Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse2_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
99     real             *vftab;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     krf              = _mm_set1_ps(fr->ic->k_rf);
118     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
119     crf              = _mm_set1_ps(fr->ic->c_rf);
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_vdw->data;
125     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
126
127     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128     rcutoff_scalar   = fr->rcoulomb;
129     rcutoff          = _mm_set1_ps(rcutoff_scalar);
130     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }  
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163         
164         fix0             = _mm_setzero_ps();
165         fiy0             = _mm_setzero_ps();
166         fiz0             = _mm_setzero_ps();
167
168         /* Load parameters for i particles */
169         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
170         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_ps();
174         vvdwsum          = _mm_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               x+j_coord_offsetC,x+j_coord_offsetD,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_ps(ix0,jx0);
197             dy00             = _mm_sub_ps(iy0,jy0);
198             dz00             = _mm_sub_ps(iz0,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
202
203             rinv00           = gmx_mm_invsqrt_ps(rsq00);
204
205             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
206
207             /* Load parameters for j particles */
208             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
209                                                               charge+jnrC+0,charge+jnrD+0);
210             vdwjidx0A        = 2*vdwtype[jnrA+0];
211             vdwjidx0B        = 2*vdwtype[jnrB+0];
212             vdwjidx0C        = 2*vdwtype[jnrC+0];
213             vdwjidx0D        = 2*vdwtype[jnrD+0];
214
215             /**************************
216              * CALCULATE INTERACTIONS *
217              **************************/
218
219             if (gmx_mm_any_lt(rsq00,rcutoff2))
220             {
221
222             r00              = _mm_mul_ps(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq00             = _mm_mul_ps(iq0,jq0);
226             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
227                                          vdwparam+vdwioffset0+vdwjidx0B,
228                                          vdwparam+vdwioffset0+vdwjidx0C,
229                                          vdwparam+vdwioffset0+vdwjidx0D,
230                                          &c6_00,&c12_00);
231
232             /* Calculate table index by multiplying r with table scale and truncate to integer */
233             rt               = _mm_mul_ps(r00,vftabscale);
234             vfitab           = _mm_cvttps_epi32(rt);
235             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
236             vfitab           = _mm_slli_epi32(vfitab,3);
237
238             /* REACTION-FIELD ELECTROSTATICS */
239             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
240             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
241
242             /* CUBIC SPLINE TABLE DISPERSION */
243             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
244             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
245             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
246             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
247             _MM_TRANSPOSE4_PS(Y,F,G,H);
248             Heps             = _mm_mul_ps(vfeps,H);
249             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
250             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
251             vvdw6            = _mm_mul_ps(c6_00,VV);
252             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
253             fvdw6            = _mm_mul_ps(c6_00,FF);
254
255             /* CUBIC SPLINE TABLE REPULSION */
256             vfitab           = _mm_add_epi32(vfitab,ifour);
257             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
258             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
259             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
260             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
261             _MM_TRANSPOSE4_PS(Y,F,G,H);
262             Heps             = _mm_mul_ps(vfeps,H);
263             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
264             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
265             vvdw12           = _mm_mul_ps(c12_00,VV);
266             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
267             fvdw12           = _mm_mul_ps(c12_00,FF);
268             vvdw             = _mm_add_ps(vvdw12,vvdw6);
269             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
270
271             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
272
273             /* Update potential sum for this i atom from the interaction with this j atom. */
274             velec            = _mm_and_ps(velec,cutoff_mask);
275             velecsum         = _mm_add_ps(velecsum,velec);
276             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
277             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
278
279             fscal            = _mm_add_ps(felec,fvdw);
280
281             fscal            = _mm_and_ps(fscal,cutoff_mask);
282
283             /* Calculate temporary vectorial force */
284             tx               = _mm_mul_ps(fscal,dx00);
285             ty               = _mm_mul_ps(fscal,dy00);
286             tz               = _mm_mul_ps(fscal,dz00);
287
288             /* Update vectorial force */
289             fix0             = _mm_add_ps(fix0,tx);
290             fiy0             = _mm_add_ps(fiy0,ty);
291             fiz0             = _mm_add_ps(fiz0,tz);
292
293             fjptrA             = f+j_coord_offsetA;
294             fjptrB             = f+j_coord_offsetB;
295             fjptrC             = f+j_coord_offsetC;
296             fjptrD             = f+j_coord_offsetD;
297             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
298             
299             }
300
301             /* Inner loop uses 72 flops */
302         }
303
304         if(jidx<j_index_end)
305         {
306
307             /* Get j neighbor index, and coordinate index */
308             jnrlistA         = jjnr[jidx];
309             jnrlistB         = jjnr[jidx+1];
310             jnrlistC         = jjnr[jidx+2];
311             jnrlistD         = jjnr[jidx+3];
312             /* Sign of each element will be negative for non-real atoms.
