82dd302a9aefbd0bda2fc9428e124d73aa26f0b0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse2_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     krf              = _mm_set1_ps(fr->ic->k_rf);
120     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
121     crf              = _mm_set1_ps(fr->ic->c_rf);
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
129     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
130     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
131     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff_scalar   = fr->rcoulomb;
135     rcutoff          = _mm_set1_ps(rcutoff_scalar);
136     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
137
138     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
139     rvdw             = _mm_set1_ps(fr->rvdw);
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }  
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
173         
174         fix0             = _mm_setzero_ps();
175         fiy0             = _mm_setzero_ps();
176         fiz0             = _mm_setzero_ps();
177         fix1             = _mm_setzero_ps();
178         fiy1             = _mm_setzero_ps();
179         fiz1             = _mm_setzero_ps();
180         fix2             = _mm_setzero_ps();
181         fiy2             = _mm_setzero_ps();
182         fiz2             = _mm_setzero_ps();
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_ps();
186         vvdwsum          = _mm_setzero_ps();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             jnrC             = jjnr[jidx+2];
196             jnrD             = jjnr[jidx+3];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201
202             /* load j atom coordinates */
203             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
204                                               x+j_coord_offsetC,x+j_coord_offsetD,
205                                               &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm_sub_ps(ix0,jx0);
209             dy00             = _mm_sub_ps(iy0,jy0);
210             dz00             = _mm_sub_ps(iz0,jz0);
211             dx10             = _mm_sub_ps(ix1,jx0);
212             dy10             = _mm_sub_ps(iy1,jy0);
213             dz10             = _mm_sub_ps(iz1,jz0);
214             dx20             = _mm_sub_ps(ix2,jx0);
215             dy20             = _mm_sub_ps(iy2,jy0);
216             dz20             = _mm_sub_ps(iz2,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
220             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
221             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
222
223             rinv00           = gmx_mm_invsqrt_ps(rsq00);
224             rinv10           = gmx_mm_invsqrt_ps(rsq10);
225             rinv20           = gmx_mm_invsqrt_ps(rsq20);
226
227             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
228             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
229             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
233                                                               charge+jnrC+0,charge+jnrD+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235             vdwjidx0B        = 2*vdwtype[jnrB+0];
236             vdwjidx0C        = 2*vdwtype[jnrC+0];
237             vdwjidx0D        = 2*vdwtype[jnrD+0];
238
239             fjx0             = _mm_setzero_ps();
240             fjy0             = _mm_setzero_ps();
241             fjz0             = _mm_setzero_ps();
242
243             /**************************
244              * CALCULATE INTERACTIONS *
245              **************************/
246
247             if (gmx_mm_any_lt(rsq00,rcutoff2))
248             {
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _mm_mul_ps(iq0,jq0);
252             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,
254                                          vdwparam+vdwioffset0+vdwjidx0C,
255                                          vdwparam+vdwioffset0+vdwjidx0D,
256                                          &c6_00,&c12_00);
257
258             /* REACTION-FIELD ELECTROSTATICS */
259             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
260             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
261
262             /* LENNARD-JONES DISPERSION/REPULSION */
263
264             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
265             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
266             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
267             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
268                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
269             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
270
