Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
84     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
85     __m128           dummy_mask,cutoff_mask;
86     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
87     __m128           one     = _mm_set1_ps(1.0);
88     __m128           two     = _mm_set1_ps(2.0);
89     x                = xx[0];
90     f                = ff[0];
91
92     nri              = nlist->nri;
93     iinr             = nlist->iinr;
94     jindex           = nlist->jindex;
95     jjnr             = nlist->jjnr;
96     shiftidx         = nlist->shift;
97     gid              = nlist->gid;
98     shiftvec         = fr->shift_vec[0];
99     fshift           = fr->fshift[0];
100     facel            = _mm_set1_ps(fr->epsfac);
101     charge           = mdatoms->chargeA;
102     krf              = _mm_set1_ps(fr->ic->k_rf);
103     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
104     crf              = _mm_set1_ps(fr->ic->c_rf);
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     /* Setup water-specific parameters */
110     inr              = nlist->iinr[0];
111     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
112     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
113     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
114     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
115
116     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
117     rcutoff_scalar   = fr->rcoulomb;
118     rcutoff          = _mm_set1_ps(rcutoff_scalar);
119     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
120
121     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
122     rvdw             = _mm_set1_ps(fr->rvdw);
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139         shX              = shiftvec[i_shift_offset+XX];
140         shY              = shiftvec[i_shift_offset+YY];
141         shZ              = shiftvec[i_shift_offset+ZZ];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
153         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
154         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
155         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
156         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
157         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
158         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
159         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
160         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
161
162         fix0             = _mm_setzero_ps();
163         fiy0             = _mm_setzero_ps();
164         fiz0             = _mm_setzero_ps();
165         fix1             = _mm_setzero_ps();
166         fiy1             = _mm_setzero_ps();
167         fiz1             = _mm_setzero_ps();
168         fix2             = _mm_setzero_ps();
169         fiy2             = _mm_setzero_ps();
170         fiz2             = _mm_setzero_ps();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_ps();
174         vvdwsum          = _mm_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               x+j_coord_offsetC,x+j_coord_offsetD,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_ps(ix0,jx0);
198             dy00             = _mm_sub_ps(iy0,jy0);
199             dz00             = _mm_sub_ps(iz0,jz0);
200             dx10             = _mm_sub_ps(ix1,jx0);
201             dy10             = _mm_sub_ps(iy1,jy0);
202             dz10             = _mm_sub_ps(iz1,jz0);
203             dx20             = _mm_sub_ps(ix2,jx0);
204             dy20             = _mm_sub_ps(iy2,jy0);
205             dz20             = _mm_sub_ps(iz2,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
209             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
210             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
211
212             rinv00           = gmx_mm_invsqrt_ps(rsq00);
213             rinv10           = gmx_mm_invsqrt_ps(rsq10);
214             rinv20           = gmx_mm_invsqrt_ps(rsq20);
215
216             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
217             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
218             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
219
220             /* Load parameters for j particles */
221             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
222                                                               charge+jnrC+0,charge+jnrD+0);
223             vdwjidx0A        = 2*vdwtype[jnrA+0];
224             vdwjidx0B        = 2*vdwtype[jnrB+0];
225             vdwjidx0C        = 2*vdwtype[jnrC+0];
226             vdwjidx0D        = 2*vdwtype[jnrD+0];
227
228             /**************************
229              * CALCULATE INTERACTIONS *
230              **************************/
231
232             if (gmx_mm_any_lt(rsq00,rcutoff2))
233             {
234
235             /* Compute parameters for interactions between i and j atoms */
236             qq00             = _mm_mul_ps(iq0,jq0);
237             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
238                                          vdwparam+vdwioffset0+vdwjidx0B,
239                                          vdwparam+vdwioffset0+vdwjidx0C,
240                                          vdwparam+vdwioffset0+vdwjidx0D,
