Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse2_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
101     real             *vftab;
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     krf              = _mm_set1_ps(fr->ic->k_rf);
120     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
121     crf              = _mm_set1_ps(fr->ic->c_rf);
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
128
129     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
130     rcutoff_scalar   = fr->rcoulomb;
131     rcutoff          = _mm_set1_ps(rcutoff_scalar);
132     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }  
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165         
166         fix0             = _mm_setzero_ps();
167         fiy0             = _mm_setzero_ps();
168         fiz0             = _mm_setzero_ps();
169
170         /* Load parameters for i particles */
171         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_ps();
176         vvdwsum          = _mm_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               x+j_coord_offsetC,x+j_coord_offsetD,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_ps(ix0,jx0);
199             dy00             = _mm_sub_ps(iy0,jy0);
200             dz00             = _mm_sub_ps(iz0,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
204
205             rinv00           = gmx_mm_invsqrt_ps(rsq00);
206
207             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
211                                                               charge+jnrC+0,charge+jnrD+0);
212             vdwjidx0A        = 2*vdwtype[jnrA+0];
213             vdwjidx0B        = 2*vdwtype[jnrB+0];
214             vdwjidx0C        = 2*vdwtype[jnrC+0];
215             vdwjidx0D        = 2*vdwtype[jnrD+0];
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             if (gmx_mm_any_lt(rsq00,rcutoff2))
222             {
223
224             r00              = _mm_mul_ps(rsq00,rinv00);
225
226             /* Compute parameters for interactions between i and j atoms */
227             qq00             = _mm_mul_ps(iq0,jq0);
228             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
229                                          vdwparam+vdwioffset0+vdwjidx0B,
230                                          vdwparam+vdwioffset0+vdwjidx0C,
231                                          vdwparam+vdwioffset0+vdwjidx0D,
232                                          &c6_00,&c12_00);
233
234             /* Calculate table index by multiplying r with table scale and truncate to integer */
235             rt               = _mm_mul_ps(r00,vftabscale);
236             vfitab           = _mm_cvttps_epi32(rt);
237             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
238             vfitab           = _mm_slli_epi32(vfitab,3);
239
240             /* REACTION-FIELD ELECTROSTATICS */
241             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
242             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
243
244             /* CUBIC SPLINE TABLE DISPERSION */
245             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
246             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
247             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
248             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
249             _MM_TRANSPOSE4_PS(Y,F,G,H);
250             Heps             = _mm_mul_ps(vfeps,H);
251             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
252             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
253             vvdw6            = _mm_mul_ps(c6_00,VV);
254             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
255             fvdw6            = _mm_mul_ps(c6_00,FF);
256
257             /* CUBIC SPLINE TABLE REPULSION */
258             vfitab           = _mm_add_epi32(vfitab,ifour);
259             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
260             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
261             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
262             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
263             _MM_TRANSPOSE4_PS(Y,F,G,H);
264             Heps             = _mm_mul_ps(vfeps,H);
265             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
266             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
267             vvdw12           = _mm_mul_ps(c12_00,VV);
268             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
269             fvdw12           = _mm_mul_ps(c12_00,FF);
270             vvdw             = _mm_add_ps(vvdw12,vvdw6);
271             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
272
273             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velec            = _mm_and_ps(velec,cutoff_mask);
277             velecsum         = _mm_add_ps(velecsum,velec);
278             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
279             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
280
281             fscal            = _mm_add_ps(felec,fvdw);
282
283             fscal            = _mm_and_ps(fscal,cutoff_mask);
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm_mul_ps(fscal,dx00);
287             ty               = _mm_mul_ps(fscal,dy00);
288             tz               = _mm_mul_ps(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm_add_ps(fix0,tx);
292             fiy0             = _mm_add_ps(fiy0,ty);
293             fiz0             = _mm_add_ps(fiz0,tz);
294
295             fjptrA             = f+j_coord_offsetA;
296             fjptrB             = f+j_coord_offsetB;
297             fjptrC             = f+j_coord_offsetC;
298             fjptrD             = f+j_coord_offsetD;
299             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
300             
301             }
302
303             /* Inner loop uses 72 flops */
304         }
305
306         if(jidx<j_index_end)
307         {
308
309             /* Get j neighbor index, and coordinate index */
310             jnrlistA         = jjnr[jidx];
311             jnrlistB         = jjnr[jidx+1];
312             jnrlistC         = jjnr[jidx+2];
313             jnrlistD         = jjnr[jidx+3];
314             /* Sign of each element will be negative for non-real atoms.
