Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse2_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128           dummy_mask,cutoff_mask;
102     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103     __m128           one     = _mm_set1_ps(1.0);
104     __m128           two     = _mm_set1_ps(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_ps(fr->ic->epsfac);
117     charge           = mdatoms->chargeA;
118     krf              = _mm_set1_ps(fr->ic->k_rf);
119     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
120     crf              = _mm_set1_ps(fr->ic->c_rf);
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
128     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
129     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
130     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
131
132     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
133     rcutoff_scalar   = fr->ic->rcoulomb;
134     rcutoff          = _mm_set1_ps(rcutoff_scalar);
135     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
136
137     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
138     rvdw             = _mm_set1_ps(fr->ic->rvdw);
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }  
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
172         
173         fix0             = _mm_setzero_ps();
174         fiy0             = _mm_setzero_ps();
175         fiz0             = _mm_setzero_ps();
176         fix1             = _mm_setzero_ps();
177         fiy1             = _mm_setzero_ps();
178         fiz1             = _mm_setzero_ps();
179         fix2             = _mm_setzero_ps();
180         fiy2             = _mm_setzero_ps();
181         fiz2             = _mm_setzero_ps();
182
183         /* Reset potential sums */
184         velecsum         = _mm_setzero_ps();
185         vvdwsum          = _mm_setzero_ps();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198             j_coord_offsetC  = DIM*jnrC;
199             j_coord_offsetD  = DIM*jnrD;
200
201             /* load j atom coordinates */
202             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
203                                               x+j_coord_offsetC,x+j_coord_offsetD,
204                                               &jx0,&jy0,&jz0);
205
206             /* Calculate displacement vector */
207             dx00             = _mm_sub_ps(ix0,jx0);
208             dy00             = _mm_sub_ps(iy0,jy0);
209             dz00             = _mm_sub_ps(iz0,jz0);
210             dx10             = _mm_sub_ps(ix1,jx0);
211             dy10             = _mm_sub_ps(iy1,jy0);
212             dz10             = _mm_sub_ps(iz1,jz0);
213             dx20             = _mm_sub_ps(ix2,jx0);
214             dy20             = _mm_sub_ps(iy2,jy0);
215             dz20             = _mm_sub_ps(iz2,jz0);
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
219             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
220             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
221
222             rinv00           = sse2_invsqrt_f(rsq00);
223             rinv10           = sse2_invsqrt_f(rsq10);
224             rinv20           = sse2_invsqrt_f(rsq20);
225
226             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
227             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
228             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
232                                                               charge+jnrC+0,charge+jnrD+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235             vdwjidx0C        = 2*vdwtype[jnrC+0];
236             vdwjidx0D        = 2*vdwtype[jnrD+0];
237
238             fjx0             = _mm_setzero_ps();
239             fjy0             = _mm_setzero_ps();
240             fjz0             = _mm_setzero_ps();
241
242             /**************************
243              * CALCULATE INTERACTIONS *
244              **************************/
245
246             if (gmx_mm_any_lt(rsq00,rcutoff2))
247             {
248
249             /* Compute parameters for interactions between i and j atoms */
250             qq00             = _mm_mul_ps(iq0,jq0);
251             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
252                                          vdwparam+vdwioffset0+vdwjidx0B,
253                                          vdwparam+vdwioffset0+vdwjidx0C,
254                                          vdwparam+vdwioffset0+vdwjidx0D,
255                                          &c6_00,&c12_00);
256
257             /* REACTION-FIELD ELECTROSTATICS */
258             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
259             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
260
261             /* LENNARD-JONES DISPERSION/REPULSION */
262
263             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
264             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
