Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse2_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_ps(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     krf              = _mm_set1_ps(fr->ic->k_rf);
116     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
117     crf              = _mm_set1_ps(fr->ic->c_rf);
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123     rcutoff_scalar   = fr->rcoulomb;
124     rcutoff          = _mm_set1_ps(rcutoff_scalar);
125     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
126
127     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
128     rvdw             = _mm_set1_ps(fr->rvdw);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }  
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
161         
162         fix0             = _mm_setzero_ps();
163         fiy0             = _mm_setzero_ps();
164         fiz0             = _mm_setzero_ps();
165
166         /* Load parameters for i particles */
167         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
168         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_ps();
172         vvdwsum          = _mm_setzero_ps();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             jnrC             = jjnr[jidx+2];
182             jnrD             = jjnr[jidx+3];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185             j_coord_offsetC  = DIM*jnrC;
186             j_coord_offsetD  = DIM*jnrD;
187
188             /* load j atom coordinates */
189             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               x+j_coord_offsetC,x+j_coord_offsetD,
191                                               &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm_sub_ps(ix0,jx0);
195             dy00             = _mm_sub_ps(iy0,jy0);
196             dz00             = _mm_sub_ps(iz0,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
200
201             rinv00           = gmx_mm_invsqrt_ps(rsq00);
202
203             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
204
205             /* Load parameters for j particles */
206             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
207                                                               charge+jnrC+0,charge+jnrD+0);
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210             vdwjidx0C        = 2*vdwtype[jnrC+0];
211             vdwjidx0D        = 2*vdwtype[jnrD+0];
212
213             /**************************
214              * CALCULATE INTERACTIONS *
215              **************************/
216
217             if (gmx_mm_any_lt(rsq00,rcutoff2))
218             {
219
220             /* Compute parameters for interactions between i and j atoms */
221             qq00             = _mm_mul_ps(iq0,jq0);
222             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
223                                          vdwparam+vdwioffset0+vdwjidx0B,
224                                          vdwparam+vdwioffset0+vdwjidx0C,
225                                          vdwparam+vdwioffset0+vdwjidx0D,
226                                          &c6_00,&c12_00);
227
228             /* REACTION-FIELD ELECTROSTATICS */
229             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
230             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
231
232             /* LENNARD-JONES DISPERSION/REPULSION */
233
234             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
235             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
236             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
237             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
238                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
239             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
240
241             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
242
243             /* Update potential sum for this i atom from the interaction with this j atom. */
244             velec            = _mm_and_ps(velec,cutoff_mask);
245             velecsum         = _mm_add_ps(velecsum,velec);
246             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
247             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
248
249             fscal            = _mm_add_ps(felec,fvdw);
250
251             fscal            = _mm_and_ps(fscal,cutoff_mask);
252
253             /* Calculate temporary vectorial force */
254             tx               = _mm_mul_ps(fscal,dx00);
255             ty               = _mm_mul_ps(fscal,dy00);
256             tz               = _mm_mul_ps(fscal,dz00);
257
258             /* Update vectorial force */
259             fix0             = _mm_add_ps(fix0,tx);
260             fiy0             = _mm_add_ps(fiy0,ty);
261             fiz0             = _mm_add_ps(fiz0,tz);
262
263             fjptrA             = f+j_coord_offsetA;
264             fjptrB             = f+j_coord_offsetB;
265             fjptrC             = f+j_coord_offsetC;
266             fjptrD             = f+j_coord_offsetD;
267             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
268             
269             }
270
271             /* Inner loop uses 54 flops */
272         }
273
274         if(jidx<j_index_end)
275         {
276
277             /* Get j neighbor index, and coordinate index */
278             jnrlistA         = jjnr[jidx];
279             jnrlistB         = jjnr[jidx+1];
280             jnrlistC         = jjnr[jidx+2];
281             jnrlistD         = jjnr[jidx+3];
282             /* Sign of each element will be negative for non-real atoms.
