Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
84     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
85     __m128i          vfitab;
86     __m128i          ifour       = _mm_set1_epi32(4);
87     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
88     real             *vftab;
89     __m128           dummy_mask,cutoff_mask;
90     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
91     __m128           one     = _mm_set1_ps(1.0);
92     __m128           two     = _mm_set1_ps(2.0);
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = _mm_set1_ps(fr->epsfac);
105     charge           = mdatoms->chargeA;
106     krf              = _mm_set1_ps(fr->ic->k_rf);
107     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
108     crf              = _mm_set1_ps(fr->ic->c_rf);
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
119     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
120     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124     rcutoff_scalar   = fr->rcoulomb;
125     rcutoff          = _mm_set1_ps(rcutoff_scalar);
126     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143         shX              = shiftvec[i_shift_offset+XX];
144         shY              = shiftvec[i_shift_offset+YY];
145         shZ              = shiftvec[i_shift_offset+ZZ];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
157         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
158         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
159         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
160         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
161         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
162         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
163         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
164         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
165
166         fix0             = _mm_setzero_ps();
167         fiy0             = _mm_setzero_ps();
168         fiz0             = _mm_setzero_ps();
169         fix1             = _mm_setzero_ps();
170         fiy1             = _mm_setzero_ps();
171         fiz1             = _mm_setzero_ps();
172         fix2             = _mm_setzero_ps();
173         fiy2             = _mm_setzero_ps();
174         fiz2             = _mm_setzero_ps();
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_ps();
178         vvdwsum          = _mm_setzero_ps();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192             j_coord_offsetC  = DIM*jnrC;
193             j_coord_offsetD  = DIM*jnrD;
194
195             /* load j atom coordinates */
196             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               x+j_coord_offsetC,x+j_coord_offsetD,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm_sub_ps(ix0,jx0);
202             dy00             = _mm_sub_ps(iy0,jy0);
203             dz00             = _mm_sub_ps(iz0,jz0);
204             dx10             = _mm_sub_ps(ix1,jx0);
205             dy10             = _mm_sub_ps(iy1,jy0);
206             dz10             = _mm_sub_ps(iz1,jz0);
207             dx20             = _mm_sub_ps(ix2,jx0);
208             dy20             = _mm_sub_ps(iy2,jy0);
209             dz20             = _mm_sub_ps(iz2,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
213             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
214             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
215
216             rinv00           = gmx_mm_invsqrt_ps(rsq00);
217             rinv10           = gmx_mm_invsqrt_ps(rsq10);
218             rinv20           = gmx_mm_invsqrt_ps(rsq20);
219
220             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
221             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
222             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
226                                                               charge+jnrC+0,charge+jnrD+0);
227             vdwjidx0A        = 2*vdwtype[jnrA+0];
228             vdwjidx0B        = 2*vdwtype[jnrB+0];
229             vdwjidx0C        = 2*vdwtype[jnrC+0];
230             vdwjidx0D        = 2*vdwtype[jnrD+0];
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             if (gmx_mm_any_lt(rsq00,rcutoff2))
237             {
238
239             r00              = _mm_mul_ps(rsq00,rinv00);
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _mm_mul_ps(iq0,jq0);
243             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
244                                          vdwparam+vdwioffset0+vdwjidx0B,
245                                          vdwparam+vdwioffset0+vdwjidx0C,
246                                          vdwparam+vdwioffset0+vdwjidx0D,
247                                          &c6_00,&c12_00);
248
249             /* Calculate table index by multiplying r with table scale and truncate to integer */
250             rt               = _mm_mul_ps(r00,vftabscale);
251             vfitab           = _mm_cvttps_epi32(rt);
252             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
253             vfitab           = _mm_slli_epi32(vfitab,3);
254
255             /* REACTION-FIELD ELECTROSTATICS */
256             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
257             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
258
259             /* CUBIC SPLINE TABLE DISPERSION */
260             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
261             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
262             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
263             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
264             _MM_TRANSPOSE4_PS(Y,F,G,H);
265             Heps             = _mm_mul_ps(vfeps,H);
