Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse2_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m128           dummy_mask,cutoff_mask;
110     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
111     __m128           one     = _mm_set1_ps(1.0);
112     __m128           two     = _mm_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_ps(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     krf              = _mm_set1_ps(fr->ic->k_rf);
127     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
128     crf              = _mm_set1_ps(fr->ic->c_rf);
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     vftab            = kernel_data->table_vdw->data;
134     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
135
136     /* Setup water-specific parameters */
137     inr              = nlist->iinr[0];
138     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
139     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
140     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
141     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
142
143     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
144     rcutoff_scalar   = fr->rcoulomb;
145     rcutoff          = _mm_set1_ps(rcutoff_scalar);
146     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = jnrC = jnrD = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152     j_coord_offsetC = 0;
153     j_coord_offsetD = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }  
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
179                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
180         
181         fix0             = _mm_setzero_ps();
182         fiy0             = _mm_setzero_ps();
183         fiz0             = _mm_setzero_ps();
184         fix1             = _mm_setzero_ps();
185         fiy1             = _mm_setzero_ps();
186         fiz1             = _mm_setzero_ps();
187         fix2             = _mm_setzero_ps();
188         fiy2             = _mm_setzero_ps();
189         fiz2             = _mm_setzero_ps();
190         fix3             = _mm_setzero_ps();
191         fiy3             = _mm_setzero_ps();
192         fiz3             = _mm_setzero_ps();
193
194         /* Reset potential sums */
195         velecsum         = _mm_setzero_ps();
196         vvdwsum          = _mm_setzero_ps();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211
212             /* load j atom coordinates */
213             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                               x+j_coord_offsetC,x+j_coord_offsetD,
215                                               &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _mm_sub_ps(ix0,jx0);
219             dy00             = _mm_sub_ps(iy0,jy0);
220             dz00             = _mm_sub_ps(iz0,jz0);
221             dx10             = _mm_sub_ps(ix1,jx0);
222             dy10             = _mm_sub_ps(iy1,jy0);
223             dz10             = _mm_sub_ps(iz1,jz0);
224             dx20             = _mm_sub_ps(ix2,jx0);
225             dy20             = _mm_sub_ps(iy2,jy0);
226             dz20             = _mm_sub_ps(iz2,jz0);
227             dx30             = _mm_sub_ps(ix3,jx0);
228             dy30             = _mm_sub_ps(iy3,jy0);
229             dz30             = _mm_sub_ps(iz3,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
233             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
234             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
235             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
236
237             rinv00           = gmx_mm_invsqrt_ps(rsq00);
238             rinv10           = gmx_mm_invsqrt_ps(rsq10);
239             rinv20           = gmx_mm_invsqrt_ps(rsq20);
240             rinv30           = gmx_mm_invsqrt_ps(rsq30);
241
242             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
243             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
244             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
245
246             /* Load parameters for j particles */
247             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
248                                                               charge+jnrC+0,charge+jnrD+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251             vdwjidx0C        = 2*vdwtype[jnrC+0];
252             vdwjidx0D        = 2*vdwtype[jnrD+0];
253
254             fjx0             = _mm_setzero_ps();
255             fjy0             = _mm_setzero_ps();
256             fjz0             = _mm_setzero_ps();
257
258             /**************************
259              * CALCULATE INTERACTIONS *
260              **************************/
261
262             r00              = _mm_mul_ps(rsq00,rinv00);
263
264             /* Compute parameters for interactions between i and j atoms */
265             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
266                                          vdwparam+vdwioffset0+vdwjidx0B,
267                                          vdwparam+vdwioffset0+vdwjidx0C,
268                                          vdwparam+vdwioffset0+vdwjidx0D,
269                                          &c6_00,&c12_00);
270
271             /* Calculate table index by multiplying r with table scale and truncate to integer */
272             rt               = _mm_mul_ps(r00,vftabscale);
273             vfitab           = _mm_cvttps_epi32(rt);
274             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
275             vfitab           = _mm_slli_epi32(vfitab,3);
276
277             /* CUBIC SPLINE TABLE DISPERSION */
278             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
279             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
280             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
281             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
282             _MM_TRANSPOSE4_PS(Y,F,G,H);
283             Heps             = _mm_mul_ps(vfeps,H);
284             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
285             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
286             vvdw6            = _mm_mul_ps(c6_00,VV);
287             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
288             fvdw6            = _mm_mul_ps(c6_00,FF);
289
290             /* CUBIC SPLINE TABLE REPULSION */
291             vfitab           = _mm_add_epi32(vfitab,ifour);
292             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
293             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
