Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128           dummy_mask,cutoff_mask;
89     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
90     __m128           one     = _mm_set1_ps(1.0);
91     __m128           two     = _mm_set1_ps(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm_set1_ps(fr->epsfac);
104     charge           = mdatoms->chargeA;
105     krf              = _mm_set1_ps(fr->ic->k_rf);
106     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
107     crf              = _mm_set1_ps(fr->ic->c_rf);
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     /* Setup water-specific parameters */
113     inr              = nlist->iinr[0];
114     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
115     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
116     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
117     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
118
119     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
120     rcutoff_scalar   = fr->rcoulomb;
121     rcutoff          = _mm_set1_ps(rcutoff_scalar);
122     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
123
124     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
125     rvdw             = _mm_set1_ps(fr->rvdw);
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = jnrC = jnrD = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131     j_coord_offsetC = 0;
132     j_coord_offsetD = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     for(iidx=0;iidx<4*DIM;iidx++)
138     {
139         scratch[iidx] = 0.0;
140     }  
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
158                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
159         
160         fix0             = _mm_setzero_ps();
161         fiy0             = _mm_setzero_ps();
162         fiz0             = _mm_setzero_ps();
163         fix1             = _mm_setzero_ps();
164         fiy1             = _mm_setzero_ps();
165         fiz1             = _mm_setzero_ps();
166         fix2             = _mm_setzero_ps();
167         fiy2             = _mm_setzero_ps();
168         fiz2             = _mm_setzero_ps();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_ps();
172         vvdwsum          = _mm_setzero_ps();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             jnrC             = jjnr[jidx+2];
182             jnrD             = jjnr[jidx+3];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185             j_coord_offsetC  = DIM*jnrC;
186             j_coord_offsetD  = DIM*jnrD;
187
188             /* load j atom coordinates */
189             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               x+j_coord_offsetC,x+j_coord_offsetD,
191                                               &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm_sub_ps(ix0,jx0);
195             dy00             = _mm_sub_ps(iy0,jy0);
196             dz00             = _mm_sub_ps(iz0,jz0);
197             dx10             = _mm_sub_ps(ix1,jx0);
198             dy10             = _mm_sub_ps(iy1,jy0);
199             dz10             = _mm_sub_ps(iz1,jz0);
200             dx20             = _mm_sub_ps(ix2,jx0);
201             dy20             = _mm_sub_ps(iy2,jy0);
202             dz20             = _mm_sub_ps(iz2,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
206             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
207             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
208
209             rinv00           = gmx_mm_invsqrt_ps(rsq00);
210             rinv10           = gmx_mm_invsqrt_ps(rsq10);
211             rinv20           = gmx_mm_invsqrt_ps(rsq20);
212
213             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
214             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
215             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
219                                                               charge+jnrC+0,charge+jnrD+0);
220             vdwjidx0A        = 2*vdwtype[jnrA+0];
221             vdwjidx0B        = 2*vdwtype[jnrB+0];
222             vdwjidx0C        = 2*vdwtype[jnrC+0];
223             vdwjidx0D        = 2*vdwtype[jnrD+0];
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             if (gmx_mm_any_lt(rsq00,rcutoff2))
230             {
231
232             /* Compute parameters for interactions between i and j atoms */
233             qq00             = _mm_mul_ps(iq0,jq0);
234             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
235                                          vdwparam+vdwioffset0+vdwjidx0B,
236                                          vdwparam+vdwioffset0+vdwjidx0C,
237                                          vdwparam+vdwioffset0+vdwjidx0D,
238                                          &c6_00,&c12_00);
239
240             /* REACTION-FIELD ELECTROSTATICS */
241             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
242             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
243
244             /* LENNARD-JONES DISPERSION/REPULSION */
245
246             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
247             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
