Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
78     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
79     __m128           dummy_mask,cutoff_mask;
80     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
81     __m128           one     = _mm_set1_ps(1.0);
82     __m128           two     = _mm_set1_ps(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     facel            = _mm_set1_ps(fr->epsfac);
95     charge           = mdatoms->chargeA;
96     krf              = _mm_set1_ps(fr->ic->k_rf);
97     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
98     crf              = _mm_set1_ps(fr->ic->c_rf);
99     nvdwtype         = fr->ntype;
100     vdwparam         = fr->nbfp;
101     vdwtype          = mdatoms->typeA;
102
103     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
104     rcutoff_scalar   = fr->rcoulomb;
105     rcutoff          = _mm_set1_ps(rcutoff_scalar);
106     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
107
108     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
109     rvdw             = _mm_set1_ps(fr->rvdw);
110
111     /* Avoid stupid compiler warnings */
112     jnrA = jnrB = jnrC = jnrD = 0;
113     j_coord_offsetA = 0;
114     j_coord_offsetB = 0;
115     j_coord_offsetC = 0;
116     j_coord_offsetD = 0;
117
118     outeriter        = 0;
119     inneriter        = 0;
120
121     /* Start outer loop over neighborlists */
122     for(iidx=0; iidx<nri; iidx++)
123     {
124         /* Load shift vector for this list */
125         i_shift_offset   = DIM*shiftidx[iidx];
126         shX              = shiftvec[i_shift_offset+XX];
127         shY              = shiftvec[i_shift_offset+YY];
128         shZ              = shiftvec[i_shift_offset+ZZ];
129
130         /* Load limits for loop over neighbors */
131         j_index_start    = jindex[iidx];
132         j_index_end      = jindex[iidx+1];
133
134         /* Get outer coordinate index */
135         inr              = iinr[iidx];
136         i_coord_offset   = DIM*inr;
137
138         /* Load i particle coords and add shift vector */
139         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
140         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
141         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
142
143         fix0             = _mm_setzero_ps();
144         fiy0             = _mm_setzero_ps();
145         fiz0             = _mm_setzero_ps();
146
147         /* Load parameters for i particles */
148         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
149         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151         /* Reset potential sums */
152         velecsum         = _mm_setzero_ps();
153         vvdwsum          = _mm_setzero_ps();
154
155         /* Start inner kernel loop */
156         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
157         {
158
159             /* Get j neighbor index, and coordinate index */
160             jnrA             = jjnr[jidx];
161             jnrB             = jjnr[jidx+1];
162             jnrC             = jjnr[jidx+2];
163             jnrD             = jjnr[jidx+3];
164
165             j_coord_offsetA  = DIM*jnrA;
166             j_coord_offsetB  = DIM*jnrB;
167             j_coord_offsetC  = DIM*jnrC;
168             j_coord_offsetD  = DIM*jnrD;
169
170             /* load j atom coordinates */
171             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
172                                               x+j_coord_offsetC,x+j_coord_offsetD,
173                                               &jx0,&jy0,&jz0);
174
175             /* Calculate displacement vector */
176             dx00             = _mm_sub_ps(ix0,jx0);
177             dy00             = _mm_sub_ps(iy0,jy0);
178             dz00             = _mm_sub_ps(iz0,jz0);
179
180             /* Calculate squared distance and things based on it */
181             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
182
183             rinv00           = gmx_mm_invsqrt_ps(rsq00);
184
185             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
186
187             /* Load parameters for j particles */
188             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
189                                                               charge+jnrC+0,charge+jnrD+0);
190             vdwjidx0A        = 2*vdwtype[jnrA+0];
191             vdwjidx0B        = 2*vdwtype[jnrB+0];
192             vdwjidx0C        = 2*vdwtype[jnrC+0];
193             vdwjidx0D        = 2*vdwtype[jnrD+0];
194
195             /**************************
196              * CALCULATE INTERACTIONS *
197              **************************/
198
199             if (gmx_mm_any_lt(rsq00,rcutoff2))
200             {
201
202             /* Compute parameters for interactions between i and j atoms */
203             qq00             = _mm_mul_ps(iq0,jq0);
204             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
205                                          vdwparam+vdwioffset0+vdwjidx0B,
206                                          vdwparam+vdwioffset0+vdwjidx0C,
207                                          vdwparam+vdwioffset0+vdwjidx0D,
208                                          &c6_00,&c12_00);
209
210             /* REACTION-FIELD ELECTROSTATICS */
211             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
212             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
213
214             /* LENNARD-JONES DISPERSION/REPULSION */
215
216             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