313              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
314              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
315              */
316             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
317             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
318             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
319             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
320             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
321             j_coord_offsetA  = DIM*jnrA;
322             j_coord_offsetB  = DIM*jnrB;
323             j_coord_offsetC  = DIM*jnrC;
324             j_coord_offsetD  = DIM*jnrD;
325
326             /* load j atom coordinates */
327             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
328                                               x+j_coord_offsetC,x+j_coord_offsetD,
329                                               &jx0,&jy0,&jz0);
330
331             /* Calculate displacement vector */
332             dx00             = _mm_sub_ps(ix0,jx0);
333             dy00             = _mm_sub_ps(iy0,jy0);
334             dz00             = _mm_sub_ps(iz0,jz0);
335
336             /* Calculate squared distance and things based on it */
337             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
338
339             rinv00           = gmx_mm_invsqrt_ps(rsq00);
340
341             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
342
343             /* Load parameters for j particles */
344             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
345                                                               charge+jnrC+0,charge+jnrD+0);
346             vdwjidx0A        = 2*vdwtype[jnrA+0];
347             vdwjidx0B        = 2*vdwtype[jnrB+0];
348             vdwjidx0C        = 2*vdwtype[jnrC+0];
349             vdwjidx0D        = 2*vdwtype[jnrD+0];
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             if (gmx_mm_any_lt(rsq00,rcutoff2))
356             {
357
358             r00              = _mm_mul_ps(rsq00,rinv00);
359             r00              = _mm_andnot_ps(dummy_mask,r00);
360
361             /* Compute parameters for interactions between i and j atoms */
362             qq00             = _mm_mul_ps(iq0,jq0);
363             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
364                                          vdwparam+vdwioffset0+vdwjidx0B,
365                                          vdwparam+vdwioffset0+vdwjidx0C,
366                                          vdwparam+vdwioffset0+vdwjidx0D,
367                                          &c6_00,&c12_00);
368
369             /* Calculate table index by multiplying r with table scale and truncate to integer */
370             rt               = _mm_mul_ps(r00,vftabscale);
371             vfitab           = _mm_cvttps_epi32(rt);
372             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
373             vfitab           = _mm_slli_epi32(vfitab,3);
374
375             /* REACTION-FIELD ELECTROSTATICS */
376             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
377             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
378
379             /* CUBIC SPLINE TABLE DISPERSION */
380             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
381             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
382             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
383             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
384             _MM_TRANSPOSE4_PS(Y,F,G,H);
385             Heps             = _mm_mul_ps(vfeps,H);
386             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
387             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
388             vvdw6            = _mm_mul_ps(c6_00,VV);
389             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
390             fvdw6            = _mm_mul_ps(c6_00,FF);
391
392             /* CUBIC SPLINE TABLE REPULSION */
393             vfitab           = _mm_add_epi32(vfitab,ifour);
394             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
395             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
396             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
397             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
398             _MM_TRANSPOSE4_PS(Y,F,G,H);
399             Heps             = _mm_mul_ps(vfeps,H);
400             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
401             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
402             vvdw12           = _mm_mul_ps(c12_00,VV);
403             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
404             fvdw12           = _mm_mul_ps(c12_00,FF);
405             vvdw             = _mm_add_ps(vvdw12,vvdw6);
406             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
407
408             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
409
410             /* Update potential sum for this i atom from the interaction with this j atom. */
411             velec            = _mm_and_ps(velec,cutoff_mask);
412             velec            = _mm_andnot_ps(dummy_mask,velec);
413             velecsum         = _mm_add_ps(velecsum,velec);
414             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
415             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
416             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
417
418             fscal            = _mm_add_ps(felec,fvdw);
419
420             fscal            = _mm_and_ps(fscal,cutoff_mask);
421
422             fscal            = _mm_andnot_ps(dummy_mask,fscal);
423
424             /* Calculate temporary vectorial force */
425             tx               = _mm_mul_ps(fscal,dx00);
426             ty               = _mm_mul_ps(fscal,dy00);
427             tz               = _mm_mul_ps(fscal,dz00);
428
429             /* Update vectorial force */
430             fix0             = _mm_add_ps(fix0,tx);
431             fiy0             = _mm_add_ps(fiy0,ty);
432             fiz0             = _mm_add_ps(fiz0,tz);
433
434             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