266             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
267             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
268             vvdw6            = _mm_mul_ps(c6_00,VV);
269             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
270             fvdw6            = _mm_mul_ps(c6_00,FF);
271
272             /* CUBIC SPLINE TABLE REPULSION */
273             vfitab           = _mm_add_epi32(vfitab,ifour);
274             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
275             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
276             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
277             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
278             _MM_TRANSPOSE4_PS(Y,F,G,H);
279             Heps             = _mm_mul_ps(vfeps,H);
280             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
281             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
282             vvdw12           = _mm_mul_ps(c12_00,VV);
283             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
284             fvdw12           = _mm_mul_ps(c12_00,FF);
285             vvdw             = _mm_add_ps(vvdw12,vvdw6);
286             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
287
288             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             velec            = _mm_and_ps(velec,cutoff_mask);
292             velecsum         = _mm_add_ps(velecsum,velec);
293             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
294             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
295
296             fscal            = _mm_add_ps(felec,fvdw);
297
298             fscal            = _mm_and_ps(fscal,cutoff_mask);
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm_mul_ps(fscal,dx00);
302             ty               = _mm_mul_ps(fscal,dy00);
303             tz               = _mm_mul_ps(fscal,dz00);
304
305             /* Update vectorial force */
306             fix0             = _mm_add_ps(fix0,tx);
307             fiy0             = _mm_add_ps(fiy0,ty);
308             fiz0             = _mm_add_ps(fiz0,tz);
309
310             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
311                                                    f+j_coord_offsetC,f+j_coord_offsetD,
312                                                    tx,ty,tz);
313
314             }
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             if (gmx_mm_any_lt(rsq10,rcutoff2))
321             {
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq10             = _mm_mul_ps(iq1,jq0);
325
326             /* REACTION-FIELD ELECTROSTATICS */
327             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
328             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
329
330             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velec            = _mm_and_ps(velec,cutoff_mask);
334             velecsum         = _mm_add_ps(velecsum,velec);
335
336             fscal            = felec;
337
338             fscal            = _mm_and_ps(fscal,cutoff_mask);
339
340             /* Calculate temporary vectorial force */
341             tx               = _mm_mul_ps(fscal,dx10);
342             ty               = _mm_mul_ps(fscal,dy10);
343             tz               = _mm_mul_ps(fscal,dz10);
344
345             /* Update vectorial force */
346             fix1             = _mm_add_ps(fix1,tx);
347             fiy1             = _mm_add_ps(fiy1,ty);
348             fiz1             = _mm_add_ps(fiz1,tz);
349
350             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
351                                                    f+j_coord_offsetC,f+j_coord_offsetD,
352                                                    tx,ty,tz);
353
354             }
355
356             /**************************
357              * CALCULATE INTERACTIONS *
358              **************************/
359
360             if (gmx_mm_any_lt(rsq20,rcutoff2))
361             {
362
363             /* Compute parameters for interactions between i and j atoms */
364             qq20             = _mm_mul_ps(iq2,jq0);
365
366             /* REACTION-FIELD ELECTROSTATICS */
367             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
368             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
369
370             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velec            = _mm_and_ps(velec,cutoff_mask);
374             velecsum         = _mm_add_ps(velecsum,velec);
375
376             fscal            = felec;
377
378             fscal            = _mm_and_ps(fscal,cutoff_mask);
379
380             /* Calculate temporary vectorial force */
381             tx               = _mm_mul_ps(fscal,dx20);
382             ty               = _mm_mul_ps(fscal,dy20);
383             tz               = _mm_mul_ps(fscal,dz20);
384
385             /* Update vectorial force */
386             fix2             = _mm_add_ps(fix2,tx);
387             fiy2             = _mm_add_ps(fiy2,ty);
388             fiz2             = _mm_add_ps(fiz2,tz);
389
390             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
391                                                    f+j_coord_offsetC,f+j_coord_offsetD,
392                                                    tx,ty,tz);
393
394             }
395
396             /* Inner loop uses 144 flops */
397         }
398
399         if(jidx<j_index_end)
400         {
401
402             /* Get j neighbor index, and coordinate index */
403             jnrA             = jjnr[jidx];
404             jnrB             = jjnr[jidx+1];
405             jnrC             = jjnr[jidx+2];
406             jnrD             = jjnr[jidx+3];
407
408             /* Sign of each element will be negative for non-real atoms.