241                                          &c6_00,&c12_00);
242
243             /* REACTION-FIELD ELECTROSTATICS */
244             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
245             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
246
247             /* LENNARD-JONES DISPERSION/REPULSION */
248
249             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
250             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
251             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
252             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
253                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
254             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
255
256             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
257
258             /* Update potential sum for this i atom from the interaction with this j atom. */
259             velec            = _mm_and_ps(velec,cutoff_mask);
260             velecsum         = _mm_add_ps(velecsum,velec);
261             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
262             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
263
264             fscal            = _mm_add_ps(felec,fvdw);
265
266             fscal            = _mm_and_ps(fscal,cutoff_mask);
267
268             /* Calculate temporary vectorial force */
269             tx               = _mm_mul_ps(fscal,dx00);
270             ty               = _mm_mul_ps(fscal,dy00);
271             tz               = _mm_mul_ps(fscal,dz00);
272
273             /* Update vectorial force */
274             fix0             = _mm_add_ps(fix0,tx);
275             fiy0             = _mm_add_ps(fiy0,ty);
276             fiz0             = _mm_add_ps(fiz0,tz);
277
278             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
279                                                    f+j_coord_offsetC,f+j_coord_offsetD,
280                                                    tx,ty,tz);
281
282             }
283
284             /**************************
285              * CALCULATE INTERACTIONS *
286              **************************/
287
288             if (gmx_mm_any_lt(rsq10,rcutoff2))
289             {
290
291             /* Compute parameters for interactions between i and j atoms */
292             qq10             = _mm_mul_ps(iq1,jq0);
293
294             /* REACTION-FIELD ELECTROSTATICS */
295             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
296             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
297
298             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velec            = _mm_and_ps(velec,cutoff_mask);
302             velecsum         = _mm_add_ps(velecsum,velec);
303
304             fscal            = felec;
305
306             fscal            = _mm_and_ps(fscal,cutoff_mask);
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm_mul_ps(fscal,dx10);
310             ty               = _mm_mul_ps(fscal,dy10);
311             tz               = _mm_mul_ps(fscal,dz10);
312
313             /* Update vectorial force */
314             fix1             = _mm_add_ps(fix1,tx);
315             fiy1             = _mm_add_ps(fiy1,ty);
316             fiz1             = _mm_add_ps(fiz1,tz);
317
318             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
319                                                    f+j_coord_offsetC,f+j_coord_offsetD,
320                                                    tx,ty,tz);
321
322             }
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             if (gmx_mm_any_lt(rsq20,rcutoff2))
329             {
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq20             = _mm_mul_ps(iq2,jq0);
333
334             /* REACTION-FIELD ELECTROSTATICS */
335             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
336             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
337
338             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velec            = _mm_and_ps(velec,cutoff_mask);
342             velecsum         = _mm_add_ps(velecsum,velec);
343
344             fscal            = felec;
345
346             fscal            = _mm_and_ps(fscal,cutoff_mask);
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm_mul_ps(fscal,dx20);
350             ty               = _mm_mul_ps(fscal,dy20);
351             tz               = _mm_mul_ps(fscal,dz20);
352
353             /* Update vectorial force */
354             fix2             = _mm_add_ps(fix2,tx);
355             fiy2             = _mm_add_ps(fiy2,ty);
356             fiz2             = _mm_add_ps(fiz2,tz);
357
358             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
359                                                    f+j_coord_offsetC,f+j_coord_offsetD,
360                                                    tx,ty,tz);
361
362             }
363
364             /* Inner loop uses 126 flops */
365         }
366
367         if(jidx<j_index_end)
368         {
369
370             /* Get j neighbor index, and coordinate index */
371             jnrA             = jjnr[jidx];
372             jnrB             = jjnr[jidx+1];
373             jnrC             = jjnr[jidx+2];
374             jnrD             = jjnr[jidx+3];
375
376             /* Sign of each element will be negative for non-real atoms.