294             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
295             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
296             _MM_TRANSPOSE4_PS(Y,F,G,H);
297             Heps             = _mm_mul_ps(vfeps,H);
298             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
299             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
300             vvdw12           = _mm_mul_ps(c12_00,VV);
301             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
302             fvdw12           = _mm_mul_ps(c12_00,FF);
303             vvdw             = _mm_add_ps(vvdw12,vvdw6);
304             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
308
309             fscal            = fvdw;
310
311             /* Calculate temporary vectorial force */
312             tx               = _mm_mul_ps(fscal,dx00);
313             ty               = _mm_mul_ps(fscal,dy00);
314             tz               = _mm_mul_ps(fscal,dz00);
315
316             /* Update vectorial force */
317             fix0             = _mm_add_ps(fix0,tx);
318             fiy0             = _mm_add_ps(fiy0,ty);
319             fiz0             = _mm_add_ps(fiz0,tz);
320
321             fjx0             = _mm_add_ps(fjx0,tx);
322             fjy0             = _mm_add_ps(fjy0,ty);
323             fjz0             = _mm_add_ps(fjz0,tz);
324             
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             if (gmx_mm_any_lt(rsq10,rcutoff2))
330             {
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq10             = _mm_mul_ps(iq1,jq0);
334
335             /* REACTION-FIELD ELECTROSTATICS */
336             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
337             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
338
339             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velec            = _mm_and_ps(velec,cutoff_mask);
343             velecsum         = _mm_add_ps(velecsum,velec);
344
345             fscal            = felec;
346
347             fscal            = _mm_and_ps(fscal,cutoff_mask);
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm_mul_ps(fscal,dx10);
351             ty               = _mm_mul_ps(fscal,dy10);
352             tz               = _mm_mul_ps(fscal,dz10);
353
354             /* Update vectorial force */
355             fix1             = _mm_add_ps(fix1,tx);
356             fiy1             = _mm_add_ps(fiy1,ty);
357             fiz1             = _mm_add_ps(fiz1,tz);
358
359             fjx0             = _mm_add_ps(fjx0,tx);
360             fjy0             = _mm_add_ps(fjy0,ty);
361             fjz0             = _mm_add_ps(fjz0,tz);
362             
363             }
364
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             if (gmx_mm_any_lt(rsq20,rcutoff2))
370             {
371
372             /* Compute parameters for interactions between i and j atoms */
373             qq20             = _mm_mul_ps(iq2,jq0);
374
375             /* REACTION-FIELD ELECTROSTATICS */
376             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
377             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
378
379             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
380
381             /* Update potential sum for this i atom from the interaction with this j atom. */
382             velec            = _mm_and_ps(velec,cutoff_mask);
383             velecsum         = _mm_add_ps(velecsum,velec);
384
385             fscal            = felec;
386
387             fscal            = _mm_and_ps(fscal,cutoff_mask);
388
389             /* Calculate temporary vectorial force */
390             tx               = _mm_mul_ps(fscal,dx20);
391             ty               = _mm_mul_ps(fscal,dy20);
392             tz               = _mm_mul_ps(fscal,dz20);
393
394             /* Update vectorial force */
395             fix2             = _mm_add_ps(fix2,tx);
396             fiy2             = _mm_add_ps(fiy2,ty);
397             fiz2             = _mm_add_ps(fiz2,tz);
398
399             fjx0             = _mm_add_ps(fjx0,tx);
400             fjy0             = _mm_add_ps(fjy0,ty);
401             fjz0             = _mm_add_ps(fjz0,tz);
402             
403             }
404
405             /**************************
406              * CALCULATE INTERACTIONS *
407              **************************/
408
409             if (gmx_mm_any_lt(rsq30,rcutoff2))
410             {
411
412             /* Compute parameters for interactions between i and j atoms */
413             qq30             = _mm_mul_ps(iq3,jq0);
414
415             /* REACTION-FIELD ELECTROSTATICS */
416             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
417             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
418
419             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
420
421             /* Update potential sum for this i atom from the interaction with this j atom. */
422             velec            = _mm_and_ps(velec,cutoff_mask);
423             velecsum         = _mm_add_ps(velecsum,velec);
424
425             fscal            = felec;
426
427             fscal            = _mm_and_ps(fscal,cutoff_mask);
428
429             /* Calculate temporary vectorial force */
430             tx               = _mm_mul_ps(fscal,dx30);
431             ty               = _mm_mul_ps(fscal,dy30);
432             tz               = _mm_mul_ps(fscal,dz30);
433
434             /* Update vectorial force */
435             fix3             = _mm_add_ps(fix3,tx);
436             fiy3             = _mm_add_ps(fiy3,ty);
437             fiz3             = _mm_add_ps(fiz3,tz);
438
439             fjx0             = _mm_add_ps(fjx0,tx);
440             fjy0             = _mm_add_ps(fjy0,ty);
441             fjz0             = _mm_add_ps(fjz0,tz);
442             
443             }
444
445             fjptrA             = f+j_coord_offsetA;
446             fjptrB             = f+j_coord_offsetB;
447             fjptrC             = f+j_coord_offsetC;
448             fjptrD             = f+j_coord_offsetD;
449
450             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
451
452             /* Inner loop uses 164 flops */
453         }
454
455         if(jidx<j_index_end)
456         {
457
458             /* Get j neighbor index, and coordinate index */
459             jnrlistA         = jjnr[jidx];
460             jnrlistB         = jjnr[jidx+1];
461             jnrlistC         = jjnr[jidx+2];
462             jnrlistD         = jjnr[jidx+3];
463             /* Sign of each element will be negative for non-real atoms.