315              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
316              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
317              */
318             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
319             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
320             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
321             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
322             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
323             j_coord_offsetA  = DIM*jnrA;
324             j_coord_offsetB  = DIM*jnrB;
325             j_coord_offsetC  = DIM*jnrC;
326             j_coord_offsetD  = DIM*jnrD;
327
328             /* load j atom coordinates */
329             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
330                                               x+j_coord_offsetC,x+j_coord_offsetD,
331                                               &jx0,&jy0,&jz0);
332
333             /* Calculate displacement vector */
334             dx00             = _mm_sub_ps(ix0,jx0);
335             dy00             = _mm_sub_ps(iy0,jy0);
336             dz00             = _mm_sub_ps(iz0,jz0);
337
338             /* Calculate squared distance and things based on it */
339             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
340
341             rinv00           = gmx_mm_invsqrt_ps(rsq00);
342
343             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
344
345             /* Load parameters for j particles */
346             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
347                                                               charge+jnrC+0,charge+jnrD+0);
348             vdwjidx0A        = 2*vdwtype[jnrA+0];
349             vdwjidx0B        = 2*vdwtype[jnrB+0];
350             vdwjidx0C        = 2*vdwtype[jnrC+0];
351             vdwjidx0D        = 2*vdwtype[jnrD+0];
352
353             /**************************
354              * CALCULATE INTERACTIONS *
355              **************************/
356
357             if (gmx_mm_any_lt(rsq00,rcutoff2))
358             {
359
360             r00              = _mm_mul_ps(rsq00,rinv00);
361             r00              = _mm_andnot_ps(dummy_mask,r00);
362
363             /* Compute parameters for interactions between i and j atoms */
364             qq00             = _mm_mul_ps(iq0,jq0);
365             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
366                                          vdwparam+vdwioffset0+vdwjidx0B,
367                                          vdwparam+vdwioffset0+vdwjidx0C,
368                                          vdwparam+vdwioffset0+vdwjidx0D,
369                                          &c6_00,&c12_00);
370
371             /* Calculate table index by multiplying r with table scale and truncate to integer */
372             rt               = _mm_mul_ps(r00,vftabscale);
373             vfitab           = _mm_cvttps_epi32(rt);
374             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
375             vfitab           = _mm_slli_epi32(vfitab,3);
376
377             /* REACTION-FIELD ELECTROSTATICS */
378             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
379             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
380
381             /* CUBIC SPLINE TABLE DISPERSION */
382             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
383             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
384             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
385             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
386             _MM_TRANSPOSE4_PS(Y,F,G,H);
387             Heps             = _mm_mul_ps(vfeps,H);
388             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
389             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
390             vvdw6            = _mm_mul_ps(c6_00,VV);
391             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
392             fvdw6            = _mm_mul_ps(c6_00,FF);
393
394             /* CUBIC SPLINE TABLE REPULSION */
395             vfitab           = _mm_add_epi32(vfitab,ifour);
396             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
397             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
398             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
399             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
400             _MM_TRANSPOSE4_PS(Y,F,G,H);
401             Heps             = _mm_mul_ps(vfeps,H);
402             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
403             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
404             vvdw12           = _mm_mul_ps(c12_00,VV);
405             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
406             fvdw12           = _mm_mul_ps(c12_00,FF);
407             vvdw             = _mm_add_ps(vvdw12,vvdw6);
408             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
409
410             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
411
412             /* Update potential sum for this i atom from the interaction with this j atom. */
413             velec            = _mm_and_ps(velec,cutoff_mask);
414             velec            = _mm_andnot_ps(dummy_mask,velec);
415             velecsum         = _mm_add_ps(velecsum,velec);
416             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
417             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
418             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
419
420             fscal            = _mm_add_ps(felec,fvdw);
421
422             fscal            = _mm_and_ps(fscal,cutoff_mask);
423
424             fscal            = _mm_andnot_ps(dummy_mask,fscal);
425
426             /* Calculate temporary vectorial force */
427             tx               = _mm_mul_ps(fscal,dx00);
428             ty               = _mm_mul_ps(fscal,dy00);
429             tz               = _mm_mul_ps(fscal,dz00);
430
431             /* Update vectorial force */
432             fix0             = _mm_add_ps(fix0,tx);
433             fiy0             = _mm_add_ps(fiy0,ty);
434             fiz0             = _mm_add_ps(fiz0,tz);
435
436             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
437             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
438             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
439             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
440             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
441             
442             }
443
444             /* Inner loop uses 73 flops */
445         }
446
447         /* End of innermost loop */
448
449         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
450                                               f+i_coord_offset,fshift+i_shift_offset);
451
452         ggid                        = gid[iidx];
453         /* Update potential energies */
454         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
455         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
456
457         /* Increment number of inner iterations */
458         inneriter                  += j_index_end - j_index_start;
459
460         /* Outer loop uses 9 flops */
461     }
462
463     /* Increment number of outer iterations */
464     outeriter        += nri;
465
466     /* Update outer/inner flops */
467
468     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
469 }
470 /*
471  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse2_single
472  * Electrostatics interaction: ReactionField
473  * VdW interaction:            CubicSplineTable
474  * Geometry:                   Particle-Particle
475  * Calculate force/pot:        Force
476  */
477 void
478 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse2_single
479                     (t_nblist                    * gmx_restrict       nlist,
480                      rvec                        * gmx_restrict          xx,
481                      rvec                        * gmx_restrict          ff,
482                      t_forcerec                  * gmx_restrict          fr,
483                      t_mdatoms                   * gmx_restrict     mdatoms,
484                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
485                      t_nrnb                      * gmx_restrict        nrnb)
486 {
487     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
488      * just 0 for non-waters.