271             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
272
273             /* Update potential sum for this i atom from the interaction with this j atom. */
274             velec            = _mm_and_ps(velec,cutoff_mask);
275             velecsum         = _mm_add_ps(velecsum,velec);
276             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
277             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
278
279             fscal            = _mm_add_ps(felec,fvdw);
280
281             fscal            = _mm_and_ps(fscal,cutoff_mask);
282
283             /* Calculate temporary vectorial force */
284             tx               = _mm_mul_ps(fscal,dx00);
285             ty               = _mm_mul_ps(fscal,dy00);
286             tz               = _mm_mul_ps(fscal,dz00);
287
288             /* Update vectorial force */
289             fix0             = _mm_add_ps(fix0,tx);
290             fiy0             = _mm_add_ps(fiy0,ty);
291             fiz0             = _mm_add_ps(fiz0,tz);
292
293             fjx0             = _mm_add_ps(fjx0,tx);
294             fjy0             = _mm_add_ps(fjy0,ty);
295             fjz0             = _mm_add_ps(fjz0,tz);
296             
297             }
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             if (gmx_mm_any_lt(rsq10,rcutoff2))
304             {
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq10             = _mm_mul_ps(iq1,jq0);
308
309             /* REACTION-FIELD ELECTROSTATICS */
310             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
311             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
312
313             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velec            = _mm_and_ps(velec,cutoff_mask);
317             velecsum         = _mm_add_ps(velecsum,velec);
318
319             fscal            = felec;
320
321             fscal            = _mm_and_ps(fscal,cutoff_mask);
322
323             /* Calculate temporary vectorial force */
324             tx               = _mm_mul_ps(fscal,dx10);
325             ty               = _mm_mul_ps(fscal,dy10);
326             tz               = _mm_mul_ps(fscal,dz10);
327
328             /* Update vectorial force */
329             fix1             = _mm_add_ps(fix1,tx);
330             fiy1             = _mm_add_ps(fiy1,ty);
331             fiz1             = _mm_add_ps(fiz1,tz);
332
333             fjx0             = _mm_add_ps(fjx0,tx);
334             fjy0             = _mm_add_ps(fjy0,ty);
335             fjz0             = _mm_add_ps(fjz0,tz);
336             
337             }
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             if (gmx_mm_any_lt(rsq20,rcutoff2))
344             {
345
346             /* Compute parameters for interactions between i and j atoms */
347             qq20             = _mm_mul_ps(iq2,jq0);
348
349             /* REACTION-FIELD ELECTROSTATICS */
350             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
351             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
352
353             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velec            = _mm_and_ps(velec,cutoff_mask);
357             velecsum         = _mm_add_ps(velecsum,velec);
358
359             fscal            = felec;
360
361             fscal            = _mm_and_ps(fscal,cutoff_mask);
362
363             /* Calculate temporary vectorial force */
364             tx               = _mm_mul_ps(fscal,dx20);
365             ty               = _mm_mul_ps(fscal,dy20);
366             tz               = _mm_mul_ps(fscal,dz20);
367
368             /* Update vectorial force */
369             fix2             = _mm_add_ps(fix2,tx);
370             fiy2             = _mm_add_ps(fiy2,ty);
371             fiz2             = _mm_add_ps(fiz2,tz);
372
373             fjx0             = _mm_add_ps(fjx0,tx);
374             fjy0             = _mm_add_ps(fjy0,ty);
375             fjz0             = _mm_add_ps(fjz0,tz);
376             
377             }
378
379             fjptrA             = f+j_coord_offsetA;
380             fjptrB             = f+j_coord_offsetB;
381             fjptrC             = f+j_coord_offsetC;
382             fjptrD             = f+j_coord_offsetD;
383
384             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
385
386             /* Inner loop uses 126 flops */
387         }
388
389         if(jidx<j_index_end)
390         {
391
392             /* Get j neighbor index, and coordinate index */
393             jnrlistA         = jjnr[jidx];
394             jnrlistB         = jjnr[jidx+1];
395             jnrlistC         = jjnr[jidx+2];
396             jnrlistD         = jjnr[jidx+3];
397             /* Sign of each element will be negative for non-real atoms.