248             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
249             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
250                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
251             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
252
253             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
254
255             /* Update potential sum for this i atom from the interaction with this j atom. */
256             velec            = _mm_and_ps(velec,cutoff_mask);
257             velecsum         = _mm_add_ps(velecsum,velec);
258             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
259             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
260
261             fscal            = _mm_add_ps(felec,fvdw);
262
263             fscal            = _mm_and_ps(fscal,cutoff_mask);
264
265             /* Calculate temporary vectorial force */
266             tx               = _mm_mul_ps(fscal,dx00);
267             ty               = _mm_mul_ps(fscal,dy00);
268             tz               = _mm_mul_ps(fscal,dz00);
269
270             /* Update vectorial force */
271             fix0             = _mm_add_ps(fix0,tx);
272             fiy0             = _mm_add_ps(fiy0,ty);
273             fiz0             = _mm_add_ps(fiz0,tz);
274
275             fjptrA             = f+j_coord_offsetA;
276             fjptrB             = f+j_coord_offsetB;
277             fjptrC             = f+j_coord_offsetC;
278             fjptrD             = f+j_coord_offsetD;
279             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
280             
281             }
282
283             /**************************
284              * CALCULATE INTERACTIONS *
285              **************************/
286
287             if (gmx_mm_any_lt(rsq10,rcutoff2))
288             {
289
290             /* Compute parameters for interactions between i and j atoms */
291             qq10             = _mm_mul_ps(iq1,jq0);
292
293             /* REACTION-FIELD ELECTROSTATICS */
294             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
295             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
296
297             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velec            = _mm_and_ps(velec,cutoff_mask);
301             velecsum         = _mm_add_ps(velecsum,velec);
302
303             fscal            = felec;
304
305             fscal            = _mm_and_ps(fscal,cutoff_mask);
306
307             /* Calculate temporary vectorial force */
308             tx               = _mm_mul_ps(fscal,dx10);
309             ty               = _mm_mul_ps(fscal,dy10);
310             tz               = _mm_mul_ps(fscal,dz10);
311
312             /* Update vectorial force */
313             fix1             = _mm_add_ps(fix1,tx);
314             fiy1             = _mm_add_ps(fiy1,ty);
315             fiz1             = _mm_add_ps(fiz1,tz);
316
317             fjptrA             = f+j_coord_offsetA;
318             fjptrB             = f+j_coord_offsetB;
319             fjptrC             = f+j_coord_offsetC;
320             fjptrD             = f+j_coord_offsetD;
321             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
322             
323             }
324
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             if (gmx_mm_any_lt(rsq20,rcutoff2))
330             {
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq20             = _mm_mul_ps(iq2,jq0);
334
335             /* REACTION-FIELD ELECTROSTATICS */
336             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
337             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
338
339             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velec            = _mm_and_ps(velec,cutoff_mask);
343             velecsum         = _mm_add_ps(velecsum,velec);
344
345             fscal            = felec;
346
347             fscal            = _mm_and_ps(fscal,cutoff_mask);
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm_mul_ps(fscal,dx20);
351             ty               = _mm_mul_ps(fscal,dy20);
352             tz               = _mm_mul_ps(fscal,dz20);
353
354             /* Update vectorial force */
355             fix2             = _mm_add_ps(fix2,tx);
356             fiy2             = _mm_add_ps(fiy2,ty);
357             fiz2             = _mm_add_ps(fiz2,tz);
358
359             fjptrA             = f+j_coord_offsetA;
360             fjptrB             = f+j_coord_offsetB;
361             fjptrC             = f+j_coord_offsetC;
362             fjptrD             = f+j_coord_offsetD;
363             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
364             
365             }
366
367             /* Inner loop uses 126 flops */
368         }
369
370         if(jidx<j_index_end)
371         {
372
373             /* Get j neighbor index, and coordinate index */
374             jnrlistA         = jjnr[jidx];
375             jnrlistB         = jjnr[jidx+1];
376             jnrlistC         = jjnr[jidx+2];
377             jnrlistD         = jjnr[jidx+3];
378             /* Sign of each element will be negative for non-real atoms.