489      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
490      * jnr indices corresponding to data put in the four positions in the SIMD register.
491      */
492     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
493     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
494     int              jnrA,jnrB,jnrC,jnrD;
495     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
496     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
497     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
498     real             rcutoff_scalar;
499     real             *shiftvec,*fshift,*x,*f;
500     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
501     real             scratch[4*DIM];
502     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
503     int              vdwioffset0;
504     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
505     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
506     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
507     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
508     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
509     real             *charge;
510     int              nvdwtype;
511     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
512     int              *vdwtype;
513     real             *vdwparam;
514     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
515     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
516     __m128i          vfitab;
517     __m128i          ifour       = _mm_set1_epi32(4);
518     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
519     real             *vftab;
520     __m128           dummy_mask,cutoff_mask;
521     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
522     __m128           one     = _mm_set1_ps(1.0);
523     __m128           two     = _mm_set1_ps(2.0);
524     x                = xx[0];
525     f                = ff[0];
526
527     nri              = nlist->nri;
528     iinr             = nlist->iinr;
529     jindex           = nlist->jindex;
530     jjnr             = nlist->jjnr;
531     shiftidx         = nlist->shift;
532     gid              = nlist->gid;
533     shiftvec         = fr->shift_vec[0];
534     fshift           = fr->fshift[0];
535     facel            = _mm_set1_ps(fr->epsfac);
536     charge           = mdatoms->chargeA;
537     krf              = _mm_set1_ps(fr->ic->k_rf);
538     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
539     crf              = _mm_set1_ps(fr->ic->c_rf);
540     nvdwtype         = fr->ntype;
541     vdwparam         = fr->nbfp;
542     vdwtype          = mdatoms->typeA;
543
544     vftab            = kernel_data->table_vdw->data;
545     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
546
547     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
548     rcutoff_scalar   = fr->rcoulomb;
549     rcutoff          = _mm_set1_ps(rcutoff_scalar);
550     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
551
552     /* Avoid stupid compiler warnings */
553     jnrA = jnrB = jnrC = jnrD = 0;
554     j_coord_offsetA = 0;
555     j_coord_offsetB = 0;
556     j_coord_offsetC = 0;
557     j_coord_offsetD = 0;
558
559     outeriter        = 0;
560     inneriter        = 0;
561
562     for(iidx=0;iidx<4*DIM;iidx++)
563     {
564         scratch[iidx] = 0.0;
565     }  
566
567     /* Start outer loop over neighborlists */
568     for(iidx=0; iidx<nri; iidx++)
569     {
570         /* Load shift vector for this list */
571         i_shift_offset   = DIM*shiftidx[iidx];
572
573         /* Load limits for loop over neighbors */
574         j_index_start    = jindex[iidx];
575         j_index_end      = jindex[iidx+1];
576
577         /* Get outer coordinate index */
578         inr              = iinr[iidx];
579         i_coord_offset   = DIM*inr;
580
581         /* Load i particle coords and add shift vector */
582         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
583         
584         fix0             = _mm_setzero_ps();
585         fiy0             = _mm_setzero_ps();
586         fiz0             = _mm_setzero_ps();
587
588         /* Load parameters for i particles */
589         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
590         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
591
592         /* Start inner kernel loop */
593         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
594         {
595
596             /* Get j neighbor index, and coordinate index */
597             jnrA             = jjnr[jidx];
598             jnrB             = jjnr[jidx+1];
599             jnrC             = jjnr[jidx+2];
600             jnrD             = jjnr[jidx+3];
601             j_coord_offsetA  = DIM*jnrA;
602             j_coord_offsetB  = DIM*jnrB;
603             j_coord_offsetC  = DIM*jnrC;
604             j_coord_offsetD  = DIM*jnrD;
605
606             /* load j atom coordinates */
607             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
608                                               x+j_coord_offsetC,x+j_coord_offsetD,