464              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
465              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
466              */
467             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
468             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
469             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
470             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
471             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
472             j_coord_offsetA  = DIM*jnrA;
473             j_coord_offsetB  = DIM*jnrB;
474             j_coord_offsetC  = DIM*jnrC;
475             j_coord_offsetD  = DIM*jnrD;
476
477             /* load j atom coordinates */
478             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
479                                               x+j_coord_offsetC,x+j_coord_offsetD,
480                                               &jx0,&jy0,&jz0);
481
482             /* Calculate displacement vector */
483             dx00             = _mm_sub_ps(ix0,jx0);
484             dy00             = _mm_sub_ps(iy0,jy0);
485             dz00             = _mm_sub_ps(iz0,jz0);
486             dx10             = _mm_sub_ps(ix1,jx0);
487             dy10             = _mm_sub_ps(iy1,jy0);
488             dz10             = _mm_sub_ps(iz1,jz0);
489             dx20             = _mm_sub_ps(ix2,jx0);
490             dy20             = _mm_sub_ps(iy2,jy0);
491             dz20             = _mm_sub_ps(iz2,jz0);
492             dx30             = _mm_sub_ps(ix3,jx0);
493             dy30             = _mm_sub_ps(iy3,jy0);
494             dz30             = _mm_sub_ps(iz3,jz0);
495
496             /* Calculate squared distance and things based on it */
497             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
498             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
499             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
500             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
501
502             rinv00           = gmx_mm_invsqrt_ps(rsq00);
503             rinv10           = gmx_mm_invsqrt_ps(rsq10);
504             rinv20           = gmx_mm_invsqrt_ps(rsq20);
505             rinv30           = gmx_mm_invsqrt_ps(rsq30);
506
507             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
508             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
509             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
510
511             /* Load parameters for j particles */
512             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
513                                                               charge+jnrC+0,charge+jnrD+0);
514             vdwjidx0A        = 2*vdwtype[jnrA+0];
515             vdwjidx0B        = 2*vdwtype[jnrB+0];
516             vdwjidx0C        = 2*vdwtype[jnrC+0];
517             vdwjidx0D        = 2*vdwtype[jnrD+0];
518
519             fjx0             = _mm_setzero_ps();
520             fjy0             = _mm_setzero_ps();
521             fjz0             = _mm_setzero_ps();
522
523             /**************************
524              * CALCULATE INTERACTIONS *
525              **************************/
526
527             r00              = _mm_mul_ps(rsq00,rinv00);
528             r00              = _mm_andnot_ps(dummy_mask,r00);
529
530             /* Compute parameters for interactions between i and j atoms */
531             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
532                                          vdwparam+vdwioffset0+vdwjidx0B,
533                                          vdwparam+vdwioffset0+vdwjidx0C,
534                                          vdwparam+vdwioffset0+vdwjidx0D,
535                                          &c6_00,&c12_00);
536
537             /* Calculate table index by multiplying r with table scale and truncate to integer */
538             rt               = _mm_mul_ps(r00,vftabscale);
539             vfitab           = _mm_cvttps_epi32(rt);
540             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
541             vfitab           = _mm_slli_epi32(vfitab,3);
542
543             /* CUBIC SPLINE TABLE DISPERSION */
544             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
545             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
546             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
547             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
548             _MM_TRANSPOSE4_PS(Y,F,G,H);
549             Heps             = _mm_mul_ps(vfeps,H);
550             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
551             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
552             vvdw6            = _mm_mul_ps(c6_00,VV);
553             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
554             fvdw6            = _mm_mul_ps(c6_00,FF);
555
556             /* CUBIC SPLINE TABLE REPULSION */
557             vfitab           = _mm_add_epi32(vfitab,ifour);
558             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
559             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
560             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
561             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
562             _MM_TRANSPOSE4_PS(Y,F,G,H);
563             Heps             = _mm_mul_ps(vfeps,H);
564             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
565             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
566             vvdw12           = _mm_mul_ps(c12_00,VV);
567             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
568             fvdw12           = _mm_mul_ps(c12_00,FF);
569             vvdw             = _mm_add_ps(vvdw12,vvdw6);
570             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
571
572             /* Update potential sum for this i atom from the interaction with this j atom. */
573             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
574             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
575
576             fscal            = fvdw;
577
578             fscal            = _mm_andnot_ps(dummy_mask,fscal);
579
580             /* Calculate temporary vectorial force */
581             tx               = _mm_mul_ps(fscal,dx00);
582             ty               = _mm_mul_ps(fscal,dy00);
583             tz               = _mm_mul_ps(fscal,dz00);
584
585             /* Update vectorial force */
586             fix0             = _mm_add_ps(fix0,tx);
587             fiy0             = _mm_add_ps(fiy0,ty);
588             fiz0             = _mm_add_ps(fiz0,tz);
589
590             fjx0             = _mm_add_ps(fjx0,tx);
591             fjy0             = _mm_add_ps(fjy0,ty);
592             fjz0             = _mm_add_ps(fjz0,tz);
593             
594             /**************************
595              * CALCULATE INTERACTIONS *
596              **************************/
597
598             if (gmx_mm_any_lt(rsq10,rcutoff2))
599             {
600
601             /* Compute parameters for interactions between i and j atoms */
602             qq10             = _mm_mul_ps(iq1,jq0);
603
604             /* REACTION-FIELD ELECTROSTATICS */