379              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
380              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
381              */
382             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
383             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
384             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
385             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
386             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
387             j_coord_offsetA  = DIM*jnrA;
388             j_coord_offsetB  = DIM*jnrB;
389             j_coord_offsetC  = DIM*jnrC;
390             j_coord_offsetD  = DIM*jnrD;
391
392             /* load j atom coordinates */
393             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
394                                               x+j_coord_offsetC,x+j_coord_offsetD,
395                                               &jx0,&jy0,&jz0);
396
397             /* Calculate displacement vector */
398             dx00             = _mm_sub_ps(ix0,jx0);
399             dy00             = _mm_sub_ps(iy0,jy0);
400             dz00             = _mm_sub_ps(iz0,jz0);
401             dx10             = _mm_sub_ps(ix1,jx0);
402             dy10             = _mm_sub_ps(iy1,jy0);
403             dz10             = _mm_sub_ps(iz1,jz0);
404             dx20             = _mm_sub_ps(ix2,jx0);
405             dy20             = _mm_sub_ps(iy2,jy0);
406             dz20             = _mm_sub_ps(iz2,jz0);
407
408             /* Calculate squared distance and things based on it */
409             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
410             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
411             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
412
413             rinv00           = gmx_mm_invsqrt_ps(rsq00);
414             rinv10           = gmx_mm_invsqrt_ps(rsq10);
415             rinv20           = gmx_mm_invsqrt_ps(rsq20);
416
417             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
418             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
419             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
420
421             /* Load parameters for j particles */
422             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
423                                                               charge+jnrC+0,charge+jnrD+0);
424             vdwjidx0A        = 2*vdwtype[jnrA+0];
425             vdwjidx0B        = 2*vdwtype[jnrB+0];
426             vdwjidx0C        = 2*vdwtype[jnrC+0];
427             vdwjidx0D        = 2*vdwtype[jnrD+0];
428
429             /**************************
430              * CALCULATE INTERACTIONS *
431              **************************/
432
433             if (gmx_mm_any_lt(rsq00,rcutoff2))
434             {
435
436             /* Compute parameters for interactions between i and j atoms */
437             qq00             = _mm_mul_ps(iq0,jq0);
438             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
439                                          vdwparam+vdwioffset0+vdwjidx0B,
440                                          vdwparam+vdwioffset0+vdwjidx0C,
441                                          vdwparam+vdwioffset0+vdwjidx0D,
442                                          &c6_00,&c12_00);
443
444             /* REACTION-FIELD ELECTROSTATICS */
445             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
446             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
447
448             /* LENNARD-JONES DISPERSION/REPULSION */
449
450             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
451             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
452             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
453             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
454                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
455             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
456
457             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
458
459             /* Update potential sum for this i atom from the interaction with this j atom. */
460             velec            = _mm_and_ps(velec,cutoff_mask);
461             velec            = _mm_andnot_ps(dummy_mask,velec);
462             velecsum         = _mm_add_ps(velecsum,velec);
463             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
464             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
465             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
466
467             fscal            = _mm_add_ps(felec,fvdw);
468
469             fscal            = _mm_and_ps(fscal,cutoff_mask);
470
471             fscal            = _mm_andnot_ps(dummy_mask,fscal);
472
473             /* Calculate temporary vectorial force */
474             tx               = _mm_mul_ps(fscal,dx00);
475             ty               = _mm_mul_ps(fscal,dy00);
476             tz               = _mm_mul_ps(fscal,dz00);
477
478             /* Update vectorial force */
479             fix0             = _mm_add_ps(fix0,tx);
480             fiy0             = _mm_add_ps(fiy0,ty);
481             fiz0             = _mm_add_ps(fiz0,tz);
482
483             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
484             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
485             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
486             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
487             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
488             
489             }
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             if (gmx_mm_any_lt(rsq10,rcutoff2))