265             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
266             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
267                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
268             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
269
270             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
271
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             velec            = _mm_and_ps(velec,cutoff_mask);
274             velecsum         = _mm_add_ps(velecsum,velec);
275             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
276             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
277
278             fscal            = _mm_add_ps(felec,fvdw);
279
280             fscal            = _mm_and_ps(fscal,cutoff_mask);
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm_mul_ps(fscal,dx00);
284             ty               = _mm_mul_ps(fscal,dy00);
285             tz               = _mm_mul_ps(fscal,dz00);
286
287             /* Update vectorial force */
288             fix0             = _mm_add_ps(fix0,tx);
289             fiy0             = _mm_add_ps(fiy0,ty);
290             fiz0             = _mm_add_ps(fiz0,tz);
291
292             fjx0             = _mm_add_ps(fjx0,tx);
293             fjy0             = _mm_add_ps(fjy0,ty);
294             fjz0             = _mm_add_ps(fjz0,tz);
295             
296             }
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             if (gmx_mm_any_lt(rsq10,rcutoff2))
303             {
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq10             = _mm_mul_ps(iq1,jq0);
307
308             /* REACTION-FIELD ELECTROSTATICS */
309             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
310             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
311
312             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velec            = _mm_and_ps(velec,cutoff_mask);
316             velecsum         = _mm_add_ps(velecsum,velec);
317
318             fscal            = felec;
319
320             fscal            = _mm_and_ps(fscal,cutoff_mask);
321
322             /* Calculate temporary vectorial force */
323             tx               = _mm_mul_ps(fscal,dx10);
324             ty               = _mm_mul_ps(fscal,dy10);
325             tz               = _mm_mul_ps(fscal,dz10);
326
327             /* Update vectorial force */
328             fix1             = _mm_add_ps(fix1,tx);
329             fiy1             = _mm_add_ps(fiy1,ty);
330             fiz1             = _mm_add_ps(fiz1,tz);
331
332             fjx0             = _mm_add_ps(fjx0,tx);
333             fjy0             = _mm_add_ps(fjy0,ty);
334             fjz0             = _mm_add_ps(fjz0,tz);
335             
336             }
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             if (gmx_mm_any_lt(rsq20,rcutoff2))
343             {
344
345             /* Compute parameters for interactions between i and j atoms */
346             qq20             = _mm_mul_ps(iq2,jq0);
347
348             /* REACTION-FIELD ELECTROSTATICS */
349             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
350             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
351
352             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
353
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velec            = _mm_and_ps(velec,cutoff_mask);
356             velecsum         = _mm_add_ps(velecsum,velec);
357
358             fscal            = felec;
359
360             fscal            = _mm_and_ps(fscal,cutoff_mask);
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm_mul_ps(fscal,dx20);
364             ty               = _mm_mul_ps(fscal,dy20);
365             tz               = _mm_mul_ps(fscal,dz20);
366
367             /* Update vectorial force */
368             fix2             = _mm_add_ps(fix2,tx);
369             fiy2             = _mm_add_ps(fiy2,ty);
370             fiz2             = _mm_add_ps(fiz2,tz);
371
372             fjx0             = _mm_add_ps(fjx0,tx);
373             fjy0             = _mm_add_ps(fjy0,ty);
374             fjz0             = _mm_add_ps(fjz0,tz);
375             
376             }
377
378             fjptrA             = f+j_coord_offsetA;
379             fjptrB             = f+j_coord_offsetB;
380             fjptrC             = f+j_coord_offsetC;
381             fjptrD             = f+j_coord_offsetD;
382
383             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
384
385             /* Inner loop uses 126 flops */
386         }
387
388         if(jidx<j_index_end)
389         {
390
391             /* Get j neighbor index, and coordinate index */
392             jnrlistA         = jjnr[jidx];
393             jnrlistB         = jjnr[jidx+1];
394             jnrlistC         = jjnr[jidx+2];
395             jnrlistD         = jjnr[jidx+3];
396             /* Sign of each element will be negative for non-real atoms.