283              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
284              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
285              */
286             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
287             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
288             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
289             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
290             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
291             j_coord_offsetA  = DIM*jnrA;
292             j_coord_offsetB  = DIM*jnrB;
293             j_coord_offsetC  = DIM*jnrC;
294             j_coord_offsetD  = DIM*jnrD;
295
296             /* load j atom coordinates */
297             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
298                                               x+j_coord_offsetC,x+j_coord_offsetD,
299                                               &jx0,&jy0,&jz0);
300
301             /* Calculate displacement vector */
302             dx00             = _mm_sub_ps(ix0,jx0);
303             dy00             = _mm_sub_ps(iy0,jy0);
304             dz00             = _mm_sub_ps(iz0,jz0);
305
306             /* Calculate squared distance and things based on it */
307             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
308
309             rinv00           = gmx_mm_invsqrt_ps(rsq00);
310
311             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
312
313             /* Load parameters for j particles */
314             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
315                                                               charge+jnrC+0,charge+jnrD+0);
316             vdwjidx0A        = 2*vdwtype[jnrA+0];
317             vdwjidx0B        = 2*vdwtype[jnrB+0];
318             vdwjidx0C        = 2*vdwtype[jnrC+0];
319             vdwjidx0D        = 2*vdwtype[jnrD+0];
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             if (gmx_mm_any_lt(rsq00,rcutoff2))
326             {
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq00             = _mm_mul_ps(iq0,jq0);
330             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
331                                          vdwparam+vdwioffset0+vdwjidx0B,
332                                          vdwparam+vdwioffset0+vdwjidx0C,
333                                          vdwparam+vdwioffset0+vdwjidx0D,
334                                          &c6_00,&c12_00);
335
336             /* REACTION-FIELD ELECTROSTATICS */
337             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
338             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
339
340             /* LENNARD-JONES DISPERSION/REPULSION */
341
342             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
343             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
344             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
345             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
346                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
347             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
348
349             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             velec            = _mm_and_ps(velec,cutoff_mask);
353             velec            = _mm_andnot_ps(dummy_mask,velec);
354             velecsum         = _mm_add_ps(velecsum,velec);
355             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
356             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
357             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
358
359             fscal            = _mm_add_ps(felec,fvdw);
360
361             fscal            = _mm_and_ps(fscal,cutoff_mask);
362
363             fscal            = _mm_andnot_ps(dummy_mask,fscal);
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm_mul_ps(fscal,dx00);
367             ty               = _mm_mul_ps(fscal,dy00);
368             tz               = _mm_mul_ps(fscal,dz00);
369
370             /* Update vectorial force */
371             fix0             = _mm_add_ps(fix0,tx);
372             fiy0             = _mm_add_ps(fiy0,ty);
373             fiz0             = _mm_add_ps(fiz0,tz);
374
375             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
376             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
377             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
378             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
379             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
380             
381             }
382
383             /* Inner loop uses 54 flops */
384         }
385
386         /* End of innermost loop */
387
388         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
389                                               f+i_coord_offset,fshift+i_shift_offset);
390
391         ggid                        = gid[iidx];
392         /* Update potential energies */
393         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
394         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
395
396         /* Increment number of inner iterations */
397         inneriter                  += j_index_end - j_index_start;
398
399         /* Outer loop uses 9 flops */
400     }
401
402     /* Increment number of outer iterations */
403     outeriter        += nri;
404
405     /* Update outer/inner flops */
406
407     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
408 }
409 /*
410  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse2_single
411  * Electrostatics interaction: ReactionField
412  * VdW interaction:            LennardJones
413  * Geometry:                   Particle-Particle
414  * Calculate force/pot:        Force
415  */
416 void
417 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse2_single
418                     (t_nblist                    * gmx_restrict       nlist,
419                      rvec                        * gmx_restrict          xx,
420                      rvec                        * gmx_restrict          ff,
421                      t_forcerec                  * gmx_restrict          fr,
422                      t_mdatoms                   * gmx_restrict     mdatoms,
423                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
424                      t_nrnb                      * gmx_restrict        nrnb)
425 {
426     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
427      * just 0 for non-waters.
428      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
429      * jnr indices corresponding to data put in the four positions in the SIMD register.