605             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
606             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
607
608             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
609
610             /* Update potential sum for this i atom from the interaction with this j atom. */
611             velec            = _mm_and_ps(velec,cutoff_mask);
612             velec            = _mm_andnot_ps(dummy_mask,velec);
613             velecsum         = _mm_add_ps(velecsum,velec);
614
615             fscal            = felec;
616
617             fscal            = _mm_and_ps(fscal,cutoff_mask);
618
619             fscal            = _mm_andnot_ps(dummy_mask,fscal);
620
621             /* Calculate temporary vectorial force */
622             tx               = _mm_mul_ps(fscal,dx10);
623             ty               = _mm_mul_ps(fscal,dy10);
624             tz               = _mm_mul_ps(fscal,dz10);
625
626             /* Update vectorial force */
627             fix1             = _mm_add_ps(fix1,tx);
628             fiy1             = _mm_add_ps(fiy1,ty);
629             fiz1             = _mm_add_ps(fiz1,tz);
630
631             fjx0             = _mm_add_ps(fjx0,tx);
632             fjy0             = _mm_add_ps(fjy0,ty);
633             fjz0             = _mm_add_ps(fjz0,tz);
634             
635             }
636
637             /**************************
638              * CALCULATE INTERACTIONS *
639              **************************/
640
641             if (gmx_mm_any_lt(rsq20,rcutoff2))
642             {
643
644             /* Compute parameters for interactions between i and j atoms */
645             qq20             = _mm_mul_ps(iq2,jq0);
646
647             /* REACTION-FIELD ELECTROSTATICS */
648             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
649             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
650
651             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
652
653             /* Update potential sum for this i atom from the interaction with this j atom. */
654             velec            = _mm_and_ps(velec,cutoff_mask);
655             velec            = _mm_andnot_ps(dummy_mask,velec);
656             velecsum         = _mm_add_ps(velecsum,velec);
657
658             fscal            = felec;
659
660             fscal            = _mm_and_ps(fscal,cutoff_mask);
661
662             fscal            = _mm_andnot_ps(dummy_mask,fscal);
663
664             /* Calculate temporary vectorial force */
665             tx               = _mm_mul_ps(fscal,dx20);
666             ty               = _mm_mul_ps(fscal,dy20);
667             tz               = _mm_mul_ps(fscal,dz20);
668
669             /* Update vectorial force */
670             fix2             = _mm_add_ps(fix2,tx);
671             fiy2             = _mm_add_ps(fiy2,ty);
672             fiz2             = _mm_add_ps(fiz2,tz);
673
674             fjx0             = _mm_add_ps(fjx0,tx);
675             fjy0             = _mm_add_ps(fjy0,ty);
676             fjz0             = _mm_add_ps(fjz0,tz);
677             
678             }
679
680             /**************************
681              * CALCULATE INTERACTIONS *
682              **************************/
683
684             if (gmx_mm_any_lt(rsq30,rcutoff2))
685             {
686
687             /* Compute parameters for interactions between i and j atoms */
688             qq30             = _mm_mul_ps(iq3,jq0);
689
690             /* REACTION-FIELD ELECTROSTATICS */
691             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
692             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
693
694             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
695
696             /* Update potential sum for this i atom from the interaction with this j atom. */
697             velec            = _mm_and_ps(velec,cutoff_mask);
698             velec            = _mm_andnot_ps(dummy_mask,velec);
699             velecsum         = _mm_add_ps(velecsum,velec);
700
701             fscal            = felec;
702
703             fscal            = _mm_and_ps(fscal,cutoff_mask);
704
705             fscal            = _mm_andnot_ps(dummy_mask,fscal);
706
707             /* Calculate temporary vectorial force */
708             tx               = _mm_mul_ps(fscal,dx30);
709             ty               = _mm_mul_ps(fscal,dy30);
710             tz               = _mm_mul_ps(fscal,dz30);
711
712             /* Update vectorial force */
713             fix3             = _mm_add_ps(fix3,tx);
714             fiy3             = _mm_add_ps(fiy3,ty);
715             fiz3             = _mm_add_ps(fiz3,tz);
716
717             fjx0             = _mm_add_ps(fjx0,tx);
718             fjy0             = _mm_add_ps(fjy0,ty);
719             fjz0             = _mm_add_ps(fjz0,tz);
720             
721             }
722
723             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
724             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
725             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
726             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
727
728             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
729
730             /* Inner loop uses 165 flops */
731         }
732
733         /* End of innermost loop */
734
735         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
736                                               f+i_coord_offset,fshift+i_shift_offset);
737
738         ggid                        = gid[iidx];
739         /* Update potential energies */
740         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
741         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
742
743         /* Increment number of inner iterations */
744         inneriter                  += j_index_end - j_index_start;
745
746         /* Outer loop uses 26 flops */
747     }
748
749     /* Increment number of outer iterations */
750     outeriter        += nri;
751
752     /* Update outer/inner flops */
753
754     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*165);
755 }
756 /*
757  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse2_single
758  * Electrostatics interaction: ReactionField
759  * VdW interaction:            CubicSplineTable
760  * Geometry:                   Water4-Particle
761  * Calculate force/pot:        Force
762  */
763 void
764 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse2_single
765                     (t_nblist                    * gmx_restrict       nlist,
766                      rvec                        * gmx_restrict          xx,
767                      rvec                        * gmx_restrict          ff,
768                      t_forcerec                  * gmx_restrict          fr,
769                      t_mdatoms                   * gmx_restrict     mdatoms,
770                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
771                      t_nrnb                      * gmx_restrict        nrnb)
772 {
773     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
774      * just 0 for non-waters.
775      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
776      * jnr indices corresponding to data put in the four positions in the SIMD register.