397              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
398              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
399              */
400             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
401             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
402             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
403             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
404             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
405             j_coord_offsetA  = DIM*jnrA;
406             j_coord_offsetB  = DIM*jnrB;
407             j_coord_offsetC  = DIM*jnrC;
408             j_coord_offsetD  = DIM*jnrD;
409
410             /* load j atom coordinates */
411             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
412                                               x+j_coord_offsetC,x+j_coord_offsetD,
413                                               &jx0,&jy0,&jz0);
414
415             /* Calculate displacement vector */
416             dx00             = _mm_sub_ps(ix0,jx0);
417             dy00             = _mm_sub_ps(iy0,jy0);
418             dz00             = _mm_sub_ps(iz0,jz0);
419             dx10             = _mm_sub_ps(ix1,jx0);
420             dy10             = _mm_sub_ps(iy1,jy0);
421             dz10             = _mm_sub_ps(iz1,jz0);
422             dx20             = _mm_sub_ps(ix2,jx0);
423             dy20             = _mm_sub_ps(iy2,jy0);
424             dz20             = _mm_sub_ps(iz2,jz0);
425
426             /* Calculate squared distance and things based on it */
427             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
428             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
429             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
430
431             rinv00           = sse2_invsqrt_f(rsq00);
432             rinv10           = sse2_invsqrt_f(rsq10);
433             rinv20           = sse2_invsqrt_f(rsq20);
434
435             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
436             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
437             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
438
439             /* Load parameters for j particles */
440             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
441                                                               charge+jnrC+0,charge+jnrD+0);
442             vdwjidx0A        = 2*vdwtype[jnrA+0];
443             vdwjidx0B        = 2*vdwtype[jnrB+0];
444             vdwjidx0C        = 2*vdwtype[jnrC+0];
445             vdwjidx0D        = 2*vdwtype[jnrD+0];
446
447             fjx0             = _mm_setzero_ps();
448             fjy0             = _mm_setzero_ps();
449             fjz0             = _mm_setzero_ps();
450
451             /**************************
452              * CALCULATE INTERACTIONS *
453              **************************/
454
455             if (gmx_mm_any_lt(rsq00,rcutoff2))
456             {
457
458             /* Compute parameters for interactions between i and j atoms */
459             qq00             = _mm_mul_ps(iq0,jq0);
460             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
461                                          vdwparam+vdwioffset0+vdwjidx0B,
462                                          vdwparam+vdwioffset0+vdwjidx0C,
463                                          vdwparam+vdwioffset0+vdwjidx0D,
464                                          &c6_00,&c12_00);
465
466             /* REACTION-FIELD ELECTROSTATICS */
467             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
468             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
469
470             /* LENNARD-JONES DISPERSION/REPULSION */
471
472             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
473             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
474             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
475             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
476                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
477             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
478
479             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
480
481             /* Update potential sum for this i atom from the interaction with this j atom. */
482             velec            = _mm_and_ps(velec,cutoff_mask);
483             velec            = _mm_andnot_ps(dummy_mask,velec);
484             velecsum         = _mm_add_ps(velecsum,velec);
485             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
486             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
487             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
488
489             fscal            = _mm_add_ps(felec,fvdw);
490
491             fscal            = _mm_and_ps(fscal,cutoff_mask);
492
493             fscal            = _mm_andnot_ps(dummy_mask,fscal);
494
495             /* Calculate temporary vectorial force */
496             tx               = _mm_mul_ps(fscal,dx00);
497             ty               = _mm_mul_ps(fscal,dy00);
498             tz               = _mm_mul_ps(fscal,dz00);
499
500             /* Update vectorial force */
501             fix0             = _mm_add_ps(fix0,tx);
502             fiy0             = _mm_add_ps(fiy0,ty);
503             fiz0             = _mm_add_ps(fiz0,tz);
504
505             fjx0             = _mm_add_ps(fjx0,tx);
506             fjy0             = _mm_add_ps(fjy0,ty);
507             fjz0             = _mm_add_ps(fjz0,tz);
508             
509             }
510
511             /**************************