377              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
378              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
379              */
380             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
381             jnrA       = (jnrA>=0) ? jnrA : 0;
382             jnrB       = (jnrB>=0) ? jnrB : 0;
383             jnrC       = (jnrC>=0) ? jnrC : 0;
384             jnrD       = (jnrD>=0) ? jnrD : 0;
385
386             j_coord_offsetA  = DIM*jnrA;
387             j_coord_offsetB  = DIM*jnrB;
388             j_coord_offsetC  = DIM*jnrC;
389             j_coord_offsetD  = DIM*jnrD;
390
391             /* load j atom coordinates */
392             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
393                                               x+j_coord_offsetC,x+j_coord_offsetD,
394                                               &jx0,&jy0,&jz0);
395
396             /* Calculate displacement vector */
397             dx00             = _mm_sub_ps(ix0,jx0);
398             dy00             = _mm_sub_ps(iy0,jy0);
399             dz00             = _mm_sub_ps(iz0,jz0);
400             dx10             = _mm_sub_ps(ix1,jx0);
401             dy10             = _mm_sub_ps(iy1,jy0);
402             dz10             = _mm_sub_ps(iz1,jz0);
403             dx20             = _mm_sub_ps(ix2,jx0);
404             dy20             = _mm_sub_ps(iy2,jy0);
405             dz20             = _mm_sub_ps(iz2,jz0);
406
407             /* Calculate squared distance and things based on it */
408             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
409             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
410             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
411
412             rinv00           = gmx_mm_invsqrt_ps(rsq00);
413             rinv10           = gmx_mm_invsqrt_ps(rsq10);
414             rinv20           = gmx_mm_invsqrt_ps(rsq20);
415
416             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
417             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
418             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
419
420             /* Load parameters for j particles */
421             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
422                                                               charge+jnrC+0,charge+jnrD+0);
423             vdwjidx0A        = 2*vdwtype[jnrA+0];
424             vdwjidx0B        = 2*vdwtype[jnrB+0];
425             vdwjidx0C        = 2*vdwtype[jnrC+0];
426             vdwjidx0D        = 2*vdwtype[jnrD+0];
427
428             /**************************
429              * CALCULATE INTERACTIONS *
430              **************************/
431
432             if (gmx_mm_any_lt(rsq00,rcutoff2))
433             {
434
435             /* Compute parameters for interactions between i and j atoms */
436             qq00             = _mm_mul_ps(iq0,jq0);
437             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
438                                          vdwparam+vdwioffset0+vdwjidx0B,
439                                          vdwparam+vdwioffset0+vdwjidx0C,
440                                          vdwparam+vdwioffset0+vdwjidx0D,
441                                          &c6_00,&c12_00);
442
443             /* REACTION-FIELD ELECTROSTATICS */
444             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
445             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
446
447             /* LENNARD-JONES DISPERSION/REPULSION */
448
449             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
450             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
451             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
452             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
453                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
454             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
455
456             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
457
458             /* Update potential sum for this i atom from the interaction with this j atom. */
459             velec            = _mm_and_ps(velec,cutoff_mask);
460             velec            = _mm_andnot_ps(dummy_mask,velec);
461             velecsum         = _mm_add_ps(velecsum,velec);
462             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
463             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
464             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
465
466             fscal            = _mm_add_ps(felec,fvdw);
467
468             fscal            = _mm_and_ps(fscal,cutoff_mask);
469
470             fscal            = _mm_andnot_ps(dummy_mask,fscal);
471
472             /* Calculate temporary vectorial force */
473             tx               = _mm_mul_ps(fscal,dx00);
474             ty               = _mm_mul_ps(fscal,dy00);
475             tz               = _mm_mul_ps(fscal,dz00);
476
477             /* Update vectorial force */
478             fix0             = _mm_add_ps(fix0,tx);
479             fiy0             = _mm_add_ps(fiy0,ty);
480             fiz0             = _mm_add_ps(fiz0,tz);
481
482             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
483                                                    f+j_coord_offsetC,f+j_coord_offsetD,
484                                                    tx,ty,tz);
485
486             }