496             {
497
498             /* Compute parameters for interactions between i and j atoms */
499             qq10             = _mm_mul_ps(iq1,jq0);
500
501             /* REACTION-FIELD ELECTROSTATICS */
502             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
503             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
504
505             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
506
507             /* Update potential sum for this i atom from the interaction with this j atom. */
508             velec            = _mm_and_ps(velec,cutoff_mask);
509             velec            = _mm_andnot_ps(dummy_mask,velec);
510             velecsum         = _mm_add_ps(velecsum,velec);
511
512             fscal            = felec;
513
514             fscal            = _mm_and_ps(fscal,cutoff_mask);
515
516             fscal            = _mm_andnot_ps(dummy_mask,fscal);
517
518             /* Calculate temporary vectorial force */
519             tx               = _mm_mul_ps(fscal,dx10);
520             ty               = _mm_mul_ps(fscal,dy10);
521             tz               = _mm_mul_ps(fscal,dz10);
522
523             /* Update vectorial force */
524             fix1             = _mm_add_ps(fix1,tx);
525             fiy1             = _mm_add_ps(fiy1,ty);
526             fiz1             = _mm_add_ps(fiz1,tz);
527
528             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
529             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
530             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
531             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
532             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
533             
534             }
535
536             /**************************
537              * CALCULATE INTERACTIONS *
538              **************************/
539
540             if (gmx_mm_any_lt(rsq20,rcutoff2))
541             {
542
543             /* Compute parameters for interactions between i and j atoms */
544             qq20             = _mm_mul_ps(iq2,jq0);
545
546             /* REACTION-FIELD ELECTROSTATICS */
547             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
548             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
549
550             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
551
552             /* Update potential sum for this i atom from the interaction with this j atom. */
553             velec            = _mm_and_ps(velec,cutoff_mask);
554             velec            = _mm_andnot_ps(dummy_mask,velec);
555             velecsum         = _mm_add_ps(velecsum,velec);
556
557             fscal            = felec;
558
559             fscal            = _mm_and_ps(fscal,cutoff_mask);
560
561             fscal            = _mm_andnot_ps(dummy_mask,fscal);
562
563             /* Calculate temporary vectorial force */
564             tx               = _mm_mul_ps(fscal,dx20);
565             ty               = _mm_mul_ps(fscal,dy20);
566             tz               = _mm_mul_ps(fscal,dz20);
567
568             /* Update vectorial force */
569             fix2             = _mm_add_ps(fix2,tx);
570             fiy2             = _mm_add_ps(fiy2,ty);
571             fiz2             = _mm_add_ps(fiz2,tz);
572
573             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
574             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
575             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
576             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
577             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
578             
579             }
580
581             /* Inner loop uses 126 flops */
582         }
583
584         /* End of innermost loop */
585
586         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
587                                               f+i_coord_offset,fshift+i_shift_offset);
588
589         ggid                        = gid[iidx];
590         /* Update potential energies */
591         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
592         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
593
594         /* Increment number of inner iterations */
595         inneriter                  += j_index_end - j_index_start;
596
597         /* Outer loop uses 20 flops */
598     }
599
600     /* Increment number of outer iterations */
601     outeriter        += nri;
602
603     /* Update outer/inner flops */
604
605     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*126);
606 }
607 /*
608  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse2_single
609  * Electrostatics interaction: ReactionField
610  * VdW interaction:            LennardJones
611  * Geometry:                   Water3-Particle
612  * Calculate force/pot:        Force
613  */
614 void
615 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse2_single
616                     (t_nblist * gmx_restrict                nlist,
617                      rvec * gmx_restrict                    xx,
618                      rvec * gmx_restrict                    ff,
619                      t_forcerec * gmx_restrict              fr,
620                      t_mdatoms * gmx_restrict               mdatoms,
621                      nb_kernel_data_t * gmx_restrict        kernel_data,
622                      t_nrnb * gmx_restrict                  nrnb)
623 {
624     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
625      * just 0 for non-waters.
626      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
627      * jnr indices corresponding to data put in the four positions in the SIMD register.