512              * CALCULATE INTERACTIONS *
513              **************************/
514
515             if (gmx_mm_any_lt(rsq10,rcutoff2))
516             {
517
518             /* Compute parameters for interactions between i and j atoms */
519             qq10             = _mm_mul_ps(iq1,jq0);
520
521             /* REACTION-FIELD ELECTROSTATICS */
522             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
523             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
524
525             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             velec            = _mm_and_ps(velec,cutoff_mask);
529             velec            = _mm_andnot_ps(dummy_mask,velec);
530             velecsum         = _mm_add_ps(velecsum,velec);
531
532             fscal            = felec;
533
534             fscal            = _mm_and_ps(fscal,cutoff_mask);
535
536             fscal            = _mm_andnot_ps(dummy_mask,fscal);
537
538             /* Calculate temporary vectorial force */
539             tx               = _mm_mul_ps(fscal,dx10);
540             ty               = _mm_mul_ps(fscal,dy10);
541             tz               = _mm_mul_ps(fscal,dz10);
542
543             /* Update vectorial force */
544             fix1             = _mm_add_ps(fix1,tx);
545             fiy1             = _mm_add_ps(fiy1,ty);
546             fiz1             = _mm_add_ps(fiz1,tz);
547
548             fjx0             = _mm_add_ps(fjx0,tx);
549             fjy0             = _mm_add_ps(fjy0,ty);
550             fjz0             = _mm_add_ps(fjz0,tz);
551             
552             }
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             if (gmx_mm_any_lt(rsq20,rcutoff2))
559             {
560
561             /* Compute parameters for interactions between i and j atoms */
562             qq20             = _mm_mul_ps(iq2,jq0);
563
564             /* REACTION-FIELD ELECTROSTATICS */
565             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
566             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
567
568             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
569
570             /* Update potential sum for this i atom from the interaction with this j atom. */
571             velec            = _mm_and_ps(velec,cutoff_mask);
572             velec            = _mm_andnot_ps(dummy_mask,velec);
573             velecsum         = _mm_add_ps(velecsum,velec);
574
575             fscal            = felec;
576
577             fscal            = _mm_and_ps(fscal,cutoff_mask);
578
579             fscal            = _mm_andnot_ps(dummy_mask,fscal);
580
581             /* Calculate temporary vectorial force */
582             tx               = _mm_mul_ps(fscal,dx20);
583             ty               = _mm_mul_ps(fscal,dy20);
584             tz               = _mm_mul_ps(fscal,dz20);
585
586             /* Update vectorial force */
587             fix2             = _mm_add_ps(fix2,tx);
588             fiy2             = _mm_add_ps(fiy2,ty);
589             fiz2             = _mm_add_ps(fiz2,tz);
590
591             fjx0             = _mm_add_ps(fjx0,tx);
592             fjy0             = _mm_add_ps(fjy0,ty);
593             fjz0             = _mm_add_ps(fjz0,tz);
594             
595             }
596
597             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
598             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
599             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
600             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
601
602             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
603
604             /* Inner loop uses 126 flops */
605         }
606
607         /* End of innermost loop */
608
609         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
610                                               f+i_coord_offset,fshift+i_shift_offset);
611
612         ggid                        = gid[iidx];
613         /* Update potential energies */
614         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
615         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
616
617         /* Increment number of inner iterations */
618         inneriter                  += j_index_end - j_index_start;
619
620         /* Outer loop uses 20 flops */
621     }
622
623     /* Increment number of outer iterations */
624     outeriter        += nri;
625
626     /* Update outer/inner flops */
627
628     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*126);
629 }
630 /*
631  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse2_single
632  * Electrostatics interaction: ReactionField
633  * VdW interaction:            LennardJones
634  * Geometry:                   Water3-Particle
635  * Calculate force/pot:        Force
636  */
637 void
638 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse2_single
639                     (t_nblist                    * gmx_restrict       nlist,
640                      rvec                        * gmx_restrict          xx,
641                      rvec                        * gmx_restrict          ff,
642                      struct t_forcerec           * gmx_restrict          fr,
643                      t_mdatoms                   * gmx_restrict     mdatoms,
644                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
645                      t_nrnb                      * gmx_restrict        nrnb)
646 {
647     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
648      * just 0 for non-waters.
649      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
650      * jnr indices corresponding to data put in the four positions in the SIMD register.