398              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
399              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
400              */
401             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
402             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
403             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
404             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
405             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
406             j_coord_offsetA  = DIM*jnrA;
407             j_coord_offsetB  = DIM*jnrB;
408             j_coord_offsetC  = DIM*jnrC;
409             j_coord_offsetD  = DIM*jnrD;
410
411             /* load j atom coordinates */
412             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
413                                               x+j_coord_offsetC,x+j_coord_offsetD,
414                                               &jx0,&jy0,&jz0);
415
416             /* Calculate displacement vector */
417             dx00             = _mm_sub_ps(ix0,jx0);
418             dy00             = _mm_sub_ps(iy0,jy0);
419             dz00             = _mm_sub_ps(iz0,jz0);
420             dx10             = _mm_sub_ps(ix1,jx0);
421             dy10             = _mm_sub_ps(iy1,jy0);
422             dz10             = _mm_sub_ps(iz1,jz0);
423             dx20             = _mm_sub_ps(ix2,jx0);
424             dy20             = _mm_sub_ps(iy2,jy0);
425             dz20             = _mm_sub_ps(iz2,jz0);
426
427             /* Calculate squared distance and things based on it */
428             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
429             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
430             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
431
432             rinv00           = gmx_mm_invsqrt_ps(rsq00);
433             rinv10           = gmx_mm_invsqrt_ps(rsq10);
434             rinv20           = gmx_mm_invsqrt_ps(rsq20);
435
436             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
437             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
438             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
439
440             /* Load parameters for j particles */
441             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
442                                                               charge+jnrC+0,charge+jnrD+0);
443             vdwjidx0A        = 2*vdwtype[jnrA+0];
444             vdwjidx0B        = 2*vdwtype[jnrB+0];
445             vdwjidx0C        = 2*vdwtype[jnrC+0];
446             vdwjidx0D        = 2*vdwtype[jnrD+0];
447
448             fjx0             = _mm_setzero_ps();
449             fjy0             = _mm_setzero_ps();
450             fjz0             = _mm_setzero_ps();
451
452             /**************************
453              * CALCULATE INTERACTIONS *
454              **************************/
455
456             if (gmx_mm_any_lt(rsq00,rcutoff2))
457             {
458
459             /* Compute parameters for interactions between i and j atoms */
460             qq00             = _mm_mul_ps(iq0,jq0);
461             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
462                                          vdwparam+vdwioffset0+vdwjidx0B,
463                                          vdwparam+vdwioffset0+vdwjidx0C,
464                                          vdwparam+vdwioffset0+vdwjidx0D,
465                                          &c6_00,&c12_00);
466
467             /* REACTION-FIELD ELECTROSTATICS */
468             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
469             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
470
471             /* LENNARD-JONES DISPERSION/REPULSION */
472
473             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
474             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
475             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
476             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
477                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
478             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
479
480             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
481
482             /* Update potential sum for this i atom from the interaction with this j atom. */
483             velec            = _mm_and_ps(velec,cutoff_mask);
484             velec            = _mm_andnot_ps(dummy_mask,velec);
485             velecsum         = _mm_add_ps(velecsum,velec);
486             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
487             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
488             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
489
490             fscal            = _mm_add_ps(felec,fvdw);
491
492             fscal            = _mm_and_ps(fscal,cutoff_mask);
493
494             fscal            = _mm_andnot_ps(dummy_mask,fscal);
495
496             /* Calculate temporary vectorial force */
497             tx               = _mm_mul_ps(fscal,dx00);
498             ty               = _mm_mul_ps(fscal,dy00);
499             tz               = _mm_mul_ps(fscal,dz00);
500
501             /* Update vectorial force */
502             fix0             = _mm_add_ps(fix0,tx);
503             fiy0             = _mm_add_ps(fiy0,ty);
504             fiz0             = _mm_add_ps(fiz0,tz);
505
506             fjx0             = _mm_add_ps(fjx0,tx);
507             fjy0             = _mm_add_ps(fjy0,ty);
508             fjz0             = _mm_add_ps(fjz0,tz);
509             
510             }
511
512             /**************************
513              * CALCULATE INTERACTIONS *