217             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
218             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
219             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
220                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
221             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
222
223             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
224
225             /* Update potential sum for this i atom from the interaction with this j atom. */
226             velec            = _mm_and_ps(velec,cutoff_mask);
227             velecsum         = _mm_add_ps(velecsum,velec);
228             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
229             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
230
231             fscal            = _mm_add_ps(felec,fvdw);
232
233             fscal            = _mm_and_ps(fscal,cutoff_mask);
234
235             /* Calculate temporary vectorial force */
236             tx               = _mm_mul_ps(fscal,dx00);
237             ty               = _mm_mul_ps(fscal,dy00);
238             tz               = _mm_mul_ps(fscal,dz00);
239
240             /* Update vectorial force */
241             fix0             = _mm_add_ps(fix0,tx);
242             fiy0             = _mm_add_ps(fiy0,ty);
243             fiz0             = _mm_add_ps(fiz0,tz);
244
245             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
246                                                    f+j_coord_offsetC,f+j_coord_offsetD,
247                                                    tx,ty,tz);
248
249             }
250
251             /* Inner loop uses 54 flops */
252         }
253
254         if(jidx<j_index_end)
255         {
256
257             /* Get j neighbor index, and coordinate index */
258             jnrA             = jjnr[jidx];
259             jnrB             = jjnr[jidx+1];
260             jnrC             = jjnr[jidx+2];
261             jnrD             = jjnr[jidx+3];
262
263             /* Sign of each element will be negative for non-real atoms.
264              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
265              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
266              */
267             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
268             jnrA       = (jnrA>=0) ? jnrA : 0;
269             jnrB       = (jnrB>=0) ? jnrB : 0;
270             jnrC       = (jnrC>=0) ? jnrC : 0;
271             jnrD       = (jnrD>=0) ? jnrD : 0;
272
273             j_coord_offsetA  = DIM*jnrA;
274             j_coord_offsetB  = DIM*jnrB;
275             j_coord_offsetC  = DIM*jnrC;
276             j_coord_offsetD  = DIM*jnrD;
277
278             /* load j atom coordinates */
279             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
280                                               x+j_coord_offsetC,x+j_coord_offsetD,
281                                               &jx0,&jy0,&jz0);
282
283             /* Calculate displacement vector */
284             dx00             = _mm_sub_ps(ix0,jx0);
285             dy00             = _mm_sub_ps(iy0,jy0);
286             dz00             = _mm_sub_ps(iz0,jz0);
287
288             /* Calculate squared distance and things based on it */
289             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
290
291             rinv00           = gmx_mm_invsqrt_ps(rsq00);
292
293             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
294
295             /* Load parameters for j particles */
296             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
297                                                               charge+jnrC+0,charge+jnrD+0);
298             vdwjidx0A        = 2*vdwtype[jnrA+0];
299             vdwjidx0B        = 2*vdwtype[jnrB+0];
300             vdwjidx0C        = 2*vdwtype[jnrC+0];
301             vdwjidx0D        = 2*vdwtype[jnrD+0];
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             if (gmx_mm_any_lt(rsq00,rcutoff2))
308             {
309
310             /* Compute parameters for interactions between i and j atoms */
311             qq00             = _mm_mul_ps(iq0,jq0);
312             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
313                                          vdwparam+vdwioffset0+vdwjidx0B,
314                                          vdwparam+vdwioffset0+vdwjidx0C,
315                                          vdwparam+vdwioffset0+vdwjidx0D,
316                                          &c6_00,&c12_00);
317
318             /* REACTION-FIELD ELECTROSTATICS */
319             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
320             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
321
322             /* LENNARD-JONES DISPERSION/REPULSION */
323
324             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
325             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
326             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
327             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
328                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
329             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
330
331             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             velec            = _mm_and_ps(velec,cutoff_mask);
335             velec            = _mm_andnot_ps(dummy_mask,velec);
336             velecsum         = _mm_add_ps(velecsum,velec);
337             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
338             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