777      */
778     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
779     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
780     int              jnrA,jnrB,jnrC,jnrD;
781     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
782     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
783     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
784     real             rcutoff_scalar;
785     real             *shiftvec,*fshift,*x,*f;
786     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
787     real             scratch[4*DIM];
788     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
789     int              vdwioffset0;
790     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
791     int              vdwioffset1;
792     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
793     int              vdwioffset2;
794     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
795     int              vdwioffset3;
796     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
797     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
798     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
799     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
800     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
801     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
802     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
803     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
804     real             *charge;
805     int              nvdwtype;
806     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
807     int              *vdwtype;
808     real             *vdwparam;
809     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
810     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
811     __m128i          vfitab;
812     __m128i          ifour       = _mm_set1_epi32(4);
813     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
814     real             *vftab;
815     __m128           dummy_mask,cutoff_mask;
816     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
817     __m128           one     = _mm_set1_ps(1.0);
818     __m128           two     = _mm_set1_ps(2.0);
819     x                = xx[0];
820     f                = ff[0];
821
822     nri              = nlist->nri;
823     iinr             = nlist->iinr;
824     jindex           = nlist->jindex;
825     jjnr             = nlist->jjnr;
826     shiftidx         = nlist->shift;
827     gid              = nlist->gid;
828     shiftvec         = fr->shift_vec[0];
829     fshift           = fr->fshift[0];
830     facel            = _mm_set1_ps(fr->epsfac);
831     charge           = mdatoms->chargeA;
832     krf              = _mm_set1_ps(fr->ic->k_rf);
833     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
834     crf              = _mm_set1_ps(fr->ic->c_rf);
835     nvdwtype         = fr->ntype;
836     vdwparam         = fr->nbfp;
837     vdwtype          = mdatoms->typeA;
838
839     vftab            = kernel_data->table_vdw->data;
840     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
841
842     /* Setup water-specific parameters */
843     inr              = nlist->iinr[0];
844     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
845     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
846     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
847     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
848
849     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
850     rcutoff_scalar   = fr->rcoulomb;
851     rcutoff          = _mm_set1_ps(rcutoff_scalar);
852     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
853
854     /* Avoid stupid compiler warnings */
855     jnrA = jnrB = jnrC = jnrD = 0;
856     j_coord_offsetA = 0;
857     j_coord_offsetB = 0;
858     j_coord_offsetC = 0;
859     j_coord_offsetD = 0;
860
861     outeriter        = 0;
862     inneriter        = 0;
863
864     for(iidx=0;iidx<4*DIM;iidx++)
865     {
866         scratch[iidx] = 0.0;
867     }  
868
869     /* Start outer loop over neighborlists */
870     for(iidx=0; iidx<nri; iidx++)
871     {
872         /* Load shift vector for this list */
873         i_shift_offset   = DIM*shiftidx[iidx];
874
875         /* Load limits for loop over neighbors */
876         j_index_start    = jindex[iidx];
877         j_index_end      = jindex[iidx+1];
878
879         /* Get outer coordinate index */
880         inr              = iinr[iidx];
881         i_coord_offset   = DIM*inr;
882
883         /* Load i particle coords and add shift vector */
884         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
885                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
886         
887         fix0             = _mm_setzero_ps();
888         fiy0             = _mm_setzero_ps();
889         fiz0             = _mm_setzero_ps();
890         fix1             = _mm_setzero_ps();
891         fiy1             = _mm_setzero_ps();
892         fiz1             = _mm_setzero_ps();
893         fix2             = _mm_setzero_ps();
894         fiy2             = _mm_setzero_ps();
895         fiz2             = _mm_setzero_ps();
896         fix3             = _mm_setzero_ps();
897         fiy3             = _mm_setzero_ps();
898         fiz3             = _mm_setzero_ps();
899
900         /* Start inner kernel loop */
901         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
902         {
903
904             /* Get j neighbor index, and coordinate index */
905             jnrA             = jjnr[jidx];
906             jnrB             = jjnr[jidx+1];
907             jnrC             = jjnr[jidx+2];
908             jnrD             = jjnr[jidx+3];
909             j_coord_offsetA  = DIM*jnrA;
910             j_coord_offsetB  = DIM*jnrB;
911             j_coord_offsetC  = DIM*jnrC;
912             j_coord_offsetD  = DIM*jnrD;
913
914             /* load j atom coordinates */
915             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
916                                               x+j_coord_offsetC,x+j_coord_offsetD,
917                                               &jx0,&jy0,&jz0);
918
919             /* Calculate displacement vector */
920             dx00             = _mm_sub_ps(ix0,jx0);
921             dy00             = _mm_sub_ps(iy0,jy0);
922             dz00             = _mm_sub_ps(iz0,jz0);
923             dx10             = _mm_sub_ps(ix1,jx0);
924             dy10             = _mm_sub_ps(iy1,jy0);
925             dz10             = _mm_sub_ps(iz1,jz0);
926             dx20             = _mm_sub_ps(ix2,jx0);
927             dy20             = _mm_sub_ps(iy2,jy0);
928             dz20             = _mm_sub_ps(iz2,jz0);
929             dx30             = _mm_sub_ps(ix3,jx0);
930             dy30             = _mm_sub_ps(iy3,jy0);
931             dz30             = _mm_sub_ps(iz3,jz0);
932
933             /* Calculate squared distance and things based on it */