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             if (gmx_mm_any_lt(rsq10,rcutoff2))
493             {
494
495             /* Compute parameters for interactions between i and j atoms */
496             qq10             = _mm_mul_ps(iq1,jq0);
497
498             /* REACTION-FIELD ELECTROSTATICS */
499             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
500             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
501
502             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
503
504             /* Update potential sum for this i atom from the interaction with this j atom. */
505             velec            = _mm_and_ps(velec,cutoff_mask);
506             velec            = _mm_andnot_ps(dummy_mask,velec);
507             velecsum         = _mm_add_ps(velecsum,velec);
508
509             fscal            = felec;
510
511             fscal            = _mm_and_ps(fscal,cutoff_mask);
512
513             fscal            = _mm_andnot_ps(dummy_mask,fscal);
514
515             /* Calculate temporary vectorial force */
516             tx               = _mm_mul_ps(fscal,dx10);
517             ty               = _mm_mul_ps(fscal,dy10);
518             tz               = _mm_mul_ps(fscal,dz10);
519
520             /* Update vectorial force */
521             fix1             = _mm_add_ps(fix1,tx);
522             fiy1             = _mm_add_ps(fiy1,ty);
523             fiz1             = _mm_add_ps(fiz1,tz);
524
525             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
526                                                    f+j_coord_offsetC,f+j_coord_offsetD,
527                                                    tx,ty,tz);
528
529             }
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             if (gmx_mm_any_lt(rsq20,rcutoff2))
536             {
537
538             /* Compute parameters for interactions between i and j atoms */
539             qq20             = _mm_mul_ps(iq2,jq0);
540
541             /* REACTION-FIELD ELECTROSTATICS */
542             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
543             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
544
545             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
546
547             /* Update potential sum for this i atom from the interaction with this j atom. */
548             velec            = _mm_and_ps(velec,cutoff_mask);
549             velec            = _mm_andnot_ps(dummy_mask,velec);
550             velecsum         = _mm_add_ps(velecsum,velec);
551
552             fscal            = felec;
553
554             fscal            = _mm_and_ps(fscal,cutoff_mask);
555
556             fscal            = _mm_andnot_ps(dummy_mask,fscal);
557
558             /* Calculate temporary vectorial force */
559             tx               = _mm_mul_ps(fscal,dx20);
560             ty               = _mm_mul_ps(fscal,dy20);
561             tz               = _mm_mul_ps(fscal,dz20);
562
563             /* Update vectorial force */
564             fix2             = _mm_add_ps(fix2,tx);
565             fiy2             = _mm_add_ps(fiy2,ty);
566             fiz2             = _mm_add_ps(fiz2,tz);
567
568             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
569                                                    f+j_coord_offsetC,f+j_coord_offsetD,
570                                                    tx,ty,tz);
571
572             }
573
574             /* Inner loop uses 126 flops */
575         }
576
577         /* End of innermost loop */
578
579         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
580                                               f+i_coord_offset,fshift+i_shift_offset);
581
582         ggid                        = gid[iidx];
583         /* Update potential energies */
584         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
585         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
586
587         /* Increment number of inner iterations */
588         inneriter                  += j_index_end - j_index_start;
589
590         /* Outer loop uses 29 flops */
591     }
592
593     /* Increment number of outer iterations */
594     outeriter        += nri;
595
596     /* Update outer/inner flops */
597
598     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*29 + inneriter*126);
599 }
600 /*
601  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse2_single
602  * Electrostatics interaction: ReactionField
603  * VdW interaction:            LennardJones
604  * Geometry:                   Water3-Particle
605  * Calculate force/pot:        Force
606  */
607 void
608 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse2_single
609                     (t_nblist * gmx_restrict                nlist,
610                      rvec * gmx_restrict                    xx,
611                      rvec * gmx_restrict                    ff,
612                      t_forcerec * gmx_restrict              fr,
613                      t_mdatoms * gmx_restrict               mdatoms,
614                      nb_kernel_data_t * gmx_restrict        kernel_data,
615                      t_nrnb * gmx_restrict                  nrnb)
616 {
617     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
618      * just 0 for non-waters.
619      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
620      * jnr indices corresponding to data put in the four positions in the SIMD register.