651      */
652     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
653     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
654     int              jnrA,jnrB,jnrC,jnrD;
655     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
656     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
657     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
658     real             rcutoff_scalar;
659     real             *shiftvec,*fshift,*x,*f;
660     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
661     real             scratch[4*DIM];
662     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
663     int              vdwioffset0;
664     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
665     int              vdwioffset1;
666     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
667     int              vdwioffset2;
668     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
669     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
670     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
671     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
672     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
673     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
674     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
675     real             *charge;
676     int              nvdwtype;
677     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
678     int              *vdwtype;
679     real             *vdwparam;
680     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
681     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
682     __m128           dummy_mask,cutoff_mask;
683     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
684     __m128           one     = _mm_set1_ps(1.0);
685     __m128           two     = _mm_set1_ps(2.0);
686     x                = xx[0];
687     f                = ff[0];
688
689     nri              = nlist->nri;
690     iinr             = nlist->iinr;
691     jindex           = nlist->jindex;
692     jjnr             = nlist->jjnr;
693     shiftidx         = nlist->shift;
694     gid              = nlist->gid;
695     shiftvec         = fr->shift_vec[0];
696     fshift           = fr->fshift[0];
697     facel            = _mm_set1_ps(fr->ic->epsfac);
698     charge           = mdatoms->chargeA;
699     krf              = _mm_set1_ps(fr->ic->k_rf);
700     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
701     crf              = _mm_set1_ps(fr->ic->c_rf);
702     nvdwtype         = fr->ntype;
703     vdwparam         = fr->nbfp;
704     vdwtype          = mdatoms->typeA;
705
706     /* Setup water-specific parameters */
707     inr              = nlist->iinr[0];
708     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
709     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
710     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
711     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
712
713     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
714     rcutoff_scalar   = fr->ic->rcoulomb;
715     rcutoff          = _mm_set1_ps(rcutoff_scalar);
716     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
717
718     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
719     rvdw             = _mm_set1_ps(fr->ic->rvdw);
720
721     /* Avoid stupid compiler warnings */
722     jnrA = jnrB = jnrC = jnrD = 0;
723     j_coord_offsetA = 0;
724     j_coord_offsetB = 0;
725     j_coord_offsetC = 0;
726     j_coord_offsetD = 0;
727
728     outeriter        = 0;
729     inneriter        = 0;
730
731     for(iidx=0;iidx<4*DIM;iidx++)
732     {
733         scratch[iidx] = 0.0;
734     }  
735
736     /* Start outer loop over neighborlists */
737     for(iidx=0; iidx<nri; iidx++)
738     {
739         /* Load shift vector for this list */
740         i_shift_offset   = DIM*shiftidx[iidx];
741
742         /* Load limits for loop over neighbors */
743         j_index_start    = jindex[iidx];
744         j_index_end      = jindex[iidx+1];
745
746         /* Get outer coordinate index */
747         inr              = iinr[iidx];
748         i_coord_offset   = DIM*inr;
749
750         /* Load i particle coords and add shift vector */
751         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
752                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
753         
754         fix0             = _mm_setzero_ps();
755         fiy0             = _mm_setzero_ps();
756         fiz0             = _mm_setzero_ps();
757         fix1             = _mm_setzero_ps();
758         fiy1             = _mm_setzero_ps();
759         fiz1             = _mm_setzero_ps();
760         fix2             = _mm_setzero_ps();
761         fiy2             = _mm_setzero_ps();
762         fiz2             = _mm_setzero_ps();
763
764         /* Start inner kernel loop */
765         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
766         {
767
768             /* Get j neighbor index, and coordinate index */
769             jnrA             = jjnr[jidx];
770             jnrB             = jjnr[jidx+1];
771             jnrC             = jjnr[jidx+2];
772             jnrD             = jjnr[jidx+3];
773             j_coord_offsetA  = DIM*jnrA;
774             j_coord_offsetB  = DIM*jnrB;
775             j_coord_offsetC  = DIM*jnrC;