609                                               &jx0,&jy0,&jz0);
610
611             /* Calculate displacement vector */
612             dx00             = _mm_sub_ps(ix0,jx0);
613             dy00             = _mm_sub_ps(iy0,jy0);
614             dz00             = _mm_sub_ps(iz0,jz0);
615
616             /* Calculate squared distance and things based on it */
617             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
618
619             rinv00           = gmx_mm_invsqrt_ps(rsq00);
620
621             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
622
623             /* Load parameters for j particles */
624             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
625                                                               charge+jnrC+0,charge+jnrD+0);
626             vdwjidx0A        = 2*vdwtype[jnrA+0];
627             vdwjidx0B        = 2*vdwtype[jnrB+0];
628             vdwjidx0C        = 2*vdwtype[jnrC+0];
629             vdwjidx0D        = 2*vdwtype[jnrD+0];
630
631             /**************************
632              * CALCULATE INTERACTIONS *
633              **************************/
634
635             if (gmx_mm_any_lt(rsq00,rcutoff2))
636             {
637
638             r00              = _mm_mul_ps(rsq00,rinv00);
639
640             /* Compute parameters for interactions between i and j atoms */
641             qq00             = _mm_mul_ps(iq0,jq0);
642             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
643                                          vdwparam+vdwioffset0+vdwjidx0B,
644                                          vdwparam+vdwioffset0+vdwjidx0C,
645                                          vdwparam+vdwioffset0+vdwjidx0D,
646                                          &c6_00,&c12_00);
647
648             /* Calculate table index by multiplying r with table scale and truncate to integer */
649             rt               = _mm_mul_ps(r00,vftabscale);
650             vfitab           = _mm_cvttps_epi32(rt);
651             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
652             vfitab           = _mm_slli_epi32(vfitab,3);
653
654             /* REACTION-FIELD ELECTROSTATICS */
655             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
656
657             /* CUBIC SPLINE TABLE DISPERSION */
658             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
659             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
660             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
661             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
662             _MM_TRANSPOSE4_PS(Y,F,G,H);
663             Heps             = _mm_mul_ps(vfeps,H);
664             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
665             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
666             fvdw6            = _mm_mul_ps(c6_00,FF);
667
668             /* CUBIC SPLINE TABLE REPULSION */
669             vfitab           = _mm_add_epi32(vfitab,ifour);
670             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
671             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
672             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
673             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
674             _MM_TRANSPOSE4_PS(Y,F,G,H);
675             Heps             = _mm_mul_ps(vfeps,H);
676             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
677             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
678             fvdw12           = _mm_mul_ps(c12_00,FF);
679             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
680
681             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
682
683             fscal            = _mm_add_ps(felec,fvdw);
684
685             fscal            = _mm_and_ps(fscal,cutoff_mask);
686
687             /* Calculate temporary vectorial force */
688             tx               = _mm_mul_ps(fscal,dx00);
689             ty               = _mm_mul_ps(fscal,dy00);
690             tz               = _mm_mul_ps(fscal,dz00);
691
692             /* Update vectorial force */
693             fix0             = _mm_add_ps(fix0,tx);
694             fiy0             = _mm_add_ps(fiy0,ty);
695             fiz0             = _mm_add_ps(fiz0,tz);
696
697             fjptrA             = f+j_coord_offsetA;
698             fjptrB             = f+j_coord_offsetB;
699             fjptrC             = f+j_coord_offsetC;
700             fjptrD             = f+j_coord_offsetD;
701             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
702             
703             }
704
705             /* Inner loop uses 57 flops */
706         }
707
708         if(jidx<j_index_end)
709         {
710
711             /* Get j neighbor index, and coordinate index */
712             jnrlistA         = jjnr[jidx];
713             jnrlistB         = jjnr[jidx+1];
714             jnrlistC         = jjnr[jidx+2];
715             jnrlistD         = jjnr[jidx+3];
716             /* Sign of each element will be negative for non-real atoms.