621      */
622     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
623     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
624     int              jnrA,jnrB,jnrC,jnrD;
625     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
626     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
627     real             shX,shY,shZ,rcutoff_scalar;
628     real             *shiftvec,*fshift,*x,*f;
629     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
630     int              vdwioffset0;
631     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
632     int              vdwioffset1;
633     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
634     int              vdwioffset2;
635     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
636     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
637     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
638     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
639     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
640     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
641     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
642     real             *charge;
643     int              nvdwtype;
644     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
645     int              *vdwtype;
646     real             *vdwparam;
647     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
648     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
649     __m128           dummy_mask,cutoff_mask;
650     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
651     __m128           one     = _mm_set1_ps(1.0);
652     __m128           two     = _mm_set1_ps(2.0);
653     x                = xx[0];
654     f                = ff[0];
655
656     nri              = nlist->nri;
657     iinr             = nlist->iinr;
658     jindex           = nlist->jindex;
659     jjnr             = nlist->jjnr;
660     shiftidx         = nlist->shift;
661     gid              = nlist->gid;
662     shiftvec         = fr->shift_vec[0];
663     fshift           = fr->fshift[0];
664     facel            = _mm_set1_ps(fr->epsfac);
665     charge           = mdatoms->chargeA;
666     krf              = _mm_set1_ps(fr->ic->k_rf);
667     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
668     crf              = _mm_set1_ps(fr->ic->c_rf);
669     nvdwtype         = fr->ntype;
670     vdwparam         = fr->nbfp;
671     vdwtype          = mdatoms->typeA;
672
673     /* Setup water-specific parameters */
674     inr              = nlist->iinr[0];
675     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
676     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
677     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
678     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
679
680     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
681     rcutoff_scalar   = fr->rcoulomb;
682     rcutoff          = _mm_set1_ps(rcutoff_scalar);
683     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
684
685     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
686     rvdw             = _mm_set1_ps(fr->rvdw);
687
688     /* Avoid stupid compiler warnings */
689     jnrA = jnrB = jnrC = jnrD = 0;
690     j_coord_offsetA = 0;
691     j_coord_offsetB = 0;
692     j_coord_offsetC = 0;
693     j_coord_offsetD = 0;
694
695     outeriter        = 0;
696     inneriter        = 0;
697
698     /* Start outer loop over neighborlists */
699     for(iidx=0; iidx<nri; iidx++)
700     {
701         /* Load shift vector for this list */
702         i_shift_offset   = DIM*shiftidx[iidx];
703         shX              = shiftvec[i_shift_offset+XX];
704         shY              = shiftvec[i_shift_offset+YY];
705         shZ              = shiftvec[i_shift_offset+ZZ];
706
707         /* Load limits for loop over neighbors */
708         j_index_start    = jindex[iidx];
709         j_index_end      = jindex[iidx+1];
710
711         /* Get outer coordinate index */
712         inr              = iinr[iidx];
713         i_coord_offset   = DIM*inr;
714
715         /* Load i particle coords and add shift vector */
716         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
717         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
718         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
719         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
720         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
721         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
722         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
723         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
724         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
725
726         fix0             = _mm_setzero_ps();
727         fiy0             = _mm_setzero_ps();
728         fiz0             = _mm_setzero_ps();
729         fix1             = _mm_setzero_ps();
730         fiy1             = _mm_setzero_ps();
731         fiz1             = _mm_setzero_ps();
732         fix2             = _mm_setzero_ps();
733         fiy2             = _mm_setzero_ps();
734         fiz2             = _mm_setzero_ps();
735
736         /* Start inner kernel loop */