409              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
410              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
411              */
412             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
413             jnrA       = (jnrA>=0) ? jnrA : 0;
414             jnrB       = (jnrB>=0) ? jnrB : 0;
415             jnrC       = (jnrC>=0) ? jnrC : 0;
416             jnrD       = (jnrD>=0) ? jnrD : 0;
417
418             j_coord_offsetA  = DIM*jnrA;
419             j_coord_offsetB  = DIM*jnrB;
420             j_coord_offsetC  = DIM*jnrC;
421             j_coord_offsetD  = DIM*jnrD;
422
423             /* load j atom coordinates */
424             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
425                                               x+j_coord_offsetC,x+j_coord_offsetD,
426                                               &jx0,&jy0,&jz0);
427
428             /* Calculate displacement vector */
429             dx00             = _mm_sub_ps(ix0,jx0);
430             dy00             = _mm_sub_ps(iy0,jy0);
431             dz00             = _mm_sub_ps(iz0,jz0);
432             dx10             = _mm_sub_ps(ix1,jx0);
433             dy10             = _mm_sub_ps(iy1,jy0);
434             dz10             = _mm_sub_ps(iz1,jz0);
435             dx20             = _mm_sub_ps(ix2,jx0);
436             dy20             = _mm_sub_ps(iy2,jy0);
437             dz20             = _mm_sub_ps(iz2,jz0);
438
439             /* Calculate squared distance and things based on it */
440             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
441             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
442             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
443
444             rinv00           = gmx_mm_invsqrt_ps(rsq00);
445             rinv10           = gmx_mm_invsqrt_ps(rsq10);
446             rinv20           = gmx_mm_invsqrt_ps(rsq20);
447
448             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
449             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
450             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
451
452             /* Load parameters for j particles */
453             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
454                                                               charge+jnrC+0,charge+jnrD+0);
455             vdwjidx0A        = 2*vdwtype[jnrA+0];
456             vdwjidx0B        = 2*vdwtype[jnrB+0];
457             vdwjidx0C        = 2*vdwtype[jnrC+0];
458             vdwjidx0D        = 2*vdwtype[jnrD+0];
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             if (gmx_mm_any_lt(rsq00,rcutoff2))
465             {
466
467             r00              = _mm_mul_ps(rsq00,rinv00);
468             r00              = _mm_andnot_ps(dummy_mask,r00);
469
470             /* Compute parameters for interactions between i and j atoms */
471             qq00             = _mm_mul_ps(iq0,jq0);
472             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
473                                          vdwparam+vdwioffset0+vdwjidx0B,
474                                          vdwparam+vdwioffset0+vdwjidx0C,
475                                          vdwparam+vdwioffset0+vdwjidx0D,
476                                          &c6_00,&c12_00);
477
478             /* Calculate table index by multiplying r with table scale and truncate to integer */
479             rt               = _mm_mul_ps(r00,vftabscale);
480             vfitab           = _mm_cvttps_epi32(rt);
481             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
482             vfitab           = _mm_slli_epi32(vfitab,3);
483
484             /* REACTION-FIELD ELECTROSTATICS */
485             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
486             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
487
488             /* CUBIC SPLINE TABLE DISPERSION */
489             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
490             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
491             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
492             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
493             _MM_TRANSPOSE4_PS(Y,F,G,H);
494             Heps             = _mm_mul_ps(vfeps,H);
495             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
496             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
497             vvdw6            = _mm_mul_ps(c6_00,VV);
498             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
499             fvdw6            = _mm_mul_ps(c6_00,FF);
500
501             /* CUBIC SPLINE TABLE REPULSION */
502             vfitab           = _mm_add_epi32(vfitab,ifour);
503             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
504             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
505             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
506             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
507             _MM_TRANSPOSE4_PS(Y,F,G,H);
508             Heps             = _mm_mul_ps(vfeps,H);
509             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
510             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
511             vvdw12           = _mm_mul_ps(c12_00,VV);
512             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
513             fvdw12           = _mm_mul_ps(c12_00,FF);
514             vvdw             = _mm_add_ps(vvdw12,vvdw6);
515             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
516
517             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
518
519             /* Update potential sum for this i atom from the interaction with this j atom. */
520             velec            = _mm_and_ps(velec,cutoff_mask);
521             velec            = _mm_andnot_ps(dummy_mask,velec);
522             velecsum         = _mm_add_ps(velecsum,velec);
523             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
524             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
525             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
526
527             fscal            = _mm_add_ps(felec,fvdw);
528
529             fscal            = _mm_and_ps(fscal,cutoff_mask);
530