514              **************************/
515
516             if (gmx_mm_any_lt(rsq10,rcutoff2))
517             {
518
519             /* Compute parameters for interactions between i and j atoms */
520             qq10             = _mm_mul_ps(iq1,jq0);
521
522             /* REACTION-FIELD ELECTROSTATICS */
523             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
524             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
525
526             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
527
528             /* Update potential sum for this i atom from the interaction with this j atom. */
529             velec            = _mm_and_ps(velec,cutoff_mask);
530             velec            = _mm_andnot_ps(dummy_mask,velec);
531             velecsum         = _mm_add_ps(velecsum,velec);
532
533             fscal            = felec;
534
535             fscal            = _mm_and_ps(fscal,cutoff_mask);
536
537             fscal            = _mm_andnot_ps(dummy_mask,fscal);
538
539             /* Calculate temporary vectorial force */
540             tx               = _mm_mul_ps(fscal,dx10);
541             ty               = _mm_mul_ps(fscal,dy10);
542             tz               = _mm_mul_ps(fscal,dz10);
543
544             /* Update vectorial force */
545             fix1             = _mm_add_ps(fix1,tx);
546             fiy1             = _mm_add_ps(fiy1,ty);
547             fiz1             = _mm_add_ps(fiz1,tz);
548
549             fjx0             = _mm_add_ps(fjx0,tx);
550             fjy0             = _mm_add_ps(fjy0,ty);
551             fjz0             = _mm_add_ps(fjz0,tz);
552             
553             }
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             if (gmx_mm_any_lt(rsq20,rcutoff2))
560             {
561
562             /* Compute parameters for interactions between i and j atoms */
563             qq20             = _mm_mul_ps(iq2,jq0);
564
565             /* REACTION-FIELD ELECTROSTATICS */
566             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
567             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
568
569             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
570
571             /* Update potential sum for this i atom from the interaction with this j atom. */
572             velec            = _mm_and_ps(velec,cutoff_mask);
573             velec            = _mm_andnot_ps(dummy_mask,velec);
574             velecsum         = _mm_add_ps(velecsum,velec);
575
576             fscal            = felec;
577
578             fscal            = _mm_and_ps(fscal,cutoff_mask);
579
580             fscal            = _mm_andnot_ps(dummy_mask,fscal);
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm_mul_ps(fscal,dx20);
584             ty               = _mm_mul_ps(fscal,dy20);
585             tz               = _mm_mul_ps(fscal,dz20);
586
587             /* Update vectorial force */
588             fix2             = _mm_add_ps(fix2,tx);
589             fiy2             = _mm_add_ps(fiy2,ty);
590             fiz2             = _mm_add_ps(fiz2,tz);
591
592             fjx0             = _mm_add_ps(fjx0,tx);
593             fjy0             = _mm_add_ps(fjy0,ty);
594             fjz0             = _mm_add_ps(fjz0,tz);
595             
596             }
597
598             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
599             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
600             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
601             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
602
603             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
604
605             /* Inner loop uses 126 flops */
606         }
607
608         /* End of innermost loop */
609
610         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
611                                               f+i_coord_offset,fshift+i_shift_offset);
612
613         ggid                        = gid[iidx];
614         /* Update potential energies */
615         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
616         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
617
618         /* Increment number of inner iterations */
619         inneriter                  += j_index_end - j_index_start;
620
621         /* Outer loop uses 20 flops */
622     }
623
624     /* Increment number of outer iterations */
625     outeriter        += nri;
626
627     /* Update outer/inner flops */
628
629     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*126);
630 }
631 /*
632  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse2_single
633  * Electrostatics interaction: ReactionField
634  * VdW interaction:            LennardJones
635  * Geometry:                   Water3-Particle
636  * Calculate force/pot:        Force
637  */
638 void
639 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse2_single
640                     (t_nblist                    * gmx_restrict       nlist,
641                      rvec                        * gmx_restrict          xx,
642                      rvec                        * gmx_restrict          ff,
643                      t_forcerec                  * gmx_restrict          fr,
644                      t_mdatoms                   * gmx_restrict     mdatoms,
645                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
646                      t_nrnb                      * gmx_restrict        nrnb)
647 {
648     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
649      * just 0 for non-waters.
650      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
651      * jnr indices corresponding to data put in the four positions in the SIMD register.