737         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
738         {
739
740             /* Get j neighbor index, and coordinate index */
741             jnrA             = jjnr[jidx];
742             jnrB             = jjnr[jidx+1];
743             jnrC             = jjnr[jidx+2];
744             jnrD             = jjnr[jidx+3];
745
746             j_coord_offsetA  = DIM*jnrA;
747             j_coord_offsetB  = DIM*jnrB;
748             j_coord_offsetC  = DIM*jnrC;
749             j_coord_offsetD  = DIM*jnrD;
750
751             /* load j atom coordinates */
752             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
753                                               x+j_coord_offsetC,x+j_coord_offsetD,
754                                               &jx0,&jy0,&jz0);
755
756             /* Calculate displacement vector */
757             dx00             = _mm_sub_ps(ix0,jx0);
758             dy00             = _mm_sub_ps(iy0,jy0);
759             dz00             = _mm_sub_ps(iz0,jz0);
760             dx10             = _mm_sub_ps(ix1,jx0);
761             dy10             = _mm_sub_ps(iy1,jy0);
762             dz10             = _mm_sub_ps(iz1,jz0);
763             dx20             = _mm_sub_ps(ix2,jx0);
764             dy20             = _mm_sub_ps(iy2,jy0);
765             dz20             = _mm_sub_ps(iz2,jz0);
766
767             /* Calculate squared distance and things based on it */
768             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
769             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
770             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
771
772             rinv00           = gmx_mm_invsqrt_ps(rsq00);
773             rinv10           = gmx_mm_invsqrt_ps(rsq10);
774             rinv20           = gmx_mm_invsqrt_ps(rsq20);
775
776             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
777             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
778             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
779
780             /* Load parameters for j particles */
781             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
782                                                               charge+jnrC+0,charge+jnrD+0);
783             vdwjidx0A        = 2*vdwtype[jnrA+0];
784             vdwjidx0B        = 2*vdwtype[jnrB+0];
785             vdwjidx0C        = 2*vdwtype[jnrC+0];
786             vdwjidx0D        = 2*vdwtype[jnrD+0];
787
788             /**************************
789              * CALCULATE INTERACTIONS *
790              **************************/
791
792             if (gmx_mm_any_lt(rsq00,rcutoff2))
793             {
794
795             /* Compute parameters for interactions between i and j atoms */
796             qq00             = _mm_mul_ps(iq0,jq0);
797             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
798                                          vdwparam+vdwioffset0+vdwjidx0B,
799                                          vdwparam+vdwioffset0+vdwjidx0C,
800                                          vdwparam+vdwioffset0+vdwjidx0D,
801                                          &c6_00,&c12_00);
802
803             /* REACTION-FIELD ELECTROSTATICS */
804             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
805
806             /* LENNARD-JONES DISPERSION/REPULSION */
807
808             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
809             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
810
811             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
812
813             fscal            = _mm_add_ps(felec,fvdw);
814
815             fscal            = _mm_and_ps(fscal,cutoff_mask);
816
817             /* Calculate temporary vectorial force */
818             tx               = _mm_mul_ps(fscal,dx00);
819             ty               = _mm_mul_ps(fscal,dy00);
820             tz               = _mm_mul_ps(fscal,dz00);
821
822             /* Update vectorial force */
823             fix0             = _mm_add_ps(fix0,tx);
824             fiy0             = _mm_add_ps(fiy0,ty);
825             fiz0             = _mm_add_ps(fiz0,tz);
826
827             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
828                                                    f+j_coord_offsetC,f+j_coord_offsetD,
829                                                    tx,ty,tz);
830
831             }
832
833             /**************************
834              * CALCULATE INTERACTIONS *
835              **************************/
836
837             if (gmx_mm_any_lt(rsq10,rcutoff2))
838             {
839
840             /* Compute parameters for interactions between i and j atoms */
841             qq10             = _mm_mul_ps(iq1,jq0);
842
843             /* REACTION-FIELD ELECTROSTATICS */
844             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
845
846             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
847
848             fscal            = felec;
849
850             fscal            = _mm_and_ps(fscal,cutoff_mask);
851
852             /* Calculate temporary vectorial force */
853             tx               = _mm_mul_ps(fscal,dx10);