430      */
431     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
432     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
433     int              jnrA,jnrB,jnrC,jnrD;
434     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
435     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
436     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
437     real             rcutoff_scalar;
438     real             *shiftvec,*fshift,*x,*f;
439     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
440     real             scratch[4*DIM];
441     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
442     int              vdwioffset0;
443     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
444     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
445     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
446     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
447     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
448     real             *charge;
449     int              nvdwtype;
450     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
451     int              *vdwtype;
452     real             *vdwparam;
453     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
454     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
455     __m128           dummy_mask,cutoff_mask;
456     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
457     __m128           one     = _mm_set1_ps(1.0);
458     __m128           two     = _mm_set1_ps(2.0);
459     x                = xx[0];
460     f                = ff[0];
461
462     nri              = nlist->nri;
463     iinr             = nlist->iinr;
464     jindex           = nlist->jindex;
465     jjnr             = nlist->jjnr;
466     shiftidx         = nlist->shift;
467     gid              = nlist->gid;
468     shiftvec         = fr->shift_vec[0];
469     fshift           = fr->fshift[0];
470     facel            = _mm_set1_ps(fr->epsfac);
471     charge           = mdatoms->chargeA;
472     krf              = _mm_set1_ps(fr->ic->k_rf);
473     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
474     crf              = _mm_set1_ps(fr->ic->c_rf);
475     nvdwtype         = fr->ntype;
476     vdwparam         = fr->nbfp;
477     vdwtype          = mdatoms->typeA;
478
479     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
480     rcutoff_scalar   = fr->rcoulomb;
481     rcutoff          = _mm_set1_ps(rcutoff_scalar);
482     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
483
484     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
485     rvdw             = _mm_set1_ps(fr->rvdw);
486
487     /* Avoid stupid compiler warnings */
488     jnrA = jnrB = jnrC = jnrD = 0;
489     j_coord_offsetA = 0;
490     j_coord_offsetB = 0;
491     j_coord_offsetC = 0;
492     j_coord_offsetD = 0;
493
494     outeriter        = 0;
495     inneriter        = 0;
496
497     for(iidx=0;iidx<4*DIM;iidx++)
498     {
499         scratch[iidx] = 0.0;
500     }  
501
502     /* Start outer loop over neighborlists */
503     for(iidx=0; iidx<nri; iidx++)
504     {
505         /* Load shift vector for this list */
506         i_shift_offset   = DIM*shiftidx[iidx];
507
508         /* Load limits for loop over neighbors */
509         j_index_start    = jindex[iidx];
510         j_index_end      = jindex[iidx+1];
511
512         /* Get outer coordinate index */
513         inr              = iinr[iidx];
514         i_coord_offset   = DIM*inr;
515
516         /* Load i particle coords and add shift vector */
517         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
518         
519         fix0             = _mm_setzero_ps();
520         fiy0             = _mm_setzero_ps();
521         fiz0             = _mm_setzero_ps();
522
523         /* Load parameters for i particles */
524         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
525         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
526
527         /* Start inner kernel loop */
528         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
529         {
530
531             /* Get j neighbor index, and coordinate index */
532             jnrA             = jjnr[jidx];
533             jnrB             = jjnr[jidx+1];
534             jnrC             = jjnr[jidx+2];
535             jnrD             = jjnr[jidx+3];
536             j_coord_offsetA  = DIM*jnrA;
537             j_coord_offsetB  = DIM*jnrB;
538             j_coord_offsetC  = DIM*jnrC;
539             j_coord_offsetD  = DIM*jnrD;
540
541             /* load j atom coordinates */
542             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
543                                               x+j_coord_offsetC,x+j_coord_offsetD,
544                                               &jx0,&jy0,&jz0);
545
546             /* Calculate displacement vector */
547             dx00             = _mm_sub_ps(ix0,jx0);
548             dy00             = _mm_sub_ps(iy0,jy0);
549             dz00             = _mm_sub_ps(iz0,jz0);
550
551             /* Calculate squared distance and things based on it */
552             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
553
554             rinv00           = gmx_mm_invsqrt_ps(rsq00);
555
556             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
557
558             /* Load parameters for j particles */
559             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
560                                                               charge+jnrC+0,charge+jnrD+0);
561             vdwjidx0A        = 2*vdwtype[jnrA+0];
562             vdwjidx0B        = 2*vdwtype[jnrB+0];
563             vdwjidx0C        = 2*vdwtype[jnrC+0];
564             vdwjidx0D        = 2*vdwtype[jnrD+0];
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             if (gmx_mm_any_lt(rsq00,rcutoff2))
571             {
572
573             /* Compute parameters for interactions between i and j atoms */
574             qq00             = _mm_mul_ps(iq0,jq0);
575             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
576                                          vdwparam+vdwioffset0+vdwjidx0B,
577                                          vdwparam+vdwioffset0+vdwjidx0C,
578                                          vdwparam+vdwioffset0+vdwjidx0D,
579                                          &c6_00,&c12_00);
580
581             /* REACTION-FIELD ELECTROSTATICS */
582             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
583
584             /* LENNARD-JONES DISPERSION/REPULSION */
585
586             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
587             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
588
589             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
590
591             fscal            = _mm_add_ps(felec,fvdw);
592
593             fscal            = _mm_and_ps(fscal,cutoff_mask);
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm_mul_ps(fscal,dx00);
597             ty               = _mm_mul_ps(fscal,dy00);
598             tz               = _mm_mul_ps(fscal,dz00);
599
600             /* Update vectorial force */
601             fix0             = _mm_add_ps(fix0,tx);
602             fiy0             = _mm_add_ps(fiy0,ty);
603             fiz0             = _mm_add_ps(fiz0,tz);
604
605             fjptrA             = f+j_coord_offsetA;
606             fjptrB             = f+j_coord_offsetB;
607             fjptrC             = f+j_coord_offsetC;
608             fjptrD             = f+j_coord_offsetD;
609             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
610             
611             }
612
613             /* Inner loop uses 37 flops */
614         }
615
616         if(jidx<j_index_end)
617         {
618
619             /* Get j neighbor index, and coordinate index */
620             jnrlistA         = jjnr[jidx];
621             jnrlistB         = jjnr[jidx+1];
622             jnrlistC         = jjnr[jidx+2];
623             jnrlistD         = jjnr[jidx+3];
624             /* Sign of each element will be negative for non-real atoms.