435             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
436             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
437             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
438             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
439             
440             }
441
442             /* Inner loop uses 73 flops */
443         }
444
445         /* End of innermost loop */
446
447         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
448                                               f+i_coord_offset,fshift+i_shift_offset);
449
450         ggid                        = gid[iidx];
451         /* Update potential energies */
452         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
453         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
454
455         /* Increment number of inner iterations */
456         inneriter                  += j_index_end - j_index_start;
457
458         /* Outer loop uses 9 flops */
459     }
460
461     /* Increment number of outer iterations */
462     outeriter        += nri;
463
464     /* Update outer/inner flops */
465
466     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
467 }
468 /*
469  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse2_single
470  * Electrostatics interaction: ReactionField
471  * VdW interaction:            CubicSplineTable
472  * Geometry:                   Particle-Particle
473  * Calculate force/pot:        Force
474  */
475 void
476 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse2_single
477                     (t_nblist                    * gmx_restrict       nlist,
478                      rvec                        * gmx_restrict          xx,
479                      rvec                        * gmx_restrict          ff,
480                      t_forcerec                  * gmx_restrict          fr,
481                      t_mdatoms                   * gmx_restrict     mdatoms,
482                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
483                      t_nrnb                      * gmx_restrict        nrnb)
484 {
485     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
486      * just 0 for non-waters.
487      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
488      * jnr indices corresponding to data put in the four positions in the SIMD register.
489      */
490     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
491     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
492     int              jnrA,jnrB,jnrC,jnrD;
493     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
494     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
495     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
496     real             rcutoff_scalar;
497     real             *shiftvec,*fshift,*x,*f;
498     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
499     real             scratch[4*DIM];
500     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
501     int              vdwioffset0;
502     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
503     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
504     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
505     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
506     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
507     real             *charge;
508     int              nvdwtype;
509     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
510     int              *vdwtype;
511     real             *vdwparam;
512     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
513     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
514     __m128i          vfitab;
515     __m128i          ifour       = _mm_set1_epi32(4);
516     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
517     real             *vftab;
518     __m128           dummy_mask,cutoff_mask;
519     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
520     __m128           one     = _mm_set1_ps(1.0);
521     __m128           two     = _mm_set1_ps(2.0);
522     x                = xx[0];
523     f                = ff[0];
524
525     nri              = nlist->nri;
526     iinr             = nlist->iinr;
527     jindex           = nlist->jindex;
528     jjnr             = nlist->jjnr;
529     shiftidx         = nlist->shift;
530     gid              = nlist->gid;
531     shiftvec         = fr->shift_vec[0];
532     fshift           = fr->fshift[0];
533     facel            = _mm_set1_ps(fr->epsfac);
534     charge           = mdatoms->chargeA;
535     krf              = _mm_set1_ps(fr->ic->k_rf);
536     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
537     crf              = _mm_set1_ps(fr->ic->c_rf);
538     nvdwtype         = fr->ntype;
539     vdwparam         = fr->nbfp;
540     vdwtype          = mdatoms->typeA;
541
542     vftab            = kernel_data->table_vdw->data;
543     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
544
545     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
546     rcutoff_scalar   = fr->rcoulomb;
547     rcutoff          = _mm_set1_ps(rcutoff_scalar);
548     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
549
550     /* Avoid stupid compiler warnings */
551     jnrA = jnrB = jnrC = jnrD = 0;
552     j_coord_offsetA = 0;
553     j_coord_offsetB = 0;
554     j_coord_offsetC = 0;
555     j_coord_offsetD = 0;
556
557     outeriter        = 0;
558     inneriter        = 0;
559
560     for(iidx=0;iidx<4*DIM;iidx++)
561     {
562         scratch[iidx] = 0.0;
563     }  
564
565     /* Start outer loop over neighborlists */
566     for(iidx=0; iidx<nri; iidx++)
567     {
568         /* Load shift vector for this list */
569         i_shift_offset   = DIM*shiftidx[iidx];
570
571         /* Load limits for loop over neighbors */
572         j_index_start    = jindex[iidx];
573         j_index_end      = jindex[iidx+1];
574
575         /* Get outer coordinate index */
576         inr              = iinr[iidx];
577         i_coord_offset   = DIM*inr;
578
579         /* Load i particle coords and add shift vector */
580         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
581         