652      */
653     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
654     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
655     int              jnrA,jnrB,jnrC,jnrD;
656     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
657     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
658     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
659     real             rcutoff_scalar;
660     real             *shiftvec,*fshift,*x,*f;
661     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
662     real             scratch[4*DIM];
663     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
664     int              vdwioffset0;
665     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
666     int              vdwioffset1;
667     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
668     int              vdwioffset2;
669     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
670     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
671     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
672     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
673     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
674     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
675     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
676     real             *charge;
677     int              nvdwtype;
678     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
679     int              *vdwtype;
680     real             *vdwparam;
681     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
682     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
683     __m128           dummy_mask,cutoff_mask;
684     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
685     __m128           one     = _mm_set1_ps(1.0);
686     __m128           two     = _mm_set1_ps(2.0);
687     x                = xx[0];
688     f                = ff[0];
689
690     nri              = nlist->nri;
691     iinr             = nlist->iinr;
692     jindex           = nlist->jindex;
693     jjnr             = nlist->jjnr;
694     shiftidx         = nlist->shift;
695     gid              = nlist->gid;
696     shiftvec         = fr->shift_vec[0];
697     fshift           = fr->fshift[0];
698     facel            = _mm_set1_ps(fr->epsfac);
699     charge           = mdatoms->chargeA;
700     krf              = _mm_set1_ps(fr->ic->k_rf);
701     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
702     crf              = _mm_set1_ps(fr->ic->c_rf);
703     nvdwtype         = fr->ntype;
704     vdwparam         = fr->nbfp;
705     vdwtype          = mdatoms->typeA;
706
707     /* Setup water-specific parameters */
708     inr              = nlist->iinr[0];
709     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
710     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
711     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
712     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
713
714     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
715     rcutoff_scalar   = fr->rcoulomb;
716     rcutoff          = _mm_set1_ps(rcutoff_scalar);
717     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
718
719     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
720     rvdw             = _mm_set1_ps(fr->rvdw);
721
722     /* Avoid stupid compiler warnings */
723     jnrA = jnrB = jnrC = jnrD = 0;
724     j_coord_offsetA = 0;
725     j_coord_offsetB = 0;
726     j_coord_offsetC = 0;
727     j_coord_offsetD = 0;
728
729     outeriter        = 0;
730     inneriter        = 0;
731
732     for(iidx=0;iidx<4*DIM;iidx++)
733     {
734         scratch[iidx] = 0.0;
735     }  
736
737     /* Start outer loop over neighborlists */
738     for(iidx=0; iidx<nri; iidx++)
739     {
740         /* Load shift vector for this list */
741         i_shift_offset   = DIM*shiftidx[iidx];
742
743         /* Load limits for loop over neighbors */
744         j_index_start    = jindex[iidx];
745         j_index_end      = jindex[iidx+1];
746
747         /* Get outer coordinate index */
748         inr              = iinr[iidx];
749         i_coord_offset   = DIM*inr;
750
751         /* Load i particle coords and add shift vector */
752         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
753                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
754         
755         fix0             = _mm_setzero_ps();
756         fiy0             = _mm_setzero_ps();
757         fiz0             = _mm_setzero_ps();
758         fix1             = _mm_setzero_ps();
759         fiy1             = _mm_setzero_ps();
760         fiz1             = _mm_setzero_ps();
761         fix2             = _mm_setzero_ps();
762         fiy2             = _mm_setzero_ps();
763         fiz2             = _mm_setzero_ps();
764
765         /* Start inner kernel loop */
766         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
767         {
768
769             /* Get j neighbor index, and coordinate index */
770             jnrA             = jjnr[jidx];
771             jnrB             = jjnr[jidx+1];
772             jnrC             = jjnr[jidx+2];
773             jnrD             = jjnr[jidx+3];
774             j_coord_offsetA  = DIM*jnrA;
775             j_coord_offsetB  = DIM*jnrB;
776             j_coord_offsetC  = DIM*jnrC;
777             j_coord_offsetD  = DIM*jnrD;