628      */
629     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
630     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
631     int              jnrA,jnrB,jnrC,jnrD;
632     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
633     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
634     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
635     real             rcutoff_scalar;
636     real             *shiftvec,*fshift,*x,*f;
637     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
638     real             scratch[4*DIM];
639     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
640     int              vdwioffset0;
641     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
642     int              vdwioffset1;
643     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
644     int              vdwioffset2;
645     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
646     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
647     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
648     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
649     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
650     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
651     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
652     real             *charge;
653     int              nvdwtype;
654     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
655     int              *vdwtype;
656     real             *vdwparam;
657     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
658     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
659     __m128           dummy_mask,cutoff_mask;
660     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
661     __m128           one     = _mm_set1_ps(1.0);
662     __m128           two     = _mm_set1_ps(2.0);
663     x                = xx[0];
664     f                = ff[0];
665
666     nri              = nlist->nri;
667     iinr             = nlist->iinr;
668     jindex           = nlist->jindex;
669     jjnr             = nlist->jjnr;
670     shiftidx         = nlist->shift;
671     gid              = nlist->gid;
672     shiftvec         = fr->shift_vec[0];
673     fshift           = fr->fshift[0];
674     facel            = _mm_set1_ps(fr->epsfac);
675     charge           = mdatoms->chargeA;
676     krf              = _mm_set1_ps(fr->ic->k_rf);
677     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
678     crf              = _mm_set1_ps(fr->ic->c_rf);
679     nvdwtype         = fr->ntype;
680     vdwparam         = fr->nbfp;
681     vdwtype          = mdatoms->typeA;
682
683     /* Setup water-specific parameters */
684     inr              = nlist->iinr[0];
685     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
686     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
687     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
688     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
689
690     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
691     rcutoff_scalar   = fr->rcoulomb;
692     rcutoff          = _mm_set1_ps(rcutoff_scalar);
693     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
694
695     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
696     rvdw             = _mm_set1_ps(fr->rvdw);
697
698     /* Avoid stupid compiler warnings */
699     jnrA = jnrB = jnrC = jnrD = 0;
700     j_coord_offsetA = 0;
701     j_coord_offsetB = 0;
702     j_coord_offsetC = 0;
703     j_coord_offsetD = 0;
704
705     outeriter        = 0;
706     inneriter        = 0;
707
708     for(iidx=0;iidx<4*DIM;iidx++)
709     {
710         scratch[iidx] = 0.0;
711     }  
712
713     /* Start outer loop over neighborlists */
714     for(iidx=0; iidx<nri; iidx++)
715     {
716         /* Load shift vector for this list */
717         i_shift_offset   = DIM*shiftidx[iidx];
718
719         /* Load limits for loop over neighbors */
720         j_index_start    = jindex[iidx];
721         j_index_end      = jindex[iidx+1];
722
723         /* Get outer coordinate index */
724         inr              = iinr[iidx];
725         i_coord_offset   = DIM*inr;
726
727         /* Load i particle coords and add shift vector */
728         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
729                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
730         
731         fix0             = _mm_setzero_ps();
732         fiy0             = _mm_setzero_ps();
733         fiz0             = _mm_setzero_ps();
734         fix1             = _mm_setzero_ps();
735         fiy1             = _mm_setzero_ps();
736         fiz1             = _mm_setzero_ps();
737         fix2             = _mm_setzero_ps();
738         fiy2             = _mm_setzero_ps();
739         fiz2             = _mm_setzero_ps();
740
741         /* Start inner kernel loop */
742         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
743         {
744
745             /* Get j neighbor index, and coordinate index */
746             jnrA             = jjnr[jidx];
747             jnrB             = jjnr[jidx+1];
748             jnrC             = jjnr[jidx+2];
749             jnrD             = jjnr[jidx+3];
750             j_coord_offsetA  = DIM*jnrA;
751             j_coord_offsetB  = DIM*jnrB;
752             j_coord_offsetC  = DIM*jnrC;
753             j_coord_offsetD  = DIM*jnrD;