531             fscal            = _mm_andnot_ps(dummy_mask,fscal);
532
533             /* Calculate temporary vectorial force */
534             tx               = _mm_mul_ps(fscal,dx00);
535             ty               = _mm_mul_ps(fscal,dy00);
536             tz               = _mm_mul_ps(fscal,dz00);
537
538             /* Update vectorial force */
539             fix0             = _mm_add_ps(fix0,tx);
540             fiy0             = _mm_add_ps(fiy0,ty);
541             fiz0             = _mm_add_ps(fiz0,tz);
542
543             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
544                                                    f+j_coord_offsetC,f+j_coord_offsetD,
545                                                    tx,ty,tz);
546
547             }
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             if (gmx_mm_any_lt(rsq10,rcutoff2))
554             {
555
556             /* Compute parameters for interactions between i and j atoms */
557             qq10             = _mm_mul_ps(iq1,jq0);
558
559             /* REACTION-FIELD ELECTROSTATICS */
560             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
561             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
562
563             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
564
565             /* Update potential sum for this i atom from the interaction with this j atom. */
566             velec            = _mm_and_ps(velec,cutoff_mask);
567             velec            = _mm_andnot_ps(dummy_mask,velec);
568             velecsum         = _mm_add_ps(velecsum,velec);
569
570             fscal            = felec;
571
572             fscal            = _mm_and_ps(fscal,cutoff_mask);
573
574             fscal            = _mm_andnot_ps(dummy_mask,fscal);
575
576             /* Calculate temporary vectorial force */
577             tx               = _mm_mul_ps(fscal,dx10);
578             ty               = _mm_mul_ps(fscal,dy10);
579             tz               = _mm_mul_ps(fscal,dz10);
580
581             /* Update vectorial force */
582             fix1             = _mm_add_ps(fix1,tx);
583             fiy1             = _mm_add_ps(fiy1,ty);
584             fiz1             = _mm_add_ps(fiz1,tz);
585
586             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
587                                                    f+j_coord_offsetC,f+j_coord_offsetD,
588                                                    tx,ty,tz);
589
590             }
591
592             /**************************
593              * CALCULATE INTERACTIONS *
594              **************************/
595
596             if (gmx_mm_any_lt(rsq20,rcutoff2))
597             {
598
599             /* Compute parameters for interactions between i and j atoms */
600             qq20             = _mm_mul_ps(iq2,jq0);
601
602             /* REACTION-FIELD ELECTROSTATICS */
603             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
604             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
605
606             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
607
608             /* Update potential sum for this i atom from the interaction with this j atom. */
609             velec            = _mm_and_ps(velec,cutoff_mask);
610             velec            = _mm_andnot_ps(dummy_mask,velec);
611             velecsum         = _mm_add_ps(velecsum,velec);
612
613             fscal            = felec;
614
615             fscal            = _mm_and_ps(fscal,cutoff_mask);
616
617             fscal            = _mm_andnot_ps(dummy_mask,fscal);
618
619             /* Calculate temporary vectorial force */
620             tx               = _mm_mul_ps(fscal,dx20);
621             ty               = _mm_mul_ps(fscal,dy20);
622             tz               = _mm_mul_ps(fscal,dz20);
623
624             /* Update vectorial force */
625             fix2             = _mm_add_ps(fix2,tx);
626             fiy2             = _mm_add_ps(fiy2,ty);
627             fiz2             = _mm_add_ps(fiz2,tz);
628
629             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
630                                                    f+j_coord_offsetC,f+j_coord_offsetD,
631                                                    tx,ty,tz);
632
633             }
634
635             /* Inner loop uses 145 flops */
636         }
637
638         /* End of innermost loop */
639
640         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
641                                               f+i_coord_offset,fshift+i_shift_offset);
642
643         ggid                        = gid[iidx];
644         /* Update potential energies */
645         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
646         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
647
648         /* Increment number of inner iterations */
649         inneriter                  += j_index_end - j_index_start;
650
651         /* Outer loop uses 29 flops */
652     }
653
654     /* Increment number of outer iterations */
655     outeriter        += nri;
656
657     /* Update outer/inner flops */
658
659     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*29 + inneriter*145);
660 }
661 /*
662  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse2_single
663  * Electrostatics interaction: ReactionField
664  * VdW interaction:            CubicSplineTable
665  * Geometry:                   Water3-Particle
666  * Calculate force/pot:        Force
667  */
668 void
669 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse2_single
670                     (t_nblist * gmx_restrict                nlist,
671                      rvec * gmx_restrict                    xx,
672                      rvec * gmx_restrict                    ff,
673                      t_forcerec * gmx_restrict              fr,
674                      t_mdatoms * gmx_restrict               mdatoms,
675                      nb_kernel_data_t * gmx_restrict        kernel_data,
676                      t_nrnb * gmx_restrict                  nrnb)
677 {
678     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
679      * just 0 for non-waters.
680      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
681      * jnr indices corresponding to data put in the four positions in the SIMD register.