625              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
626              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
627              */
628             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
629             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
630             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
631             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
632             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
633             j_coord_offsetA  = DIM*jnrA;
634             j_coord_offsetB  = DIM*jnrB;
635             j_coord_offsetC  = DIM*jnrC;
636             j_coord_offsetD  = DIM*jnrD;
637
638             /* load j atom coordinates */
639             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
640                                               x+j_coord_offsetC,x+j_coord_offsetD,
641                                               &jx0,&jy0,&jz0);
642
643             /* Calculate displacement vector */
644             dx00             = _mm_sub_ps(ix0,jx0);
645             dy00             = _mm_sub_ps(iy0,jy0);
646             dz00             = _mm_sub_ps(iz0,jz0);
647
648             /* Calculate squared distance and things based on it */
649             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
650
651             rinv00           = gmx_mm_invsqrt_ps(rsq00);
652
653             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
654
655             /* Load parameters for j particles */
656             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
657                                                               charge+jnrC+0,charge+jnrD+0);
658             vdwjidx0A        = 2*vdwtype[jnrA+0];
659             vdwjidx0B        = 2*vdwtype[jnrB+0];
660             vdwjidx0C        = 2*vdwtype[jnrC+0];
661             vdwjidx0D        = 2*vdwtype[jnrD+0];
662
663             /**************************
664              * CALCULATE INTERACTIONS *
665              **************************/
666
667             if (gmx_mm_any_lt(rsq00,rcutoff2))
668             {
669
670             /* Compute parameters for interactions between i and j atoms */
671             qq00             = _mm_mul_ps(iq0,jq0);
672             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
673                                          vdwparam+vdwioffset0+vdwjidx0B,
674                                          vdwparam+vdwioffset0+vdwjidx0C,
675                                          vdwparam+vdwioffset0+vdwjidx0D,
676                                          &c6_00,&c12_00);
677
678             /* REACTION-FIELD ELECTROSTATICS */
679             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
680
681             /* LENNARD-JONES DISPERSION/REPULSION */
682
683             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
684             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
685
686             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
687
688             fscal            = _mm_add_ps(felec,fvdw);
689
690             fscal            = _mm_and_ps(fscal,cutoff_mask);
691
692             fscal            = _mm_andnot_ps(dummy_mask,fscal);
693
694             /* Calculate temporary vectorial force */
695             tx               = _mm_mul_ps(fscal,dx00);
696             ty               = _mm_mul_ps(fscal,dy00);
697             tz               = _mm_mul_ps(fscal,dz00);
698
699             /* Update vectorial force */
700             fix0             = _mm_add_ps(fix0,tx);
701             fiy0             = _mm_add_ps(fiy0,ty);
702             fiz0             = _mm_add_ps(fiz0,tz);
703
704             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
705             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
706             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
707             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
708             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
709             
710             }
711
712             /* Inner loop uses 37 flops */
713         }
714
715         /* End of innermost loop */
716
717         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
718                                               f+i_coord_offset,fshift+i_shift_offset);
719
720         /* Increment number of inner iterations */
721         inneriter                  += j_index_end - j_index_start;
722
723         /* Outer loop uses 7 flops */
724     }
725
726     /* Increment number of outer iterations */
727     outeriter        += nri;
728
729     /* Update outer/inner flops */
730
731     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
732 }