934             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
935             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
936             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
937             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
938
939             rinv00           = gmx_mm_invsqrt_ps(rsq00);
940             rinv10           = gmx_mm_invsqrt_ps(rsq10);
941             rinv20           = gmx_mm_invsqrt_ps(rsq20);
942             rinv30           = gmx_mm_invsqrt_ps(rsq30);
943
944             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
945             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
946             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
947
948             /* Load parameters for j particles */
949             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
950                                                               charge+jnrC+0,charge+jnrD+0);
951             vdwjidx0A        = 2*vdwtype[jnrA+0];
952             vdwjidx0B        = 2*vdwtype[jnrB+0];
953             vdwjidx0C        = 2*vdwtype[jnrC+0];
954             vdwjidx0D        = 2*vdwtype[jnrD+0];
955
956             fjx0             = _mm_setzero_ps();
957             fjy0             = _mm_setzero_ps();
958             fjz0             = _mm_setzero_ps();
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             r00              = _mm_mul_ps(rsq00,rinv00);
965
966             /* Compute parameters for interactions between i and j atoms */
967             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
968                                          vdwparam+vdwioffset0+vdwjidx0B,
969                                          vdwparam+vdwioffset0+vdwjidx0C,
970                                          vdwparam+vdwioffset0+vdwjidx0D,
971                                          &c6_00,&c12_00);
972
973             /* Calculate table index by multiplying r with table scale and truncate to integer */
974             rt               = _mm_mul_ps(r00,vftabscale);
975             vfitab           = _mm_cvttps_epi32(rt);
976             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
977             vfitab           = _mm_slli_epi32(vfitab,3);
978
979             /* CUBIC SPLINE TABLE DISPERSION */
980             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
981             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
982             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
983             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
984             _MM_TRANSPOSE4_PS(Y,F,G,H);
985             Heps             = _mm_mul_ps(vfeps,H);
986             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
987             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
988             fvdw6            = _mm_mul_ps(c6_00,FF);
989
990             /* CUBIC SPLINE TABLE REPULSION */
991             vfitab           = _mm_add_epi32(vfitab,ifour);
992             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
993             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
994             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
995             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
996             _MM_TRANSPOSE4_PS(Y,F,G,H);
997             Heps             = _mm_mul_ps(vfeps,H);
998             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
999             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1000             fvdw12           = _mm_mul_ps(c12_00,FF);
1001             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1002
1003             fscal            = fvdw;
1004
1005             /* Calculate temporary vectorial force */
1006             tx               = _mm_mul_ps(fscal,dx00);
1007             ty               = _mm_mul_ps(fscal,dy00);
1008             tz               = _mm_mul_ps(fscal,dz00);
1009
1010             /* Update vectorial force */
1011             fix0             = _mm_add_ps(fix0,tx);
1012             fiy0             = _mm_add_ps(fiy0,ty);
1013             fiz0             = _mm_add_ps(fiz0,tz);
1014
1015             fjx0             = _mm_add_ps(fjx0,tx);
1016             fjy0             = _mm_add_ps(fjy0,ty);
1017             fjz0             = _mm_add_ps(fjz0,tz);
1018             
1019             /**************************
1020              * CALCULATE INTERACTIONS *
1021              **************************/
1022
1023             if (gmx_mm_any_lt(rsq10,rcutoff2))
1024             {
1025
1026             /* Compute parameters for interactions between i and j atoms */
1027             qq10             = _mm_mul_ps(iq1,jq0);
1028
1029             /* REACTION-FIELD ELECTROSTATICS */
1030             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1031
1032             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1033
1034             fscal            = felec;
1035
1036             fscal            = _mm_and_ps(fscal,cutoff_mask);
1037
1038             /* Calculate temporary vectorial force */
1039             tx               = _mm_mul_ps(fscal,dx10);
1040             ty               = _mm_mul_ps(fscal,dy10);
1041             tz               = _mm_mul_ps(fscal,dz10);
1042
1043             /* Update vectorial force */
1044             fix1             = _mm_add_ps(fix1,tx);
1045             fiy1             = _mm_add_ps(fiy1,ty);
1046             fiz1             = _mm_add_ps(fiz1,tz);
1047
1048             fjx0             = _mm_add_ps(fjx0,tx);
1049             fjy0             = _mm_add_ps(fjy0,ty);
1050             fjz0             = _mm_add_ps(fjz0,tz);
1051             
1052             }
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             if (gmx_mm_any_lt(rsq20,rcutoff2))
1059             {
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             qq20             = _mm_mul_ps(iq2,jq0);
1063
1064             /* REACTION-FIELD ELECTROSTATICS */
1065             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1066
1067             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1068
1069             fscal            = felec;
1070
1071             fscal            = _mm_and_ps(fscal,cutoff_mask);
1072
1073             /* Calculate temporary vectorial force */
1074             tx               = _mm_mul_ps(fscal,dx20);
1075             ty               = _mm_mul_ps(fscal,dy20);
1076             tz               = _mm_mul_ps(fscal,dz20);
1077
1078             /* Update vectorial force */
1079             fix2             = _mm_add_ps(fix2,tx);
1080             fiy2             = _mm_add_ps(fiy2,ty);
1081             fiz2             = _mm_add_ps(fiz2,tz);
1082
1083             fjx0             = _mm_add_ps(fjx0,tx);
1084             fjy0             = _mm_add_ps(fjy0,ty);
1085             fjz0             = _mm_add_ps(fjz0,tz);
1086             
1087             }
1088