754
755             /* load j atom coordinates */
756             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
757                                               x+j_coord_offsetC,x+j_coord_offsetD,
758                                               &jx0,&jy0,&jz0);
759
760             /* Calculate displacement vector */
761             dx00             = _mm_sub_ps(ix0,jx0);
762             dy00             = _mm_sub_ps(iy0,jy0);
763             dz00             = _mm_sub_ps(iz0,jz0);
764             dx10             = _mm_sub_ps(ix1,jx0);
765             dy10             = _mm_sub_ps(iy1,jy0);
766             dz10             = _mm_sub_ps(iz1,jz0);
767             dx20             = _mm_sub_ps(ix2,jx0);
768             dy20             = _mm_sub_ps(iy2,jy0);
769             dz20             = _mm_sub_ps(iz2,jz0);
770
771             /* Calculate squared distance and things based on it */
772             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
773             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
774             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
775
776             rinv00           = gmx_mm_invsqrt_ps(rsq00);
777             rinv10           = gmx_mm_invsqrt_ps(rsq10);
778             rinv20           = gmx_mm_invsqrt_ps(rsq20);
779
780             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
781             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
782             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
783
784             /* Load parameters for j particles */
785             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
786                                                               charge+jnrC+0,charge+jnrD+0);
787             vdwjidx0A        = 2*vdwtype[jnrA+0];
788             vdwjidx0B        = 2*vdwtype[jnrB+0];
789             vdwjidx0C        = 2*vdwtype[jnrC+0];
790             vdwjidx0D        = 2*vdwtype[jnrD+0];
791
792             /**************************
793              * CALCULATE INTERACTIONS *
794              **************************/
795
796             if (gmx_mm_any_lt(rsq00,rcutoff2))
797             {
798
799             /* Compute parameters for interactions between i and j atoms */
800             qq00             = _mm_mul_ps(iq0,jq0);
801             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
802                                          vdwparam+vdwioffset0+vdwjidx0B,
803                                          vdwparam+vdwioffset0+vdwjidx0C,
804                                          vdwparam+vdwioffset0+vdwjidx0D,
805                                          &c6_00,&c12_00);
806
807             /* REACTION-FIELD ELECTROSTATICS */
808             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
809
810             /* LENNARD-JONES DISPERSION/REPULSION */
811
812             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
813             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
814
815             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
816
817             fscal            = _mm_add_ps(felec,fvdw);
818
819             fscal            = _mm_and_ps(fscal,cutoff_mask);
820
821             /* Calculate temporary vectorial force */
822             tx               = _mm_mul_ps(fscal,dx00);
823             ty               = _mm_mul_ps(fscal,dy00);
824             tz               = _mm_mul_ps(fscal,dz00);
825
826             /* Update vectorial force */
827             fix0             = _mm_add_ps(fix0,tx);
828             fiy0             = _mm_add_ps(fiy0,ty);
829             fiz0             = _mm_add_ps(fiz0,tz);
830
831             fjptrA             = f+j_coord_offsetA;
832             fjptrB             = f+j_coord_offsetB;
833             fjptrC             = f+j_coord_offsetC;
834             fjptrD             = f+j_coord_offsetD;
835             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
836             
837             }
838
839             /**************************
840              * CALCULATE INTERACTIONS *
841              **************************/
842
843             if (gmx_mm_any_lt(rsq10,rcutoff2))
844             {
845
846             /* Compute parameters for interactions between i and j atoms */
847             qq10             = _mm_mul_ps(iq1,jq0);
848
849             /* REACTION-FIELD ELECTROSTATICS */
850             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
851
852             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
853
854             fscal            = felec;
855
856             fscal            = _mm_and_ps(fscal,cutoff_mask);
857
858             /* Calculate temporary vectorial force */
859             tx               = _mm_mul_ps(fscal,dx10);
860             ty               = _mm_mul_ps(fscal,dy10);
861             tz               = _mm_mul_ps(fscal,dz10);
862
863             /* Update vectorial force */
864             fix1             = _mm_add_ps(fix1,tx);
865             fiy1             = _mm_add_ps(fiy1,ty);
866             fiz1             = _mm_add_ps(fiz1,tz);
867
868             fjptrA             = f+j_coord_offsetA;
869             fjptrB             = f+j_coord_offsetB;
870             fjptrC             = f+j_coord_offsetC;
871             fjptrD             = f+j_coord_offsetD;