339             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
340
341             fscal            = _mm_add_ps(felec,fvdw);
342
343             fscal            = _mm_and_ps(fscal,cutoff_mask);
344
345             fscal            = _mm_andnot_ps(dummy_mask,fscal);
346
347             /* Calculate temporary vectorial force */
348             tx               = _mm_mul_ps(fscal,dx00);
349             ty               = _mm_mul_ps(fscal,dy00);
350             tz               = _mm_mul_ps(fscal,dz00);
351
352             /* Update vectorial force */
353             fix0             = _mm_add_ps(fix0,tx);
354             fiy0             = _mm_add_ps(fiy0,ty);
355             fiz0             = _mm_add_ps(fiz0,tz);
356
357             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
358                                                    f+j_coord_offsetC,f+j_coord_offsetD,
359                                                    tx,ty,tz);
360
361             }
362
363             /* Inner loop uses 54 flops */
364         }
365
366         /* End of innermost loop */
367
368         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
369                                               f+i_coord_offset,fshift+i_shift_offset);
370
371         ggid                        = gid[iidx];
372         /* Update potential energies */
373         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
374         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
375
376         /* Increment number of inner iterations */
377         inneriter                  += j_index_end - j_index_start;
378
379         /* Outer loop uses 12 flops */
380     }
381
382     /* Increment number of outer iterations */
383     outeriter        += nri;
384
385     /* Update outer/inner flops */
386
387     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*12 + inneriter*54);
388 }
389 /*
390  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse2_single
391  * Electrostatics interaction: ReactionField
392  * VdW interaction:            LennardJones
393  * Geometry:                   Particle-Particle
394  * Calculate force/pot:        Force
395  */
396 void
397 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse2_single
398                     (t_nblist * gmx_restrict                nlist,
399                      rvec * gmx_restrict                    xx,
400                      rvec * gmx_restrict                    ff,
401                      t_forcerec * gmx_restrict              fr,
402                      t_mdatoms * gmx_restrict               mdatoms,
403                      nb_kernel_data_t * gmx_restrict        kernel_data,
404                      t_nrnb * gmx_restrict                  nrnb)
405 {
406     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
407      * just 0 for non-waters.
408      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
409      * jnr indices corresponding to data put in the four positions in the SIMD register.
410      */
411     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
412     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
413     int              jnrA,jnrB,jnrC,jnrD;
414     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
415     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
416     real             shX,shY,shZ,rcutoff_scalar;
417     real             *shiftvec,*fshift,*x,*f;
418     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
419     int              vdwioffset0;
420     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
421     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
422     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
423     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
424     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
425     real             *charge;
426     int              nvdwtype;
427     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
428     int              *vdwtype;
429     real             *vdwparam;
430     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
431     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
432     __m128           dummy_mask,cutoff_mask;
433     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
434     __m128           one     = _mm_set1_ps(1.0);
435     __m128           two     = _mm_set1_ps(2.0);
436     x                = xx[0];
437     f                = ff[0];
438
439     nri              = nlist->nri;
440     iinr             = nlist->iinr;
441     jindex           = nlist->jindex;
442     jjnr             = nlist->jjnr;
443     shiftidx         = nlist->shift;
444     gid              = nlist->gid;
445     shiftvec         = fr->shift_vec[0];
446     fshift           = fr->fshift[0];
447     facel            = _mm_set1_ps(fr->epsfac);
448     charge           = mdatoms->chargeA;
449     krf              = _mm_set1_ps(fr->ic->k_rf);
450     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
451     crf              = _mm_set1_ps(fr->ic->c_rf);
452     nvdwtype         = fr->ntype;
453     vdwparam         = fr->nbfp;
454     vdwtype          = mdatoms->typeA;
455
456     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
457     rcutoff_scalar   = fr->rcoulomb;
458     rcutoff          = _mm_set1_ps(rcutoff_scalar);
459     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
460
461     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
462     rvdw             = _mm_set1_ps(fr->rvdw);
463
464     /* Avoid stupid compiler warnings */
465     jnrA = jnrB = jnrC = jnrD = 0;
466     j_coord_offsetA = 0;