778
779             /* load j atom coordinates */
780             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
781                                               x+j_coord_offsetC,x+j_coord_offsetD,
782                                               &jx0,&jy0,&jz0);
783
784             /* Calculate displacement vector */
785             dx00             = _mm_sub_ps(ix0,jx0);
786             dy00             = _mm_sub_ps(iy0,jy0);
787             dz00             = _mm_sub_ps(iz0,jz0);
788             dx10             = _mm_sub_ps(ix1,jx0);
789             dy10             = _mm_sub_ps(iy1,jy0);
790             dz10             = _mm_sub_ps(iz1,jz0);
791             dx20             = _mm_sub_ps(ix2,jx0);
792             dy20             = _mm_sub_ps(iy2,jy0);
793             dz20             = _mm_sub_ps(iz2,jz0);
794
795             /* Calculate squared distance and things based on it */
796             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
797             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
798             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
799
800             rinv00           = gmx_mm_invsqrt_ps(rsq00);
801             rinv10           = gmx_mm_invsqrt_ps(rsq10);
802             rinv20           = gmx_mm_invsqrt_ps(rsq20);
803
804             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
805             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
806             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
807
808             /* Load parameters for j particles */
809             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
810                                                               charge+jnrC+0,charge+jnrD+0);
811             vdwjidx0A        = 2*vdwtype[jnrA+0];
812             vdwjidx0B        = 2*vdwtype[jnrB+0];
813             vdwjidx0C        = 2*vdwtype[jnrC+0];
814             vdwjidx0D        = 2*vdwtype[jnrD+0];
815
816             fjx0             = _mm_setzero_ps();
817             fjy0             = _mm_setzero_ps();
818             fjz0             = _mm_setzero_ps();
819
820             /**************************
821              * CALCULATE INTERACTIONS *
822              **************************/
823
824             if (gmx_mm_any_lt(rsq00,rcutoff2))
825             {
826
827             /* Compute parameters for interactions between i and j atoms */
828             qq00             = _mm_mul_ps(iq0,jq0);
829             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
830                                          vdwparam+vdwioffset0+vdwjidx0B,
831                                          vdwparam+vdwioffset0+vdwjidx0C,
832                                          vdwparam+vdwioffset0+vdwjidx0D,
833                                          &c6_00,&c12_00);
834
835             /* REACTION-FIELD ELECTROSTATICS */
836             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
837
838             /* LENNARD-JONES DISPERSION/REPULSION */
839
840             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
841             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
842
843             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
844
845             fscal            = _mm_add_ps(felec,fvdw);
846
847             fscal            = _mm_and_ps(fscal,cutoff_mask);
848
849             /* Calculate temporary vectorial force */
850             tx               = _mm_mul_ps(fscal,dx00);
851             ty               = _mm_mul_ps(fscal,dy00);
852             tz               = _mm_mul_ps(fscal,dz00);
853
854             /* Update vectorial force */
855             fix0             = _mm_add_ps(fix0,tx);
856             fiy0             = _mm_add_ps(fiy0,ty);
857             fiz0             = _mm_add_ps(fiz0,tz);
858
859             fjx0             = _mm_add_ps(fjx0,tx);
860             fjy0             = _mm_add_ps(fjy0,ty);
861             fjz0             = _mm_add_ps(fjz0,tz);
862             
863             }
864
865             /**************************
866              * CALCULATE INTERACTIONS *
867              **************************/
868
869             if (gmx_mm_any_lt(rsq10,rcutoff2))
870             {
871
872             /* Compute parameters for interactions between i and j atoms */
873             qq10             = _mm_mul_ps(iq1,jq0);
874
875             /* REACTION-FIELD ELECTROSTATICS */
876             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
877
878             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
879
880             fscal            = felec;
881
882             fscal            = _mm_and_ps(fscal,cutoff_mask);
883
884             /* Calculate temporary vectorial force */
885             tx               = _mm_mul_ps(fscal,dx10);
886             ty               = _mm_mul_ps(fscal,dy10);
887             tz               = _mm_mul_ps(fscal,dz10);
888
889             /* Update vectorial force */
890             fix1             = _mm_add_ps(fix1,tx);
891             fiy1             = _mm_add_ps(fiy1,ty);
892             fiz1             = _mm_add_ps(fiz1,tz);
893
894             fjx0             = _mm_add_ps(fjx0,tx);
895             fjy0             = _mm_add_ps(fjy0,ty);
896             fjz0             = _mm_add_ps(fjz0,tz);
897             
898             }
899