682      */
683     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
684     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
685     int              jnrA,jnrB,jnrC,jnrD;
686     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
687     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
688     real             shX,shY,shZ,rcutoff_scalar;
689     real             *shiftvec,*fshift,*x,*f;
690     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
691     int              vdwioffset0;
692     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
693     int              vdwioffset1;
694     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
695     int              vdwioffset2;
696     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
697     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
698     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
699     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
700     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
701     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
702     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
703     real             *charge;
704     int              nvdwtype;
705     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
706     int              *vdwtype;
707     real             *vdwparam;
708     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
709     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
710     __m128i          vfitab;
711     __m128i          ifour       = _mm_set1_epi32(4);
712     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
713     real             *vftab;
714     __m128           dummy_mask,cutoff_mask;
715     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
716     __m128           one     = _mm_set1_ps(1.0);
717     __m128           two     = _mm_set1_ps(2.0);
718     x                = xx[0];
719     f                = ff[0];
720
721     nri              = nlist->nri;
722     iinr             = nlist->iinr;
723     jindex           = nlist->jindex;
724     jjnr             = nlist->jjnr;
725     shiftidx         = nlist->shift;
726     gid              = nlist->gid;
727     shiftvec         = fr->shift_vec[0];
728     fshift           = fr->fshift[0];
729     facel            = _mm_set1_ps(fr->epsfac);
730     charge           = mdatoms->chargeA;
731     krf              = _mm_set1_ps(fr->ic->k_rf);
732     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
733     crf              = _mm_set1_ps(fr->ic->c_rf);
734     nvdwtype         = fr->ntype;
735     vdwparam         = fr->nbfp;
736     vdwtype          = mdatoms->typeA;
737
738     vftab            = kernel_data->table_vdw->data;
739     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
740
741     /* Setup water-specific parameters */
742     inr              = nlist->iinr[0];
743     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
744     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
745     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
746     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
747
748     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
749     rcutoff_scalar   = fr->rcoulomb;
750     rcutoff          = _mm_set1_ps(rcutoff_scalar);
751     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
752
753     /* Avoid stupid compiler warnings */
754     jnrA = jnrB = jnrC = jnrD = 0;
755     j_coord_offsetA = 0;
756     j_coord_offsetB = 0;
757     j_coord_offsetC = 0;
758     j_coord_offsetD = 0;
759
760     outeriter        = 0;
761     inneriter        = 0;
762
763     /* Start outer loop over neighborlists */
764     for(iidx=0; iidx<nri; iidx++)
765     {
766         /* Load shift vector for this list */
767         i_shift_offset   = DIM*shiftidx[iidx];
768         shX              = shiftvec[i_shift_offset+XX];
769         shY              = shiftvec[i_shift_offset+YY];
770         shZ              = shiftvec[i_shift_offset+ZZ];
771
772         /* Load limits for loop over neighbors */
773         j_index_start    = jindex[iidx];
774         j_index_end      = jindex[iidx+1];
775
776         /* Get outer coordinate index */
777         inr              = iinr[iidx];
778         i_coord_offset   = DIM*inr;
779
780         /* Load i particle coords and add shift vector */
781         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
782         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
783         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
784         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
785         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
786         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
787         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
788         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
789         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
790
791         fix0             = _mm_setzero_ps();
792         fiy0             = _mm_setzero_ps();
793         fiz0             = _mm_setzero_ps();
794         fix1             = _mm_setzero_ps();
795         fiy1             = _mm_setzero_ps();
796         fiz1             = _mm_setzero_ps();
797         fix2             = _mm_setzero_ps();
798         fiy2             = _mm_setzero_ps();
799         fiz2             = _mm_setzero_ps();
800
801         /* Start inner kernel loop */
802         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
803         {
804
805             /* Get j neighbor index, and coordinate index */
806             jnrA             = jjnr[jidx];
807             jnrB             = jjnr[jidx+1];
808             jnrC             = jjnr[jidx+2];
809             jnrD             = jjnr[jidx+3];
810
811             j_coord_offsetA  = DIM*jnrA;
812             j_coord_offsetB  = DIM*jnrB;
813             j_coord_offsetC  = DIM*jnrC;
814             j_coord_offsetD  = DIM*jnrD;
815
816             /* load j atom coordinates */
817             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
818                                               x+j_coord_offsetC,x+j_coord_offsetD,