1089             /**************************
1090              * CALCULATE INTERACTIONS *
1091              **************************/
1092
1093             if (gmx_mm_any_lt(rsq30,rcutoff2))
1094             {
1095
1096             /* Compute parameters for interactions between i and j atoms */
1097             qq30             = _mm_mul_ps(iq3,jq0);
1098
1099             /* REACTION-FIELD ELECTROSTATICS */
1100             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1101
1102             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1103
1104             fscal            = felec;
1105
1106             fscal            = _mm_and_ps(fscal,cutoff_mask);
1107
1108             /* Calculate temporary vectorial force */
1109             tx               = _mm_mul_ps(fscal,dx30);
1110             ty               = _mm_mul_ps(fscal,dy30);
1111             tz               = _mm_mul_ps(fscal,dz30);
1112
1113             /* Update vectorial force */
1114             fix3             = _mm_add_ps(fix3,tx);
1115             fiy3             = _mm_add_ps(fiy3,ty);
1116             fiz3             = _mm_add_ps(fiz3,tz);
1117
1118             fjx0             = _mm_add_ps(fjx0,tx);
1119             fjy0             = _mm_add_ps(fjy0,ty);
1120             fjz0             = _mm_add_ps(fjz0,tz);
1121             
1122             }
1123
1124             fjptrA             = f+j_coord_offsetA;
1125             fjptrB             = f+j_coord_offsetB;
1126             fjptrC             = f+j_coord_offsetC;
1127             fjptrD             = f+j_coord_offsetD;
1128
1129             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1130
1131             /* Inner loop uses 138 flops */
1132         }
1133
1134         if(jidx<j_index_end)
1135         {
1136
1137             /* Get j neighbor index, and coordinate index */
1138             jnrlistA         = jjnr[jidx];
1139             jnrlistB         = jjnr[jidx+1];
1140             jnrlistC         = jjnr[jidx+2];
1141             jnrlistD         = jjnr[jidx+3];
1142             /* Sign of each element will be negative for non-real atoms.
1143              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1144              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1145              */
1146             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1147             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1148             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1149             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1150             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1151             j_coord_offsetA  = DIM*jnrA;
1152             j_coord_offsetB  = DIM*jnrB;
1153             j_coord_offsetC  = DIM*jnrC;
1154             j_coord_offsetD  = DIM*jnrD;
1155
1156             /* load j atom coordinates */
1157             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1158                                               x+j_coord_offsetC,x+j_coord_offsetD,
1159                                               &jx0,&jy0,&jz0);
1160
1161             /* Calculate displacement vector */
1162             dx00             = _mm_sub_ps(ix0,jx0);
1163             dy00             = _mm_sub_ps(iy0,jy0);
1164             dz00             = _mm_sub_ps(iz0,jz0);
1165             dx10             = _mm_sub_ps(ix1,jx0);
1166             dy10             = _mm_sub_ps(iy1,jy0);
1167             dz10             = _mm_sub_ps(iz1,jz0);
1168             dx20             = _mm_sub_ps(ix2,jx0);
1169             dy20             = _mm_sub_ps(iy2,jy0);
1170             dz20             = _mm_sub_ps(iz2,jz0);
1171             dx30             = _mm_sub_ps(ix3,jx0);
1172             dy30             = _mm_sub_ps(iy3,jy0);
1173             dz30             = _mm_sub_ps(iz3,jz0);
1174
1175             /* Calculate squared distance and things based on it */
1176             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1177             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1178             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1179             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1180
1181             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1182             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1183             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1184             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1185
1186             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1187             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1188             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1189
1190             /* Load parameters for j particles */
1191             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1192                                                               charge+jnrC+0,charge+jnrD+0);
1193             vdwjidx0A        = 2*vdwtype[jnrA+0];
1194             vdwjidx0B        = 2*vdwtype[jnrB+0];
1195             vdwjidx0C        = 2*vdwtype[jnrC+0];
1196             vdwjidx0D        = 2*vdwtype[jnrD+0];
1197
1198             fjx0             = _mm_setzero_ps();
1199             fjy0             = _mm_setzero_ps();
1200             fjz0             = _mm_setzero_ps();
1201
1202             /**************************
1203              * CALCULATE INTERACTIONS *
1204              **************************/
1205
1206             r00              = _mm_mul_ps(rsq00,rinv00);
1207             r00              = _mm_andnot_ps(dummy_mask,r00);
1208
1209             /* Compute parameters for interactions between i and j atoms */
1210             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1211                                          vdwparam+vdwioffset0+vdwjidx0B,
1212                                          vdwparam+vdwioffset0+vdwjidx0C,
1213                                          vdwparam+vdwioffset0+vdwjidx0D,
1214                                          &c6_00,&c12_00);
1215
1216             /* Calculate table index by multiplying r with table scale and truncate to integer */
1217             rt               = _mm_mul_ps(r00,vftabscale);
1218             vfitab           = _mm_cvttps_epi32(rt);
1219             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1220             vfitab           = _mm_slli_epi32(vfitab,3);
1221
1222             /* CUBIC SPLINE TABLE DISPERSION */
1223             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1224             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1225             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1226             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1227             _MM_TRANSPOSE4_PS(Y,F,G,H);
1228             Heps             = _mm_mul_ps(vfeps,H);
1229             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1230             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1231             fvdw6            = _mm_mul_ps(c6_00,FF);