776             j_coord_offsetD  = DIM*jnrD;
777
778             /* load j atom coordinates */
779             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
780                                               x+j_coord_offsetC,x+j_coord_offsetD,
781                                               &jx0,&jy0,&jz0);
782
783             /* Calculate displacement vector */
784             dx00             = _mm_sub_ps(ix0,jx0);
785             dy00             = _mm_sub_ps(iy0,jy0);
786             dz00             = _mm_sub_ps(iz0,jz0);
787             dx10             = _mm_sub_ps(ix1,jx0);
788             dy10             = _mm_sub_ps(iy1,jy0);
789             dz10             = _mm_sub_ps(iz1,jz0);
790             dx20             = _mm_sub_ps(ix2,jx0);
791             dy20             = _mm_sub_ps(iy2,jy0);
792             dz20             = _mm_sub_ps(iz2,jz0);
793
794             /* Calculate squared distance and things based on it */
795             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
796             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
797             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
798
799             rinv00           = sse2_invsqrt_f(rsq00);
800             rinv10           = sse2_invsqrt_f(rsq10);
801             rinv20           = sse2_invsqrt_f(rsq20);
802
803             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
804             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
805             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
806
807             /* Load parameters for j particles */
808             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
809                                                               charge+jnrC+0,charge+jnrD+0);
810             vdwjidx0A        = 2*vdwtype[jnrA+0];
811             vdwjidx0B        = 2*vdwtype[jnrB+0];
812             vdwjidx0C        = 2*vdwtype[jnrC+0];
813             vdwjidx0D        = 2*vdwtype[jnrD+0];
814
815             fjx0             = _mm_setzero_ps();
816             fjy0             = _mm_setzero_ps();
817             fjz0             = _mm_setzero_ps();
818
819             /**************************
820              * CALCULATE INTERACTIONS *
821              **************************/
822
823             if (gmx_mm_any_lt(rsq00,rcutoff2))
824             {
825
826             /* Compute parameters for interactions between i and j atoms */
827             qq00             = _mm_mul_ps(iq0,jq0);
828             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
829                                          vdwparam+vdwioffset0+vdwjidx0B,
830                                          vdwparam+vdwioffset0+vdwjidx0C,
831                                          vdwparam+vdwioffset0+vdwjidx0D,
832                                          &c6_00,&c12_00);
833
834             /* REACTION-FIELD ELECTROSTATICS */
835             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
836
837             /* LENNARD-JONES DISPERSION/REPULSION */
838
839             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
840             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
841
842             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
843
844             fscal            = _mm_add_ps(felec,fvdw);
845
846             fscal            = _mm_and_ps(fscal,cutoff_mask);
847
848             /* Calculate temporary vectorial force */
849             tx               = _mm_mul_ps(fscal,dx00);
850             ty               = _mm_mul_ps(fscal,dy00);
851             tz               = _mm_mul_ps(fscal,dz00);
852
853             /* Update vectorial force */
854             fix0             = _mm_add_ps(fix0,tx);
855             fiy0             = _mm_add_ps(fiy0,ty);
856             fiz0             = _mm_add_ps(fiz0,tz);
857
858             fjx0             = _mm_add_ps(fjx0,tx);
859             fjy0             = _mm_add_ps(fjy0,ty);
860             fjz0             = _mm_add_ps(fjz0,tz);
861             
862             }
863
864             /**************************
865              * CALCULATE INTERACTIONS *
866              **************************/
867
868             if (gmx_mm_any_lt(rsq10,rcutoff2))
869             {
870
871             /* Compute parameters for interactions between i and j atoms */
872             qq10             = _mm_mul_ps(iq1,jq0);
873
874             /* REACTION-FIELD ELECTROSTATICS */
875             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
876
877             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
878
879             fscal            = felec;
880
881             fscal            = _mm_and_ps(fscal,cutoff_mask);
882
883             /* Calculate temporary vectorial force */
884             tx               = _mm_mul_ps(fscal,dx10);
885             ty               = _mm_mul_ps(fscal,dy10);
886             tz               = _mm_mul_ps(fscal,dz10);
887
888             /* Update vectorial force */
889             fix1             = _mm_add_ps(fix1,tx);
890             fiy1             = _mm_add_ps(fiy1,ty);
891             fiz1             = _mm_add_ps(fiz1,tz);
892
893             fjx0             = _mm_add_ps(fjx0,tx);
894             fjy0             = _mm_add_ps(fjy0,ty);
895             fjz0             = _mm_add_ps(fjz0,tz);
896             
