ps(ix1,jx0);
1080             dy10             = _mm_sub_ps(iy1,jy0);
1081             dz10             = _mm_sub_ps(iz1,jz0);
1082             dx20             = _mm_sub_ps(ix2,jx0);
1083             dy20             = _mm_sub_ps(iy2,jy0);
1084             dz20             = _mm_sub_ps(iz2,jz0);
1085             dx30             = _mm_sub_ps(ix3,jx0);
1086             dy30             = _mm_sub_ps(iy3,jy0);
1087             dz30             = _mm_sub_ps(iz3,jz0);
1088
1089             /* Calculate squared distance and things based on it */
1090             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1091             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1092             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1093             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1094
1095             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1096             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1097             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1098
1099             rinvsq00         = gmx_mm_inv_ps(rsq00);
1100             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1101             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1102             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1103
1104             /* Load parameters for j particles */
1105             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1106                                                               charge+jnrC+0,charge+jnrD+0);
1107             vdwjidx0A        = 2*vdwtype[jnrA+0];
1108             vdwjidx0B        = 2*vdwtype[jnrB+0];
1109             vdwjidx0C        = 2*vdwtype[jnrC+0];
1110             vdwjidx0D        = 2*vdwtype[jnrD+0];
1111
1112             /**************************
1113              * CALCULATE INTERACTIONS *
1114              **************************/
1115
1116             if (gmx_mm_any_lt(rsq00,rcutoff2))
1117             {
1118
1119             /* Compute parameters for interactions between i and j atoms */
1120             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1121                                          vdwparam+vdwioffset0+vdwjidx0B,
1122                                          vdwparam+vdwioffset0+vdwjidx0C,
1123                                          vdwparam+vdwioffset0+vdwjidx0D,
1124                                          &c6_00,&c12_00);
1125
1126             /* LENNARD-JONES DISPERSION/REPULSION */
1127
1128             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1129             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1130
1131             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1132
1133             fscal            = fvdw;
1134
1135             fscal            = _mm_and_ps(fscal,cutoff_mask);
1136
1137             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1138
1139             /* Calculate temporary vectorial force */
1140             tx               = _mm_mul_ps(fscal,dx00);
1141             ty               = _mm_mul_ps(fscal,dy00);
1142             tz               = _mm_mul_ps(fscal,dz00);
1143
1144             /* Update vectorial force */
1145             fix0             = _mm_add_ps(fix0,tx);
1146             fiy0             = _mm_add_ps(fiy0,ty);
1147             fiz0             = _mm_add_ps(fiz0,tz);
1148
1149             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1150             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1151             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1152             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1153             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1154             
1155             }
1156
1157             /**************************
1158              * CALCULATE INTERACTIONS *
1159              **************************/
1160
1161             if (gmx_mm_any_lt(rsq10,rcutoff2))
1162             {
1163
1164             /* Compute parameters for interactions between i and j atoms */
1165             qq10             = _mm_mul_ps(iq1,jq0);
1166
1167             /* REACTION-FIELD ELECTROSTATICS */
1168             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1169
1170             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1171
1172             fscal            = felec;
1173
1174             fscal            = _mm_and_ps(fscal,cutoff_mask);
1175
1176             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1177
1178             /* Calculate temporary vectorial force */
1179             tx               = _mm_mul_ps(fscal,dx10);
1180             ty               = _mm_mul_ps(fscal,dy10);
1181             tz               = _mm_mul_ps(fscal,dz10);
1182
1183             /* Update vectorial force */
1184             fix1             = _mm_add_ps(fix1,tx);
1185             fiy1             = _mm_add_ps(fiy1,ty);
1186             fiz1             = _mm_add_ps(fiz1,tz);
1187
1188             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1189             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1190             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1191             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1192             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1193             
1194             }
1195
1196             /**************************
1197              * CALCULATE INTERACTIONS *
1198              **************************/
1199
1200             if (gmx_mm_any_lt(rsq20,rcutoff2))
1201             {
1202
1203             /* Compute parameters for interactions between i and j atoms */
1204             qq20             = _mm_mul_ps(iq2,jq0);
1205
1206             /* REACTION-FIELD ELECTROSTATICS */
1207             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1208
1209             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1210
1211             fscal            = felec;
1212
1213             fscal            = _mm_and_ps(fscal,cutoff_mask);
1214
1215             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1216
1217             /* Calculate temporary vectorial force */
1218             tx               = _mm_mul_ps(fscal,dx20);
1219             ty               = _mm_mul_ps(fscal,dy20);
1220             tz               = _mm_mul_ps(fscal,dz20);
1221
1222             /* Update vectorial force */
1223             fix2             = _mm_add_ps(fix2,tx);
1224             fiy2             = _mm_add_ps(fiy2,ty);
1225             fiz2             = _mm_add_ps(fiz2,tz);
1226
1227             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1228             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1229             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1230             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1231             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1232             
1233             }
1234
1235             /**************************
1236              * CALCULATE INTERACTIONS *
1237              **************************/
1238
1239             if (gmx_mm_any_lt(rsq30,rcutoff2))
1240             {
1241
1242             /* Compute parameters for interactions between i and j atoms */
1243             qq30             = _mm_mul_ps(iq3,jq0);
1244
1245             /* REACTION-FIELD ELECTROSTATICS */
1246             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1247
1248             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1249
1250             fscal            = felec;
1251
1252             fscal            = _mm_and_ps(fscal,cutoff_mask);
1253
1254             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1255
1256             /* Calculate temporary vectorial force */
1257             tx               = _mm_mul_ps(fscal,dx30);
1258             ty               = _mm_mul_ps(fscal,dy30);
1259             tz               = _mm_mul_ps(fscal,dz30);
1260
1261             /* Update vectorial force */
1262             fix3             = _mm_add_ps(fix3,tx);
1263             fiy3             = _mm_add_ps(fiy3,ty);
1264             fiz3             = _mm_add_ps(fiz3,tz);
1265
1266             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1267             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1268             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1269             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1270             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1271             
1272             }
1273
1274             /* Inner loop uses 120 flops */
1275         }
1276
1277         /* End of innermost loop */
1278
1279         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1280                                               f+i_coord_offset,fshift+i_shift_offset);
1281
1282         /* Increment number of inner iterations */
1283         inneriter                  += j_index_end - j_index_start;
1284
1285         /* Outer loop uses 24 flops */
1286     }
1287
1288     /* Increment number of outer iterations */
1289     outeriter        += nri;
1290
1291     /* Update outer/inner flops */
1292
1293     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*120);
1294 }