819                                               &jx0,&jy0,&jz0);
820
821             /* Calculate displacement vector */
822             dx00             = _mm_sub_ps(ix0,jx0);
823             dy00             = _mm_sub_ps(iy0,jy0);
824             dz00             = _mm_sub_ps(iz0,jz0);
825             dx10             = _mm_sub_ps(ix1,jx0);
826             dy10             = _mm_sub_ps(iy1,jy0);
827             dz10             = _mm_sub_ps(iz1,jz0);
828             dx20             = _mm_sub_ps(ix2,jx0);
829             dy20             = _mm_sub_ps(iy2,jy0);
830             dz20             = _mm_sub_ps(iz2,jz0);
831
832             /* Calculate squared distance and things based on it */
833             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
834             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
835             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
836
837             rinv00           = gmx_mm_invsqrt_ps(rsq00);
838             rinv10           = gmx_mm_invsqrt_ps(rsq10);
839             rinv20           = gmx_mm_invsqrt_ps(rsq20);
840
841             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
842             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
843             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
844
845             /* Load parameters for j particles */
846             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
847                                                               charge+jnrC+0,charge+jnrD+0);
848             vdwjidx0A        = 2*vdwtype[jnrA+0];
849             vdwjidx0B        = 2*vdwtype[jnrB+0];
850             vdwjidx0C        = 2*vdwtype[jnrC+0];
851             vdwjidx0D        = 2*vdwtype[jnrD+0];
852
853             /**************************
854              * CALCULATE INTERACTIONS *
855              **************************/
856
857             if (gmx_mm_any_lt(rsq00,rcutoff2))
858             {
859
860             r00              = _mm_mul_ps(rsq00,rinv00);
861
862             /* Compute parameters for interactions between i and j atoms */
863             qq00             = _mm_mul_ps(iq0,jq0);
864             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
865                                          vdwparam+vdwioffset0+vdwjidx0B,
866                                          vdwparam+vdwioffset0+vdwjidx0C,
867                                          vdwparam+vdwioffset0+vdwjidx0D,
868                                          &c6_00,&c12_00);
869
870             /* Calculate table index by multiplying r with table scale and truncate to integer */
871             rt               = _mm_mul_ps(r00,vftabscale);
872             vfitab           = _mm_cvttps_epi32(rt);
873             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
874             vfitab           = _mm_slli_epi32(vfitab,3);
875
876             /* REACTION-FIELD ELECTROSTATICS */
877             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
878
879             /* CUBIC SPLINE TABLE DISPERSION */
880             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
881             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
882             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
883             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
884             _MM_TRANSPOSE4_PS(Y,F,G,H);
885             Heps             = _mm_mul_ps(vfeps,H);
886             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
887             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
888             fvdw6            = _mm_mul_ps(c6_00,FF);
889
890             /* CUBIC SPLINE TABLE REPULSION */
891             vfitab           = _mm_add_epi32(vfitab,ifour);
892             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
893             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
894             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
895             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
896             _MM_TRANSPOSE4_PS(Y,F,G,H);
897             Heps             = _mm_mul_ps(vfeps,H);
898             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
899             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
900             fvdw12           = _mm_mul_ps(c12_00,FF);
901             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
902
903             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
904
905             fscal            = _mm_add_ps(felec,fvdw);
906
907             fscal            = _mm_and_ps(fscal,cutoff_mask);
908
909             /* Calculate temporary vectorial force */
910             tx               = _mm_mul_ps(fscal,dx00);
911             ty               = _mm_mul_ps(fscal,dy00);
912             tz               = _mm_mul_ps(fscal,dz00);
913
914             /* Update vectorial force */
915             fix0             = _mm_add_ps(fix0,tx);
916             fiy0             = _mm_add_ps(fiy0,ty);
917             fiz0             = _mm_add_ps(fiz0,tz);
918
919             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
920                                                    f+j_coord_offsetC,f+j_coord_offsetD,
921                                                    tx,ty,tz);
922
923             }
924
925             /**************************
926              * CALCULATE INTERACTIONS *
927              **************************/
928
929             if (gmx_mm_any_lt(rsq10,rcutoff2))
930             {
931
932             /* Compute parameters for interactions between i and j atoms */
933             qq10             = _mm_mul_ps(iq1,jq0);
934
935             /* REACTION-FIELD ELECTROSTATICS */
936             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
937
938             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
939
940             fscal            = felec;
941
942             fscal            = _mm_and_ps(fscal,cutoff_mask);
943
944             /* Calculate temporary vectorial force */
945             tx               = _mm_mul_ps(fscal,dx10);
946             ty               = _mm_mul_ps(fscal,dy10);