582         fix0             = _mm_setzero_ps();
583         fiy0             = _mm_setzero_ps();
584         fiz0             = _mm_setzero_ps();
585
586         /* Load parameters for i particles */
587         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
588         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
589
590         /* Start inner kernel loop */
591         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
592         {
593
594             /* Get j neighbor index, and coordinate index */
595             jnrA             = jjnr[jidx];
596             jnrB             = jjnr[jidx+1];
597             jnrC             = jjnr[jidx+2];
598             jnrD             = jjnr[jidx+3];
599             j_coord_offsetA  = DIM*jnrA;
600             j_coord_offsetB  = DIM*jnrB;
601             j_coord_offsetC  = DIM*jnrC;
602             j_coord_offsetD  = DIM*jnrD;
603
604             /* load j atom coordinates */
605             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
606                                               x+j_coord_offsetC,x+j_coord_offsetD,
607                                               &jx0,&jy0,&jz0);
608
609             /* Calculate displacement vector */
610             dx00             = _mm_sub_ps(ix0,jx0);
611             dy00             = _mm_sub_ps(iy0,jy0);
612             dz00             = _mm_sub_ps(iz0,jz0);
613
614             /* Calculate squared distance and things based on it */
615             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
616
617             rinv00           = gmx_mm_invsqrt_ps(rsq00);
618
619             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
620
621             /* Load parameters for j particles */
622             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
623                                                               charge+jnrC+0,charge+jnrD+0);
624             vdwjidx0A        = 2*vdwtype[jnrA+0];
625             vdwjidx0B        = 2*vdwtype[jnrB+0];
626             vdwjidx0C        = 2*vdwtype[jnrC+0];
627             vdwjidx0D        = 2*vdwtype[jnrD+0];
628
629             /**************************
630              * CALCULATE INTERACTIONS *
631              **************************/
632
633             if (gmx_mm_any_lt(rsq00,rcutoff2))
634             {
635
636             r00              = _mm_mul_ps(rsq00,rinv00);
637
638             /* Compute parameters for interactions between i and j atoms */
639             qq00             = _mm_mul_ps(iq0,jq0);
640             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
641                                          vdwparam+vdwioffset0+vdwjidx0B,
642                                          vdwparam+vdwioffset0+vdwjidx0C,
643                                          vdwparam+vdwioffset0+vdwjidx0D,
644                                          &c6_00,&c12_00);
645
646             /* Calculate table index by multiplying r with table scale and truncate to integer */
647             rt               = _mm_mul_ps(r00,vftabscale);
648             vfitab           = _mm_cvttps_epi32(rt);
649             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
650             vfitab           = _mm_slli_epi32(vfitab,3);
651
652             /* REACTION-FIELD ELECTROSTATICS */
653             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
654
655             /* CUBIC SPLINE TABLE DISPERSION */
656             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
657             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
658             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
659             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
660             _MM_TRANSPOSE4_PS(Y,F,G,H);
661             Heps             = _mm_mul_ps(vfeps,H);
662             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
663             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
664             fvdw6            = _mm_mul_ps(c6_00,FF);
665
666             /* CUBIC SPLINE TABLE REPULSION */
667             vfitab           = _mm_add_epi32(vfitab,ifour);
668             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
669             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
670             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
671             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
672             _MM_TRANSPOSE4_PS(Y,F,G,H);
673             Heps             = _mm_mul_ps(vfeps,H);
674             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
675             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
676             fvdw12           = _mm_mul_ps(c12_00,FF);
677             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
678
679             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
680
681             fscal            = _mm_add_ps(felec,fvdw);
682
683             fscal            = _mm_and_ps(fscal,cutoff_mask);
684
685             /* Calculate temporary vectorial force */
686             tx               = _mm_mul_ps(fscal,dx00);
687             ty               = _mm_mul_ps(fscal,dy00);
688             tz               = _mm_mul_ps(fscal,dz00);
689
690             /* Update vectorial force */
691             fix0             = _mm_add_ps(fix0,tx);
692             fiy0             = _mm_add_ps(fiy0,ty);
693             fiz0             = _mm_add_ps(fiz0,tz);
694
695             fjptrA             = f+j_coord_offsetA;
696             fjptrB             = f+j_coord_offsetB;
697             fjptrC             = f+j_coord_offsetC;
698             fjptrD             = f+j_coord_offsetD;
699             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
700             
701             }
702
703             /* Inner loop uses 57 flops */
704         }
705
706         if(jidx<j_index_end)
707         {
708
709             /* Get j neighbor index, and coordinate index */
710             jnrlistA         = jjnr[jidx];
711             jnrlistB         = jjnr[jidx+1];
712             jnrlistC         = jjnr[jidx+2];
713             jnrlistD         = jjnr[jidx+3];
714             /* Sign of each element will be negative for non-real atoms.