897             }
898
899             /**************************
900              * CALCULATE INTERACTIONS *
901              **************************/
902
903             if (gmx_mm_any_lt(rsq20,rcutoff2))
904             {
905
906             /* Compute parameters for interactions between i and j atoms */
907             qq20             = _mm_mul_ps(iq2,jq0);
908
909             /* REACTION-FIELD ELECTROSTATICS */
910             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
911
912             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
913
914             fscal            = felec;
915
916             fscal            = _mm_and_ps(fscal,cutoff_mask);
917
918             /* Calculate temporary vectorial force */
919             tx               = _mm_mul_ps(fscal,dx20);
920             ty               = _mm_mul_ps(fscal,dy20);
921             tz               = _mm_mul_ps(fscal,dz20);
922
923             /* Update vectorial force */
924             fix2             = _mm_add_ps(fix2,tx);
925             fiy2             = _mm_add_ps(fiy2,ty);
926             fiz2             = _mm_add_ps(fiz2,tz);
927
928             fjx0             = _mm_add_ps(fjx0,tx);
929             fjy0             = _mm_add_ps(fjy0,ty);
930             fjz0             = _mm_add_ps(fjz0,tz);
931             
932             }
933
934             fjptrA             = f+j_coord_offsetA;
935             fjptrB             = f+j_coord_offsetB;
936             fjptrC             = f+j_coord_offsetC;
937             fjptrD             = f+j_coord_offsetD;
938
939             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
940
941             /* Inner loop uses 97 flops */
942         }
943
944         if(jidx<j_index_end)
945         {
946
947             /* Get j neighbor index, and coordinate index */
948             jnrlistA         = jjnr[jidx];
949             jnrlistB         = jjnr[jidx+1];
950             jnrlistC         = jjnr[jidx+2];
951             jnrlistD         = jjnr[jidx+3];
952             /* Sign of each element will be negative for non-real atoms.
953              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
954              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
955              */
956             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
957             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
958             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
959             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
960             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
961             j_coord_offsetA  = DIM*jnrA;
962             j_coord_offsetB  = DIM*jnrB;
963             j_coord_offsetC  = DIM*jnrC;
964             j_coord_offsetD  = DIM*jnrD;
965
966             /* load j atom coordinates */
967             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
968                                               x+j_coord_offsetC,x+j_coord_offsetD,
969                                               &jx0,&jy0,&jz0);
970
971             /* Calculate displacement vector */
972             dx00             = _mm_sub_ps(ix0,jx0);
973             dy00             = _mm_sub_ps(iy0,jy0);
974             dz00             = _mm_sub_ps(iz0,jz0);
975             dx10             = _mm_sub_ps(ix1,jx0);
976             dy10             = _mm_sub_ps(iy1,jy0);
977             dz10             = _mm_sub_ps(iz1,jz0);
978             dx20             = _mm_sub_ps(ix2,jx0);
979             dy20             = _mm_sub_ps(iy2,jy0);
980             dz20             = _mm_sub_ps(iz2,jz0);
981
982             /* Calculate squared distance and things based on it */
983             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
984             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
985             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
986
987             rinv00           = sse2_invsqrt_f(rsq00);
988             rinv10           = sse2_invsqrt_f(rsq10);
989             rinv20           = sse2_invsqrt_f(rsq20);
990
991             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
992             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
993             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
994
995             /* Load parameters for j particles */
996             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
997                                                               charge+jnrC+0,charge+jnrD+0);
998             vdwjidx0A        = 2*vdwtype[jnrA+0];
999             vdwjidx0B        = 2*vdwtype[jnrB+0];
1000             vdwjidx0C        = 2*vdwtype[jnrC+0];
1001             vdwjidx0D        = 2*vdwtype[jnrD+0];
1002
1003             fjx0             = _mm_setzero_ps();
1004             fjy0             = _mm_setzero_ps();
1005             fjz0             = _mm_setzero_ps();
1006
1007             /**************************
1008              * CALCULATE INTERACTIONS *
1009              **************************/
1010
1011             if (gmx_mm_any_lt(rsq00,rcutoff2))
1012             {
1013
1014             /* Compute parameters for interactions between i and j atoms */
1015             qq00             = _mm_mul_ps(iq0,jq0);
1016             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1017                                          vdwparam+vdwioffset0+vdwjidx0B,