717              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
718              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
719              */
720             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
721             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
722             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
723             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
724             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
725             j_coord_offsetA  = DIM*jnrA;
726             j_coord_offsetB  = DIM*jnrB;
727             j_coord_offsetC  = DIM*jnrC;
728             j_coord_offsetD  = DIM*jnrD;
729
730             /* load j atom coordinates */
731             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
732                                               x+j_coord_offsetC,x+j_coord_offsetD,
733                                               &jx0,&jy0,&jz0);
734
735             /* Calculate displacement vector */
736             dx00             = _mm_sub_ps(ix0,jx0);
737             dy00             = _mm_sub_ps(iy0,jy0);
738             dz00             = _mm_sub_ps(iz0,jz0);
739
740             /* Calculate squared distance and things based on it */
741             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
742
743             rinv00           = gmx_mm_invsqrt_ps(rsq00);
744
745             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
746
747             /* Load parameters for j particles */
748             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
749                                                               charge+jnrC+0,charge+jnrD+0);
750             vdwjidx0A        = 2*vdwtype[jnrA+0];
751             vdwjidx0B        = 2*vdwtype[jnrB+0];
752             vdwjidx0C        = 2*vdwtype[jnrC+0];
753             vdwjidx0D        = 2*vdwtype[jnrD+0];
754
755             /**************************
756              * CALCULATE INTERACTIONS *
757              **************************/
758
759             if (gmx_mm_any_lt(rsq00,rcutoff2))
760             {
761
762             r00              = _mm_mul_ps(rsq00,rinv00);
763             r00              = _mm_andnot_ps(dummy_mask,r00);
764
765             /* Compute parameters for interactions between i and j atoms */
766             qq00             = _mm_mul_ps(iq0,jq0);
767             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
768                                          vdwparam+vdwioffset0+vdwjidx0B,
769                                          vdwparam+vdwioffset0+vdwjidx0C,
770                                          vdwparam+vdwioffset0+vdwjidx0D,
771                                          &c6_00,&c12_00);
772
773             /* Calculate table index by multiplying r with table scale and truncate to integer */
774             rt               = _mm_mul_ps(r00,vftabscale);
775             vfitab           = _mm_cvttps_epi32(rt);
776             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
777             vfitab           = _mm_slli_epi32(vfitab,3);
778
779             /* REACTION-FIELD ELECTROSTATICS */
780             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
781
782             /* CUBIC SPLINE TABLE DISPERSION */
783             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
784             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
785             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
786             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
787             _MM_TRANSPOSE4_PS(Y,F,G,H);
788             Heps             = _mm_mul_ps(vfeps,H);
789             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
790             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
791             fvdw6            = _mm_mul_ps(c6_00,FF);
792
793             /* CUBIC SPLINE TABLE REPULSION */
794             vfitab           = _mm_add_epi32(vfitab,ifour);
795             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
796             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
797             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
798             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
799             _MM_TRANSPOSE4_PS(Y,F,G,H);
800             Heps             = _mm_mul_ps(vfeps,H);
801             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
802             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
803             fvdw12           = _mm_mul_ps(c12_00,FF);
804             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
805
806             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
807
808             fscal            = _mm_add_ps(felec,fvdw);
809
810             fscal            = _mm_and_ps(fscal,cutoff_mask);
811
812             fscal            = _mm_andnot_ps(dummy_mask,fscal);
813
814             /* Calculate temporary vectorial force */
815             tx               = _mm_mul_ps(fscal,dx00);
816             ty               = _mm_mul_ps(fscal,dy00);
817             tz               = _mm_mul_ps(fscal,dz00);
818
819             /* Update vectorial force */
820             fix0             = _mm_add_ps(fix0,tx);
821             fiy0             = _mm_add_ps(fiy0,ty);
822             fiz0             = _mm_add_ps(fiz0,tz);
823
824             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
825             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
826             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
827             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
828             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
829             
830             }
831
832             /* Inner loop uses 58 flops */
833         }
834
835         /* End of innermost loop */
836
837         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
838                                               f+i_coord_offset,fshift+i_shift_offset);
839
840         /* Increment number of inner iterations */
841         inneriter                  += j_index_end - j_index_start;
842
843         /* Outer loop uses 7 flops */
844     }
845
846     /* Increment number of outer iterations */
847     outeriter        += nri;
848
849     /* Update outer/inner flops */
850
851     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
852 }