947             tz               = _mm_mul_ps(fscal,dz10);
948
949             /* Update vectorial force */
950             fix1             = _mm_add_ps(fix1,tx);
951             fiy1             = _mm_add_ps(fiy1,ty);
952             fiz1             = _mm_add_ps(fiz1,tz);
953
954             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
955                                                    f+j_coord_offsetC,f+j_coord_offsetD,
956                                                    tx,ty,tz);
957
958             }
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             if (gmx_mm_any_lt(rsq20,rcutoff2))
965             {
966
967             /* Compute parameters for interactions between i and j atoms */
968             qq20             = _mm_mul_ps(iq2,jq0);
969
970             /* REACTION-FIELD ELECTROSTATICS */
971             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
972
973             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
974
975             fscal            = felec;
976
977             fscal            = _mm_and_ps(fscal,cutoff_mask);
978
979             /* Calculate temporary vectorial force */
980             tx               = _mm_mul_ps(fscal,dx20);
981             ty               = _mm_mul_ps(fscal,dy20);
982             tz               = _mm_mul_ps(fscal,dz20);
983
984             /* Update vectorial force */
985             fix2             = _mm_add_ps(fix2,tx);
986             fiy2             = _mm_add_ps(fiy2,ty);
987             fiz2             = _mm_add_ps(fiz2,tz);
988
989             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
990                                                    f+j_coord_offsetC,f+j_coord_offsetD,
991                                                    tx,ty,tz);
992
993             }
994
995             /* Inner loop uses 117 flops */
996         }
997
998         if(jidx<j_index_end)
999         {
1000
1001             /* Get j neighbor index, and coordinate index */
1002             jnrA             = jjnr[jidx];
1003             jnrB             = jjnr[jidx+1];
1004             jnrC             = jjnr[jidx+2];
1005             jnrD             = jjnr[jidx+3];
1006
1007             /* Sign of each element will be negative for non-real atoms.
1008              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1009              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1010              */
1011             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1012             jnrA       = (jnrA>=0) ? jnrA : 0;
1013             jnrB       = (jnrB>=0) ? jnrB : 0;
1014             jnrC       = (jnrC>=0) ? jnrC : 0;
1015             jnrD       = (jnrD>=0) ? jnrD : 0;
1016
1017             j_coord_offsetA  = DIM*jnrA;
1018             j_coord_offsetB  = DIM*jnrB;
1019             j_coord_offsetC  = DIM*jnrC;
1020             j_coord_offsetD  = DIM*jnrD;
1021
1022             /* load j atom coordinates */
1023             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1024                                               x+j_coord_offsetC,x+j_coord_offsetD,
1025                                               &jx0,&jy0,&jz0);
1026
1027             /* Calculate displacement vector */
1028             dx00             = _mm_sub_ps(ix0,jx0);
1029             dy00             = _mm_sub_ps(iy0,jy0);
1030             dz00             = _mm_sub_ps(iz0,jz0);
1031             dx10             = _mm_sub_ps(ix1,jx0);
1032             dy10             = _mm_sub_ps(iy1,jy0);
1033             dz10             = _mm_sub_ps(iz1,jz0);
1034             dx20             = _mm_sub_ps(ix2,jx0);
1035             dy20             = _mm_sub_ps(iy2,jy0);
1036             dz20             = _mm_sub_ps(iz2,jz0);
1037
1038             /* Calculate squared distance and things based on it */
1039             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1040             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1041             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1042
1043             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1044             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1045             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1046
1047             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1048             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1049             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1050
1051             /* Load parameters for j particles */
1052             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1053                                                               charge+jnrC+0,charge+jnrD+0);
1054             vdwjidx0A        = 2*vdwtype[jnrA+0];
1055             vdwjidx0B        = 2*vdwtype[jnrB+0];
1056             vdwjidx0C        = 2*vdwtype[jnrC+0];
1057             vdwjidx0D        = 2*vdwtype[jnrD+0];
1058
1059             /**************************
1060              * CALCULATE INTERACTIONS *
1061              **************************/
1062
1063             if (gmx_mm_any_lt(rsq00,rcutoff2))
1064             {
1065
1066             r00              = _mm_mul_ps(rsq00,rinv00);
1067             r00              = _mm_andnot_ps(dummy_mask,r00);
1068
1069             /* Compute parameters for interactions between i and j atoms */
1070             qq00             = _mm_mul_ps(iq0,jq0);
1071             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1072                                          vdwparam+vdwioffset0+vdwjidx0B,
1073                                          vdwparam+vdwioffset0+vdwjidx0C,
1074                                          vdwparam+vdwioffset0+vdwjidx0D,
1075                                          &c6_00,&c12_00);
1076
1077             /* Calculate table index by multiplying r with table scale and truncate to integer */
1078             rt               = _mm_mul_ps(r00,vftabscale);
1079             vfitab           = _mm_cvttps_epi32(rt);
1080             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1081             vfitab           = _mm_slli_epi32(vfitab,3);