1018                                          vdwparam+vdwioffset0+vdwjidx0C,
1019                                          vdwparam+vdwioffset0+vdwjidx0D,
1020                                          &c6_00,&c12_00);
1021
1022             /* REACTION-FIELD ELECTROSTATICS */
1023             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1024
1025             /* LENNARD-JONES DISPERSION/REPULSION */
1026
1027             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1028             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1029
1030             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1031
1032             fscal            = _mm_add_ps(felec,fvdw);
1033
1034             fscal            = _mm_and_ps(fscal,cutoff_mask);
1035
1036             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1037
1038             /* Calculate temporary vectorial force */
1039             tx               = _mm_mul_ps(fscal,dx00);
1040             ty               = _mm_mul_ps(fscal,dy00);
1041             tz               = _mm_mul_ps(fscal,dz00);
1042
1043             /* Update vectorial force */
1044             fix0             = _mm_add_ps(fix0,tx);
1045             fiy0             = _mm_add_ps(fiy0,ty);
1046             fiz0             = _mm_add_ps(fiz0,tz);
1047
1048             fjx0             = _mm_add_ps(fjx0,tx);
1049             fjy0             = _mm_add_ps(fjy0,ty);
1050             fjz0             = _mm_add_ps(fjz0,tz);
1051             
1052             }
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             if (gmx_mm_any_lt(rsq10,rcutoff2))
1059             {
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             qq10             = _mm_mul_ps(iq1,jq0);
1063
1064             /* REACTION-FIELD ELECTROSTATICS */
1065             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1066
1067             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1068
1069             fscal            = felec;
1070
1071             fscal            = _mm_and_ps(fscal,cutoff_mask);
1072
1073             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1074
1075             /* Calculate temporary vectorial force */
1076             tx               = _mm_mul_ps(fscal,dx10);
1077             ty               = _mm_mul_ps(fscal,dy10);
1078             tz               = _mm_mul_ps(fscal,dz10);
1079
1080             /* Update vectorial force */
1081             fix1             = _mm_add_ps(fix1,tx);
1082             fiy1             = _mm_add_ps(fiy1,ty);
1083             fiz1             = _mm_add_ps(fiz1,tz);
1084
1085             fjx0             = _mm_add_ps(fjx0,tx);
1086             fjy0             = _mm_add_ps(fjy0,ty);
1087             fjz0             = _mm_add_ps(fjz0,tz);
1088             
1089             }
1090
1091             /**************************
1092              * CALCULATE INTERACTIONS *
1093              **************************/
1094
1095             if (gmx_mm_any_lt(rsq20,rcutoff2))
1096             {
1097
1098             /* Compute parameters for interactions between i and j atoms */
1099             qq20             = _mm_mul_ps(iq2,jq0);
1100
1101             /* REACTION-FIELD ELECTROSTATICS */
1102             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1103
1104             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1105
1106             fscal            = felec;
1107
1108             fscal            = _mm_and_ps(fscal,cutoff_mask);
1109
1110             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1111
1112             /* Calculate temporary vectorial force */
1113             tx               = _mm_mul_ps(fscal,dx20);
1114             ty               = _mm_mul_ps(fscal,dy20);
1115             tz               = _mm_mul_ps(fscal,dz20);
1116
1117             /* Update vectorial force */
1118             fix2             = _mm_add_ps(fix2,tx);
1119             fiy2             = _mm_add_ps(fiy2,ty);
1120             fiz2             = _mm_add_ps(fiz2,tz);
1121
1122             fjx0             = _mm_add_ps(fjx0,tx);
1123             fjy0             = _mm_add_ps(fjy0,ty);
1124             fjz0             = _mm_add_ps(fjz0,tz);
1125             
1126             }
1127
1128             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1129             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1130             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1131             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1132
1133             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1134
1135             /* Inner loop uses 97 flops */
1136         }
1137
1138         /* End of innermost loop */
1139
1140         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1141                                               f+i_coord_offset,fshift+i_shift_offset);
1142
1143         /* Increment number of inner iterations */
1144         inneriter                  += j_index_end - j_index_start;
1145
1146         /* Outer loop uses 18 flops */
1147     }
1148
1149     /* Increment number of outer iterations */
1150     outeriter        += nri;
1151
1152     /* Update outer/inner flops */
1153
1154     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*97);
1155 }