900             /**************************
901              * CALCULATE INTERACTIONS *
902              **************************/
903
904             if (gmx_mm_any_lt(rsq20,rcutoff2))
905             {
906
907             /* Compute parameters for interactions between i and j atoms */
908             qq20             = _mm_mul_ps(iq2,jq0);
909
910             /* REACTION-FIELD ELECTROSTATICS */
911             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
912
913             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
914
915             fscal            = felec;
916
917             fscal            = _mm_and_ps(fscal,cutoff_mask);
918
919             /* Calculate temporary vectorial force */
920             tx               = _mm_mul_ps(fscal,dx20);
921             ty               = _mm_mul_ps(fscal,dy20);
922             tz               = _mm_mul_ps(fscal,dz20);
923
924             /* Update vectorial force */
925             fix2             = _mm_add_ps(fix2,tx);
926             fiy2             = _mm_add_ps(fiy2,ty);
927             fiz2             = _mm_add_ps(fiz2,tz);
928
929             fjx0             = _mm_add_ps(fjx0,tx);
930             fjy0             = _mm_add_ps(fjy0,ty);
931             fjz0             = _mm_add_ps(fjz0,tz);
932             
933             }
934
935             fjptrA             = f+j_coord_offsetA;
936             fjptrB             = f+j_coord_offsetB;
937             fjptrC             = f+j_coord_offsetC;
938             fjptrD             = f+j_coord_offsetD;
939
940             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
941
942             /* Inner loop uses 97 flops */
943         }
944
945         if(jidx<j_index_end)
946         {
947
948             /* Get j neighbor index, and coordinate index */
949             jnrlistA         = jjnr[jidx];
950             jnrlistB         = jjnr[jidx+1];
951             jnrlistC         = jjnr[jidx+2];
952             jnrlistD         = jjnr[jidx+3];
953             /* Sign of each element will be negative for non-real atoms.
954              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
955              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
956              */
957             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
958             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
959             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
960             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
961             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
962             j_coord_offsetA  = DIM*jnrA;
963             j_coord_offsetB  = DIM*jnrB;
964             j_coord_offsetC  = DIM*jnrC;
965             j_coord_offsetD  = DIM*jnrD;
966
967             /* load j atom coordinates */
968             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
969                                               x+j_coord_offsetC,x+j_coord_offsetD,
970                                               &jx0,&jy0,&jz0);
971
972             /* Calculate displacement vector */
973             dx00             = _mm_sub_ps(ix0,jx0);
974             dy00             = _mm_sub_ps(iy0,jy0);
975             dz00             = _mm_sub_ps(iz0,jz0);
976             dx10             = _mm_sub_ps(ix1,jx0);
977             dy10             = _mm_sub_ps(iy1,jy0);
978             dz10             = _mm_sub_ps(iz1,jz0);
979             dx20             = _mm_sub_ps(ix2,jx0);
980             dy20             = _mm_sub_ps(iy2,jy0);
981             dz20             = _mm_sub_ps(iz2,jz0);
982
983             /* Calculate squared distance and things based on it */
984             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
985             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
986             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
987
988             rinv00           = gmx_mm_invsqrt_ps(rsq00);
989             rinv10           = gmx_mm_invsqrt_ps(rsq10);
990             rinv20           = gmx_mm_invsqrt_ps(rsq20);
991
992             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
993             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
994             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
995
996             /* Load parameters for j particles */
997             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
998                                                               charge+jnrC+0,charge+jnrD+0);
999             vdwjidx0A        = 2*vdwtype[jnrA+0];
1000             vdwjidx0B        = 2*vdwtype[jnrB+0];
1001             vdwjidx0C        = 2*vdwtype[jnrC+0];
1002             vdwjidx0D        = 2*vdwtype[jnrD+0];
1003
1004             fjx0             = _mm_setzero_ps();
1005             fjy0             = _mm_setzero_ps();
1006             fjz0             = _mm_setzero_ps();
1007
1008             /**************************
1009              * CALCULATE INTERACTIONS *
1010              **************************/
1011
1012             if (gmx_mm_any_lt(rsq00,rcutoff2))
1013             {
1014
1015             /* Compute parameters for interactions between i and j atoms */
1016             qq00             = _mm_mul_ps(iq0,jq0);
1017             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1018                                          vdwparam+vdwioffset0+vdwjidx0B,