1082
1083             /* REACTION-FIELD ELECTROSTATICS */
1084             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1085
1086             /* CUBIC SPLINE TABLE DISPERSION */
1087             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1088             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1089             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1090             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1091             _MM_TRANSPOSE4_PS(Y,F,G,H);
1092             Heps             = _mm_mul_ps(vfeps,H);
1093             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1094             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1095             fvdw6            = _mm_mul_ps(c6_00,FF);
1096
1097             /* CUBIC SPLINE TABLE REPULSION */
1098             vfitab           = _mm_add_epi32(vfitab,ifour);
1099             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1100             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1101             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1102             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1103             _MM_TRANSPOSE4_PS(Y,F,G,H);
1104             Heps             = _mm_mul_ps(vfeps,H);
1105             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1106             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1107             fvdw12           = _mm_mul_ps(c12_00,FF);
1108             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1109
1110             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1111
1112             fscal            = _mm_add_ps(felec,fvdw);
1113
1114             fscal            = _mm_and_ps(fscal,cutoff_mask);
1115
1116             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1117
1118             /* Calculate temporary vectorial force */
1119             tx               = _mm_mul_ps(fscal,dx00);
1120             ty               = _mm_mul_ps(fscal,dy00);
1121             tz               = _mm_mul_ps(fscal,dz00);
1122
1123             /* Update vectorial force */
1124             fix0             = _mm_add_ps(fix0,tx);
1125             fiy0             = _mm_add_ps(fiy0,ty);
1126             fiz0             = _mm_add_ps(fiz0,tz);
1127
1128             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1129                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1130                                                    tx,ty,tz);
1131
1132             }
1133
1134             /**************************
1135              * CALCULATE INTERACTIONS *
1136              **************************/
1137
1138             if (gmx_mm_any_lt(rsq10,rcutoff2))
1139             {
1140
1141             /* Compute parameters for interactions between i and j atoms */
1142             qq10             = _mm_mul_ps(iq1,jq0);
1143
1144             /* REACTION-FIELD ELECTROSTATICS */
1145             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1146
1147             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1148
1149             fscal            = felec;
1150
1151             fscal            = _mm_and_ps(fscal,cutoff_mask);
1152
1153             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1154
1155             /* Calculate temporary vectorial force */
1156             tx               = _mm_mul_ps(fscal,dx10);
1157             ty               = _mm_mul_ps(fscal,dy10);
1158             tz               = _mm_mul_ps(fscal,dz10);
1159
1160             /* Update vectorial force */
1161             fix1             = _mm_add_ps(fix1,tx);
1162             fiy1             = _mm_add_ps(fiy1,ty);
1163             fiz1             = _mm_add_ps(fiz1,tz);
1164
1165             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1166                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1167                                                    tx,ty,tz);
1168
1169             }
1170
1171             /**************************
1172              * CALCULATE INTERACTIONS *
1173              **************************/
1174
1175             if (gmx_mm_any_lt(rsq20,rcutoff2))
1176             {
1177
1178             /* Compute parameters for interactions between i and j atoms */
1179             qq20             = _mm_mul_ps(iq2,jq0);
1180
1181             /* REACTION-FIELD ELECTROSTATICS */
1182             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1183
1184             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1185
1186             fscal            = felec;
1187
1188             fscal            = _mm_and_ps(fscal,cutoff_mask);
1189
1190             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1191
1192             /* Calculate temporary vectorial force */
1193             tx               = _mm_mul_ps(fscal,dx20);
1194             ty               = _mm_mul_ps(fscal,dy20);
1195             tz               = _mm_mul_ps(fscal,dz20);
1196
1197             /* Update vectorial force */
1198             fix2             = _mm_add_ps(fix2,tx);
1199             fiy2             = _mm_add_ps(fiy2,ty);
1200             fiz2             = _mm_add_ps(fiz2,tz);
1201
1202             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1203                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1204                                                    tx,ty,tz);
1205
1206             }
1207
1208             /* Inner loop uses 118 flops */
1209         }
1210
1211         /* End of innermost loop */
1212
1213         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1214                                               f+i_coord_offset,fshift+i_shift_offset);
1215
1216         /* Increment number of inner iterations */
1217         inneriter                  += j_index_end - j_index_start;
1218
1219         /* Outer loop uses 27 flops */
1220     }
1221
1222     /* Increment number of outer iterations */
1223     outeriter        += nri;
1224
1225     /* Update outer/inner flops */
1226
1227     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*27 + inneriter*118);
1228 }