872             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
873             
874             }
875
876             /**************************
877              * CALCULATE INTERACTIONS *
878              **************************/
879
880             if (gmx_mm_any_lt(rsq20,rcutoff2))
881             {
882
883             /* Compute parameters for interactions between i and j atoms */
884             qq20             = _mm_mul_ps(iq2,jq0);
885
886             /* REACTION-FIELD ELECTROSTATICS */
887             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
888
889             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
890
891             fscal            = felec;
892
893             fscal            = _mm_and_ps(fscal,cutoff_mask);
894
895             /* Calculate temporary vectorial force */
896             tx               = _mm_mul_ps(fscal,dx20);
897             ty               = _mm_mul_ps(fscal,dy20);
898             tz               = _mm_mul_ps(fscal,dz20);
899
900             /* Update vectorial force */
901             fix2             = _mm_add_ps(fix2,tx);
902             fiy2             = _mm_add_ps(fiy2,ty);
903             fiz2             = _mm_add_ps(fiz2,tz);
904
905             fjptrA             = f+j_coord_offsetA;
906             fjptrB             = f+j_coord_offsetB;
907             fjptrC             = f+j_coord_offsetC;
908             fjptrD             = f+j_coord_offsetD;
909             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
910             
911             }
912
913             /* Inner loop uses 97 flops */
914         }
915
916         if(jidx<j_index_end)
917         {
918
919             /* Get j neighbor index, and coordinate index */
920             jnrlistA         = jjnr[jidx];
921             jnrlistB         = jjnr[jidx+1];
922             jnrlistC         = jjnr[jidx+2];
923             jnrlistD         = jjnr[jidx+3];
924             /* Sign of each element will be negative for non-real atoms.
925              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
926              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
927              */
928             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
929             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
930             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
931             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
932             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
933             j_coord_offsetA  = DIM*jnrA;
934             j_coord_offsetB  = DIM*jnrB;
935             j_coord_offsetC  = DIM*jnrC;
936             j_coord_offsetD  = DIM*jnrD;
937
938             /* load j atom coordinates */
939             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
940                                               x+j_coord_offsetC,x+j_coord_offsetD,
941                                               &jx0,&jy0,&jz0);
942
943             /* Calculate displacement vector */
944             dx00             = _mm_sub_ps(ix0,jx0);
945             dy00             = _mm_sub_ps(iy0,jy0);
946             dz00             = _mm_sub_ps(iz0,jz0);
947             dx10             = _mm_sub_ps(ix1,jx0);
948             dy10             = _mm_sub_ps(iy1,jy0);
949             dz10             = _mm_sub_ps(iz1,jz0);
950             dx20             = _mm_sub_ps(ix2,jx0);
951             dy20             = _mm_sub_ps(iy2,jy0);
952             dz20             = _mm_sub_ps(iz2,jz0);
953
954             /* Calculate squared distance and things based on it */
955             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
956             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
957             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
958
959             rinv00           = gmx_mm_invsqrt_ps(rsq00);
960             rinv10           = gmx_mm_invsqrt_ps(rsq10);
961             rinv20           = gmx_mm_invsqrt_ps(rsq20);
962
963             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
964             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
965             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
966
967             /* Load parameters for j particles */
968             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
969                                                               charge+jnrC+0,charge+jnrD+0);
970             vdwjidx0A        = 2*vdwtype[jnrA+0];
971             vdwjidx0B        = 2*vdwtype[jnrB+0];
972             vdwjidx0C        = 2*vdwtype[jnrC+0];
973             vdwjidx0D        = 2*vdwtype[jnrD+0];
974
975             /**************************
976              * CALCULATE INTERACTIONS *
977              **************************/
978
979             if (gmx_mm_any_lt(rsq00,rcutoff2))
980             {
981
982             /* Compute parameters for interactions between i and j atoms */
983             qq00             = _mm_mul_ps(iq0,jq0);
984             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
985                                          vdwparam+vdwioffset0+vdwjidx0B,
986                                          vdwparam+vdwioffset0+vdwjidx0C,
987                                          vdwparam+vdwioffset0+vdwjidx0D,
988                                          &c6_00,&c12_00);
989