1232
1233             /* CUBIC SPLINE TABLE REPULSION */
1234             vfitab           = _mm_add_epi32(vfitab,ifour);
1235             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1236             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1237             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1238             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1239             _MM_TRANSPOSE4_PS(Y,F,G,H);
1240             Heps             = _mm_mul_ps(vfeps,H);
1241             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1242             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1243             fvdw12           = _mm_mul_ps(c12_00,FF);
1244             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1245
1246             fscal            = fvdw;
1247
1248             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1249
1250             /* Calculate temporary vectorial force */
1251             tx               = _mm_mul_ps(fscal,dx00);
1252             ty               = _mm_mul_ps(fscal,dy00);
1253             tz               = _mm_mul_ps(fscal,dz00);
1254
1255             /* Update vectorial force */
1256             fix0             = _mm_add_ps(fix0,tx);
1257             fiy0             = _mm_add_ps(fiy0,ty);
1258             fiz0             = _mm_add_ps(fiz0,tz);
1259
1260             fjx0             = _mm_add_ps(fjx0,tx);
1261             fjy0             = _mm_add_ps(fjy0,ty);
1262             fjz0             = _mm_add_ps(fjz0,tz);
1263             
1264             /**************************
1265              * CALCULATE INTERACTIONS *
1266              **************************/
1267
1268             if (gmx_mm_any_lt(rsq10,rcutoff2))
1269             {
1270
1271             /* Compute parameters for interactions between i and j atoms */
1272             qq10             = _mm_mul_ps(iq1,jq0);
1273
1274             /* REACTION-FIELD ELECTROSTATICS */
1275             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1276
1277             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1278
1279             fscal            = felec;
1280
1281             fscal            = _mm_and_ps(fscal,cutoff_mask);
1282
1283             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1284
1285             /* Calculate temporary vectorial force */
1286             tx               = _mm_mul_ps(fscal,dx10);
1287             ty               = _mm_mul_ps(fscal,dy10);
1288             tz               = _mm_mul_ps(fscal,dz10);
1289
1290             /* Update vectorial force */
1291             fix1             = _mm_add_ps(fix1,tx);
1292             fiy1             = _mm_add_ps(fiy1,ty);
1293             fiz1             = _mm_add_ps(fiz1,tz);
1294
1295             fjx0             = _mm_add_ps(fjx0,tx);
1296             fjy0             = _mm_add_ps(fjy0,ty);
1297             fjz0             = _mm_add_ps(fjz0,tz);
1298             
1299             }
1300
1301             /**************************
1302              * CALCULATE INTERACTIONS *
1303              **************************/
1304
1305             if (gmx_mm_any_lt(rsq20,rcutoff2))
1306             {
1307
1308             /* Compute parameters for interactions between i and j atoms */
1309             qq20             = _mm_mul_ps(iq2,jq0);
1310
1311             /* REACTION-FIELD ELECTROSTATICS */
1312             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1313
1314             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1315
1316             fscal            = felec;
1317
1318             fscal            = _mm_and_ps(fscal,cutoff_mask);
1319
1320             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1321
1322             /* Calculate temporary vectorial force */
1323             tx               = _mm_mul_ps(fscal,dx20);
1324             ty               = _mm_mul_ps(fscal,dy20);
1325             tz               = _mm_mul_ps(fscal,dz20);
1326
1327             /* Update vectorial force */
1328             fix2             = _mm_add_ps(fix2,tx);
1329             fiy2             = _mm_add_ps(fiy2,ty);
1330             fiz2             = _mm_add_ps(fiz2,tz);
1331
1332             fjx0             = _mm_add_ps(fjx0,tx);
1333             fjy0             = _mm_add_ps(fjy0,ty);
1334             fjz0             = _mm_add_ps(fjz0,tz);
1335             
1336             }
1337
1338             /**************************
1339              * CALCULATE INTERACTIONS *
1340              **************************/
1341
1342             if (gmx_mm_any_lt(rsq30,rcutoff2))
1343             {
1344
1345             /* Compute parameters for interactions between i and j atoms */
1346             qq30             = _mm_mul_ps(iq3,jq0);
1347
1348             /* REACTION-FIELD ELECTROSTATICS */
1349             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1350
1351             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1352
1353             fscal            = felec;
1354
1355             fscal            = _mm_and_ps(fscal,cutoff_mask);
1356
1357             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1358
1359             /* Calculate temporary vectorial force */
1360             tx               = _mm_mul_ps(fscal,dx30);
1361             ty               = _mm_mul_ps(fscal,dy30);
1362             tz               = _mm_mul_ps(fscal,dz30);
1363
1364             /* Update vectorial force */
1365             fix3             = _mm_add_ps(fix3,tx);
1366             fiy3             = _mm_add_ps(fiy3,ty);
1367             fiz3             = _mm_add_ps(fiz3,tz);
1368
1369             fjx0             = _mm_add_ps(fjx0,tx);
1370             fjy0             = _mm_add_ps(fjy0,ty);
1371             fjz0             = _mm_add_ps(fjz0,tz);
1372             
1373             }
1374
1375             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1376             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1377             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1378             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1379
1380             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1381
1382             /* Inner loop uses 139 flops */
1383         }
1384
1385         /* End of innermost loop */
1386
1387         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1388                                               f+i_coord_offset,fshift+i_shift_offset);
1389
1390         /* Increment number of inner iterations */
1391         inneriter                  += j_index_end - j_index_start;
1392
1393         /* Outer loop uses 24 flops */
1394     }
1395
1396     /* Increment number of outer iterations */
1397     outeriter        += nri;
1398
1399     /* Update outer/inner flops */
1400
1401     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*139);
1402 }