715              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
716              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
717              */
718             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
719             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
720             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
721             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
722             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
723             j_coord_offsetA  = DIM*jnrA;
724             j_coord_offsetB  = DIM*jnrB;
725             j_coord_offsetC  = DIM*jnrC;
726             j_coord_offsetD  = DIM*jnrD;
727
728             /* load j atom coordinates */
729             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
730                                               x+j_coord_offsetC,x+j_coord_offsetD,
731                                               &jx0,&jy0,&jz0);
732
733             /* Calculate displacement vector */
734             dx00             = _mm_sub_ps(ix0,jx0);
735             dy00             = _mm_sub_ps(iy0,jy0);
736             dz00             = _mm_sub_ps(iz0,jz0);
737
738             /* Calculate squared distance and things based on it */
739             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
740
741             rinv00           = gmx_mm_invsqrt_ps(rsq00);
742
743             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
744
745             /* Load parameters for j particles */
746             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
747                                                               charge+jnrC+0,charge+jnrD+0);
748             vdwjidx0A        = 2*vdwtype[jnrA+0];
749             vdwjidx0B        = 2*vdwtype[jnrB+0];
750             vdwjidx0C        = 2*vdwtype[jnrC+0];
751             vdwjidx0D        = 2*vdwtype[jnrD+0];
752
753             /**************************
754              * CALCULATE INTERACTIONS *
755              **************************/
756
757             if (gmx_mm_any_lt(rsq00,rcutoff2))
758             {
759
760             r00              = _mm_mul_ps(rsq00,rinv00);
761             r00              = _mm_andnot_ps(dummy_mask,r00);
762
763             /* Compute parameters for interactions between i and j atoms */
764             qq00             = _mm_mul_ps(iq0,jq0);
765             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
766                                          vdwparam+vdwioffset0+vdwjidx0B,
767                                          vdwparam+vdwioffset0+vdwjidx0C,
768                                          vdwparam+vdwioffset0+vdwjidx0D,
769                                          &c6_00,&c12_00);
770
771             /* Calculate table index by multiplying r with table scale and truncate to integer */
772             rt               = _mm_mul_ps(r00,vftabscale);
773             vfitab           = _mm_cvttps_epi32(rt);
774             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
775             vfitab           = _mm_slli_epi32(vfitab,3);
776
777             /* REACTION-FIELD ELECTROSTATICS */
778             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
779
780             /* CUBIC SPLINE TABLE DISPERSION */
781             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
782             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
783             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
784             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
785             _MM_TRANSPOSE4_PS(Y,F,G,H);
786             Heps             = _mm_mul_ps(vfeps,H);
787             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
788             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
789             fvdw6            = _mm_mul_ps(c6_00,FF);
790
791             /* CUBIC SPLINE TABLE REPULSION */
792             vfitab           = _mm_add_epi32(vfitab,ifour);
793             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
794             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
795             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
796             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
797             _MM_TRANSPOSE4_PS(Y,F,G,H);
798             Heps             = _mm_mul_ps(vfeps,H);
799             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
800             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
801             fvdw12           = _mm_mul_ps(c12_00,FF);
802             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
803
804             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
805
806             fscal            = _mm_add_ps(felec,fvdw);
807
808             fscal            = _mm_and_ps(fscal,cutoff_mask);
809
810             fscal            = _mm_andnot_ps(dummy_mask,fscal);
811
812             /* Calculate temporary vectorial force */
813             tx               = _mm_mul_ps(fscal,dx00);
814             ty               = _mm_mul_ps(fscal,dy00);
815             tz               = _mm_mul_ps(fscal,dz00);
816
817             /* Update vectorial force */
818             fix0             = _mm_add_ps(fix0,tx);
819             fiy0             = _mm_add_ps(fiy0,ty);
820             fiz0             = _mm_add_ps(fiz0,tz);
821
822             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
823             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
824             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
825             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
826             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
827             
828             }
829
830             /* Inner loop uses 58 flops */
831         }
832
833         /* End of innermost loop */
834
835         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
836                                               f+i_coord_offset,fshift+i_shift_offset);
837
838         /* Increment number of inner iterations */
839         inneriter                  += j_index_end - j_index_start;
840
841         /* Outer loop uses 7 flops */
842     }
843
844     /* Increment number of outer iterations */
845     outeriter        += nri;
846
847     /* Update outer/inner flops */
848
849     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
850 }