990             /* REACTION-FIELD ELECTROSTATICS */
991             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
992
993             /* LENNARD-JONES DISPERSION/REPULSION */
994
995             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
996             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
997
998             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
999
1000             fscal            = _mm_add_ps(felec,fvdw);
1001
1002             fscal            = _mm_and_ps(fscal,cutoff_mask);
1003
1004             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1005
1006             /* Calculate temporary vectorial force */
1007             tx               = _mm_mul_ps(fscal,dx00);
1008             ty               = _mm_mul_ps(fscal,dy00);
1009             tz               = _mm_mul_ps(fscal,dz00);
1010
1011             /* Update vectorial force */
1012             fix0             = _mm_add_ps(fix0,tx);
1013             fiy0             = _mm_add_ps(fiy0,ty);
1014             fiz0             = _mm_add_ps(fiz0,tz);
1015
1016             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1017             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1018             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1019             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1020             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1021             
1022             }
1023
1024             /**************************
1025              * CALCULATE INTERACTIONS *
1026              **************************/
1027
1028             if (gmx_mm_any_lt(rsq10,rcutoff2))
1029             {
1030
1031             /* Compute parameters for interactions between i and j atoms */
1032             qq10             = _mm_mul_ps(iq1,jq0);
1033
1034             /* REACTION-FIELD ELECTROSTATICS */
1035             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1036
1037             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1038
1039             fscal            = felec;
1040
1041             fscal            = _mm_and_ps(fscal,cutoff_mask);
1042
1043             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1044
1045             /* Calculate temporary vectorial force */
1046             tx               = _mm_mul_ps(fscal,dx10);
1047             ty               = _mm_mul_ps(fscal,dy10);
1048             tz               = _mm_mul_ps(fscal,dz10);
1049
1050             /* Update vectorial force */
1051             fix1             = _mm_add_ps(fix1,tx);
1052             fiy1             = _mm_add_ps(fiy1,ty);
1053             fiz1             = _mm_add_ps(fiz1,tz);
1054
1055             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1056             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1057             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1058             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1059             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1060             
1061             }
1062
1063             /**************************
1064              * CALCULATE INTERACTIONS *
1065              **************************/
1066
1067             if (gmx_mm_any_lt(rsq20,rcutoff2))
1068             {
1069
1070             /* Compute parameters for interactions between i and j atoms */
1071             qq20             = _mm_mul_ps(iq2,jq0);
1072
1073             /* REACTION-FIELD ELECTROSTATICS */
1074             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1075
1076             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1077
1078             fscal            = felec;
1079
1080             fscal            = _mm_and_ps(fscal,cutoff_mask);
1081
1082             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1083
1084             /* Calculate temporary vectorial force */
1085             tx               = _mm_mul_ps(fscal,dx20);
1086             ty               = _mm_mul_ps(fscal,dy20);
1087             tz               = _mm_mul_ps(fscal,dz20);
1088
1089             /* Update vectorial force */
1090             fix2             = _mm_add_ps(fix2,tx);
1091             fiy2             = _mm_add_ps(fiy2,ty);
1092             fiz2             = _mm_add_ps(fiz2,tz);
1093
1094             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1095             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1096             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1097             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1098             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1099             
1100             }
1101
1102             /* Inner loop uses 97 flops */
1103         }
1104
1105         /* End of innermost loop */
1106
1107         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1108                                               f+i_coord_offset,fshift+i_shift_offset);
1109
1110         /* Increment number of inner iterations */
1111         inneriter                  += j_index_end - j_index_start;
1112
1113         /* Outer loop uses 18 flops */
1114     }
1115
1116     /* Increment number of outer iterations */
1117     outeriter        += nri;
1118
1119     /* Update outer/inner flops */
1120
1121     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*97);
1122 }