467     j_coord_offsetB = 0;
468     j_coord_offsetC = 0;
469     j_coord_offsetD = 0;
470
471     outeriter        = 0;
472     inneriter        = 0;
473
474     /* Start outer loop over neighborlists */
475     for(iidx=0; iidx<nri; iidx++)
476     {
477         /* Load shift vector for this list */
478         i_shift_offset   = DIM*shiftidx[iidx];
479         shX              = shiftvec[i_shift_offset+XX];
480         shY              = shiftvec[i_shift_offset+YY];
481         shZ              = shiftvec[i_shift_offset+ZZ];
482
483         /* Load limits for loop over neighbors */
484         j_index_start    = jindex[iidx];
485         j_index_end      = jindex[iidx+1];
486
487         /* Get outer coordinate index */
488         inr              = iinr[iidx];
489         i_coord_offset   = DIM*inr;
490
491         /* Load i particle coords and add shift vector */
492         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
493         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
494         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
495
496         fix0             = _mm_setzero_ps();
497         fiy0             = _mm_setzero_ps();
498         fiz0             = _mm_setzero_ps();
499
500         /* Load parameters for i particles */
501         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
502         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
503
504         /* Start inner kernel loop */
505         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
506         {
507
508             /* Get j neighbor index, and coordinate index */
509             jnrA             = jjnr[jidx];
510             jnrB             = jjnr[jidx+1];
511             jnrC             = jjnr[jidx+2];
512             jnrD             = jjnr[jidx+3];
513
514             j_coord_offsetA  = DIM*jnrA;
515             j_coord_offsetB  = DIM*jnrB;
516             j_coord_offsetC  = DIM*jnrC;
517             j_coord_offsetD  = DIM*jnrD;
518
519             /* load j atom coordinates */
520             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
521                                               x+j_coord_offsetC,x+j_coord_offsetD,
522                                               &jx0,&jy0,&jz0);
523
524             /* Calculate displacement vector */
525             dx00             = _mm_sub_ps(ix0,jx0);
526             dy00             = _mm_sub_ps(iy0,jy0);
527             dz00             = _mm_sub_ps(iz0,jz0);
528
529             /* Calculate squared distance and things based on it */
530             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
531
532             rinv00           = gmx_mm_invsqrt_ps(rsq00);
533
534             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
535
536             /* Load parameters for j particles */
537             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
538                                                               charge+jnrC+0,charge+jnrD+0);
539             vdwjidx0A        = 2*vdwtype[jnrA+0];
540             vdwjidx0B        = 2*vdwtype[jnrB+0];
541             vdwjidx0C        = 2*vdwtype[jnrC+0];
542             vdwjidx0D        = 2*vdwtype[jnrD+0];
543
544             /**************************
545              * CALCULATE INTERACTIONS *
546              **************************/
547
548             if (gmx_mm_any_lt(rsq00,rcutoff2))
549             {
550
551             /* Compute parameters for interactions between i and j atoms */
552             qq00             = _mm_mul_ps(iq0,jq0);
553             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
554                                          vdwparam+vdwioffset0+vdwjidx0B,
555                                          vdwparam+vdwioffset0+vdwjidx0C,
556                                          vdwparam+vdwioffset0+vdwjidx0D,
557                                          &c6_00,&c12_00);
558
559             /* REACTION-FIELD ELECTROSTATICS */
560             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
561
562             /* LENNARD-JONES DISPERSION/REPULSION */
563
564             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
565             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
566
567             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
568
569             fscal            = _mm_add_ps(felec,fvdw);
570
571             fscal            = _mm_and_ps(fscal,cutoff_mask);
572
573             /* Calculate temporary vectorial force */
574             tx               = _mm_mul_ps(fscal,dx00);
575             ty               = _mm_mul_ps(fscal,dy00);
576             tz               = _mm_mul_ps(fscal,dz00);
577
578             /* Update vectorial force */
579             fix0             = _mm_add_ps(fix0,tx);
580             fiy0             = _mm_add_ps(fiy0,ty);
581             fiz0             = _mm_add_ps(fiz0,tz);
582
583             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
584                                                    f+j_coord_offsetC,f+j_coord_offsetD,
585                                                    tx,ty,tz);
586
587             }
588
589             /* Inner loop uses 37 flops */
590         }
591
592         if(jidx<j_index_end)
593         {
594
595             /* Get j neighbor index, and coordinate index */
596             jnrA             = jjnr[jidx];
597             jnrB             = jjnr[jidx+1];
598             jnrC             = jjnr[jidx+2];
599             jnrD             = jjnr[jidx+3];
600
601             /* Sign of each element will be negative for non-real atoms.