854             ty               = _mm_mul_ps(fscal,dy10);
855             tz               = _mm_mul_ps(fscal,dz10);
856
857             /* Update vectorial force */
858             fix1             = _mm_add_ps(fix1,tx);
859             fiy1             = _mm_add_ps(fiy1,ty);
860             fiz1             = _mm_add_ps(fiz1,tz);
861
862             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
863                                                    f+j_coord_offsetC,f+j_coord_offsetD,
864                                                    tx,ty,tz);
865
866             }
867
868             /**************************
869              * CALCULATE INTERACTIONS *
870              **************************/
871
872             if (gmx_mm_any_lt(rsq20,rcutoff2))
873             {
874
875             /* Compute parameters for interactions between i and j atoms */
876             qq20             = _mm_mul_ps(iq2,jq0);
877
878             /* REACTION-FIELD ELECTROSTATICS */
879             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
880
881             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
882
883             fscal            = felec;
884
885             fscal            = _mm_and_ps(fscal,cutoff_mask);
886
887             /* Calculate temporary vectorial force */
888             tx               = _mm_mul_ps(fscal,dx20);
889             ty               = _mm_mul_ps(fscal,dy20);
890             tz               = _mm_mul_ps(fscal,dz20);
891
892             /* Update vectorial force */
893             fix2             = _mm_add_ps(fix2,tx);
894             fiy2             = _mm_add_ps(fiy2,ty);
895             fiz2             = _mm_add_ps(fiz2,tz);
896
897             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
898                                                    f+j_coord_offsetC,f+j_coord_offsetD,
899                                                    tx,ty,tz);
900
901             }
902
903             /* Inner loop uses 97 flops */
904         }
905
906         if(jidx<j_index_end)
907         {
908
909             /* Get j neighbor index, and coordinate index */
910             jnrA             = jjnr[jidx];
911             jnrB             = jjnr[jidx+1];
912             jnrC             = jjnr[jidx+2];
913             jnrD             = jjnr[jidx+3];
914
915             /* Sign of each element will be negative for non-real atoms.
916              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
917              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
918              */
919             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
920             jnrA       = (jnrA>=0) ? jnrA : 0;
921             jnrB       = (jnrB>=0) ? jnrB : 0;
922             jnrC       = (jnrC>=0) ? jnrC : 0;
923             jnrD       = (jnrD>=0) ? jnrD : 0;
924
925             j_coord_offsetA  = DIM*jnrA;
926             j_coord_offsetB  = DIM*jnrB;
927             j_coord_offsetC  = DIM*jnrC;
928             j_coord_offsetD  = DIM*jnrD;
929
930             /* load j atom coordinates */
931             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
932                                               x+j_coord_offsetC,x+j_coord_offsetD,
933                                               &jx0,&jy0,&jz0);
934
935             /* Calculate displacement vector */
936             dx00             = _mm_sub_ps(ix0,jx0);
937             dy00             = _mm_sub_ps(iy0,jy0);
938             dz00             = _mm_sub_ps(iz0,jz0);
939             dx10             = _mm_sub_ps(ix1,jx0);
940             dy10             = _mm_sub_ps(iy1,jy0);
941             dz10             = _mm_sub_ps(iz1,jz0);
942             dx20             = _mm_sub_ps(ix2,jx0);
943             dy20             = _mm_sub_ps(iy2,jy0);
944             dz20             = _mm_sub_ps(iz2,jz0);
945
946             /* Calculate squared distance and things based on it */
947             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
948             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
949             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
950
951             rinv00           = gmx_mm_invsqrt_ps(rsq00);
952             rinv10           = gmx_mm_invsqrt_ps(rsq10);
953             rinv20           = gmx_mm_invsqrt_ps(rsq20);
954
955             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
956             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
957             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
958
959             /* Load parameters for j particles */
960             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
961                                                               charge+jnrC+0,charge+jnrD+0);
962             vdwjidx0A        = 2*vdwtype[jnrA+0];
963             vdwjidx0B        = 2*vdwtype[jnrB+0];
964             vdwjidx0C        = 2*vdwtype[jnrC+0];
965             vdwjidx0D        = 2*vdwtype[jnrD+0];
966
967             /**************************
968              * CALCULATE INTERACTIONS *
969              **************************/
970
971             if (gmx_mm_any_lt(rsq00,rcutoff2))
972             {
973