1019                                          vdwparam+vdwioffset0+vdwjidx0C,
1020                                          vdwparam+vdwioffset0+vdwjidx0D,
1021                                          &c6_00,&c12_00);
1022
1023             /* REACTION-FIELD ELECTROSTATICS */
1024             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1025
1026             /* LENNARD-JONES DISPERSION/REPULSION */
1027
1028             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1029             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1030
1031             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1032
1033             fscal            = _mm_add_ps(felec,fvdw);
1034
1035             fscal            = _mm_and_ps(fscal,cutoff_mask);
1036
1037             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1038
1039             /* Calculate temporary vectorial force */
1040             tx               = _mm_mul_ps(fscal,dx00);
1041             ty               = _mm_mul_ps(fscal,dy00);
1042             tz               = _mm_mul_ps(fscal,dz00);
1043
1044             /* Update vectorial force */
1045             fix0             = _mm_add_ps(fix0,tx);
1046             fiy0             = _mm_add_ps(fiy0,ty);
1047             fiz0             = _mm_add_ps(fiz0,tz);
1048
1049             fjx0             = _mm_add_ps(fjx0,tx);
1050             fjy0             = _mm_add_ps(fjy0,ty);
1051             fjz0             = _mm_add_ps(fjz0,tz);
1052             
1053             }
1054
1055             /**************************
1056              * CALCULATE INTERACTIONS *
1057              **************************/
1058
1059             if (gmx_mm_any_lt(rsq10,rcutoff2))
1060             {
1061
1062             /* Compute parameters for interactions between i and j atoms */
1063             qq10             = _mm_mul_ps(iq1,jq0);
1064
1065             /* REACTION-FIELD ELECTROSTATICS */
1066             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1067
1068             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1069
1070             fscal            = felec;
1071
1072             fscal            = _mm_and_ps(fscal,cutoff_mask);
1073
1074             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1075
1076             /* Calculate temporary vectorial force */
1077             tx               = _mm_mul_ps(fscal,dx10);
1078             ty               = _mm_mul_ps(fscal,dy10);
1079             tz               = _mm_mul_ps(fscal,dz10);
1080
1081             /* Update vectorial force */
1082             fix1             = _mm_add_ps(fix1,tx);
1083             fiy1             = _mm_add_ps(fiy1,ty);
1084             fiz1             = _mm_add_ps(fiz1,tz);
1085
1086             fjx0             = _mm_add_ps(fjx0,tx);
1087             fjy0             = _mm_add_ps(fjy0,ty);
1088             fjz0             = _mm_add_ps(fjz0,tz);
1089             
1090             }
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             if (gmx_mm_any_lt(rsq20,rcutoff2))
1097             {
1098
1099             /* Compute parameters for interactions between i and j atoms */
1100             qq20             = _mm_mul_ps(iq2,jq0);
1101
1102             /* REACTION-FIELD ELECTROSTATICS */
1103             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1104
1105             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1106
1107             fscal            = felec;
1108
1109             fscal            = _mm_and_ps(fscal,cutoff_mask);
1110
1111             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1112
1113             /* Calculate temporary vectorial force */
1114             tx               = _mm_mul_ps(fscal,dx20);
1115             ty               = _mm_mul_ps(fscal,dy20);
1116             tz               = _mm_mul_ps(fscal,dz20);
1117
1118             /* Update vectorial force */
1119             fix2             = _mm_add_ps(fix2,tx);
1120             fiy2             = _mm_add_ps(fiy2,ty);
1121             fiz2             = _mm_add_ps(fiz2,tz);
1122
1123             fjx0             = _mm_add_ps(fjx0,tx);
1124             fjy0             = _mm_add_ps(fjy0,ty);
1125             fjz0             = _mm_add_ps(fjz0,tz);
1126             
1127             }
1128
1129             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1130             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1131             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1132             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1133
1134             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1135
1136             /* Inner loop uses 97 flops */
1137         }
1138
1139         /* End of innermost loop */
1140
1141         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1142                                               f+i_coord_offset,fshift+i_shift_offset);
1143
1144         /* Increment number of inner iterations */
1145         inneriter                  += j_index_end - j_index_start;
1146
1147         /* Outer loop uses 18 flops */
1148     }
1149
1150     /* Increment number of outer iterations */
1151     outeriter        += nri;
1152
1153     /* Update outer/inner flops */
1154
1155     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*97);
1156 }