602              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
603              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
604              */
605             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
606             jnrA       = (jnrA>=0) ? jnrA : 0;
607             jnrB       = (jnrB>=0) ? jnrB : 0;
608             jnrC       = (jnrC>=0) ? jnrC : 0;
609             jnrD       = (jnrD>=0) ? jnrD : 0;
610
611             j_coord_offsetA  = DIM*jnrA;
612             j_coord_offsetB  = DIM*jnrB;
613             j_coord_offsetC  = DIM*jnrC;
614             j_coord_offsetD  = DIM*jnrD;
615
616             /* load j atom coordinates */
617             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
618                                               x+j_coord_offsetC,x+j_coord_offsetD,
619                                               &jx0,&jy0,&jz0);
620
621             /* Calculate displacement vector */
622             dx00             = _mm_sub_ps(ix0,jx0);
623             dy00             = _mm_sub_ps(iy0,jy0);
624             dz00             = _mm_sub_ps(iz0,jz0);
625
626             /* Calculate squared distance and things based on it */
627             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
628
629             rinv00           = gmx_mm_invsqrt_ps(rsq00);
630
631             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
632
633             /* Load parameters for j particles */
634             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
635                                                               charge+jnrC+0,charge+jnrD+0);
636             vdwjidx0A        = 2*vdwtype[jnrA+0];
637             vdwjidx0B        = 2*vdwtype[jnrB+0];
638             vdwjidx0C        = 2*vdwtype[jnrC+0];
639             vdwjidx0D        = 2*vdwtype[jnrD+0];
640
641             /**************************
642              * CALCULATE INTERACTIONS *
643              **************************/
644
645             if (gmx_mm_any_lt(rsq00,rcutoff2))
646             {
647
648             /* Compute parameters for interactions between i and j atoms */
649             qq00             = _mm_mul_ps(iq0,jq0);
650             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
651                                          vdwparam+vdwioffset0+vdwjidx0B,
652                                          vdwparam+vdwioffset0+vdwjidx0C,
653                                          vdwparam+vdwioffset0+vdwjidx0D,
654                                          &c6_00,&c12_00);
655
656             /* REACTION-FIELD ELECTROSTATICS */
657             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
658
659             /* LENNARD-JONES DISPERSION/REPULSION */
660
661             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
662             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
663
664             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
665
666             fscal            = _mm_add_ps(felec,fvdw);
667
668             fscal            = _mm_and_ps(fscal,cutoff_mask);
669
670             fscal            = _mm_andnot_ps(dummy_mask,fscal);
671
672             /* Calculate temporary vectorial force */
673             tx               = _mm_mul_ps(fscal,dx00);
674             ty               = _mm_mul_ps(fscal,dy00);
675             tz               = _mm_mul_ps(fscal,dz00);
676
677             /* Update vectorial force */
678             fix0             = _mm_add_ps(fix0,tx);
679             fiy0             = _mm_add_ps(fiy0,ty);
680             fiz0             = _mm_add_ps(fiz0,tz);
681
682             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
683                                                    f+j_coord_offsetC,f+j_coord_offsetD,
684                                                    tx,ty,tz);
685
686             }
687
688             /* Inner loop uses 37 flops */
689         }
690
691         /* End of innermost loop */
692
693         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
694                                               f+i_coord_offset,fshift+i_shift_offset);
695
696         /* Increment number of inner iterations */
697         inneriter                  += j_index_end - j_index_start;
698
699         /* Outer loop uses 10 flops */
700     }
701
702     /* Increment number of outer iterations */
703     outeriter        += nri;
704
705     /* Update outer/inner flops */
706
707     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*10 + inneriter*37);
708 }