974             /* Compute parameters for interactions between i and j atoms */
975             qq00             = _mm_mul_ps(iq0,jq0);
976             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
977                                          vdwparam+vdwioffset0+vdwjidx0B,
978                                          vdwparam+vdwioffset0+vdwjidx0C,
979                                          vdwparam+vdwioffset0+vdwjidx0D,
980                                          &c6_00,&c12_00);
981
982             /* REACTION-FIELD ELECTROSTATICS */
983             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
984
985             /* LENNARD-JONES DISPERSION/REPULSION */
986
987             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
988             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
989
990             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
991
992             fscal            = _mm_add_ps(felec,fvdw);
993
994             fscal            = _mm_and_ps(fscal,cutoff_mask);
995
996             fscal            = _mm_andnot_ps(dummy_mask,fscal);
997
998             /* Calculate temporary vectorial force */
999             tx               = _mm_mul_ps(fscal,dx00);
1000             ty               = _mm_mul_ps(fscal,dy00);
1001             tz               = _mm_mul_ps(fscal,dz00);
1002
1003             /* Update vectorial force */
1004             fix0             = _mm_add_ps(fix0,tx);
1005             fiy0             = _mm_add_ps(fiy0,ty);
1006             fiz0             = _mm_add_ps(fiz0,tz);
1007
1008             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1009                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1010                                                    tx,ty,tz);
1011
1012             }
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             if (gmx_mm_any_lt(rsq10,rcutoff2))
1019             {
1020
1021             /* Compute parameters for interactions between i and j atoms */
1022             qq10             = _mm_mul_ps(iq1,jq0);
1023
1024             /* REACTION-FIELD ELECTROSTATICS */
1025             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1026
1027             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1028
1029             fscal            = felec;
1030
1031             fscal            = _mm_and_ps(fscal,cutoff_mask);
1032
1033             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1034
1035             /* Calculate temporary vectorial force */
1036             tx               = _mm_mul_ps(fscal,dx10);
1037             ty               = _mm_mul_ps(fscal,dy10);
1038             tz               = _mm_mul_ps(fscal,dz10);
1039
1040             /* Update vectorial force */
1041             fix1             = _mm_add_ps(fix1,tx);
1042             fiy1             = _mm_add_ps(fiy1,ty);
1043             fiz1             = _mm_add_ps(fiz1,tz);
1044
1045             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1046                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1047                                                    tx,ty,tz);
1048
1049             }
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             if (gmx_mm_any_lt(rsq20,rcutoff2))
1056             {
1057
1058             /* Compute parameters for interactions between i and j atoms */
1059             qq20             = _mm_mul_ps(iq2,jq0);
1060
1061             /* REACTION-FIELD ELECTROSTATICS */
1062             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1063
1064             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1065
1066             fscal            = felec;
1067
1068             fscal            = _mm_and_ps(fscal,cutoff_mask);
1069
1070             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1071
1072             /* Calculate temporary vectorial force */
1073             tx               = _mm_mul_ps(fscal,dx20);
1074             ty               = _mm_mul_ps(fscal,dy20);
1075             tz               = _mm_mul_ps(fscal,dz20);
1076
1077             /* Update vectorial force */
1078             fix2             = _mm_add_ps(fix2,tx);
1079             fiy2             = _mm_add_ps(fiy2,ty);
1080             fiz2             = _mm_add_ps(fiz2,tz);
1081
1082             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1083                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1084                                                    tx,ty,tz);
1085
1086             }
1087
1088             /* Inner loop uses 97 flops */
1089         }
1090
1091         /* End of innermost loop */
1092
1093         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1094                                               f+i_coord_offset,fshift+i_shift_offset);
1095
1096         /* Increment number of inner iterations */
1097         inneriter                  += j_index_end - j_index_start;
1098
1099         /* Outer loop uses 27 flops */
1100     }
1101
1102     /* Increment number of outer iterations */
1103     outeriter        += nri;
1104
1105     /* Update outer/inner flops */
1106
1107     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*27 + inneriter*97);
1108 }