be03c2bacc478c96854db0f2235b5728808c3401
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecNone_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_sse2_single
52  * Electrostatics interaction: None
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     int              nvdwtype;
89     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
93     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
94     __m128           dummy_mask,cutoff_mask;
95     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
96     __m128           one     = _mm_set1_ps(1.0);
97     __m128           two     = _mm_set1_ps(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     /* Avoid stupid compiler warnings */
114     jnrA = jnrB = jnrC = jnrD = 0;
115     j_coord_offsetA = 0;
116     j_coord_offsetB = 0;
117     j_coord_offsetC = 0;
118     j_coord_offsetD = 0;
119
120     outeriter        = 0;
121     inneriter        = 0;
122
123     for(iidx=0;iidx<4*DIM;iidx++)
124     {
125         scratch[iidx] = 0.0;
126     }  
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
144         
145         fix0             = _mm_setzero_ps();
146         fiy0             = _mm_setzero_ps();
147         fiz0             = _mm_setzero_ps();
148
149         /* Load parameters for i particles */
150         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152         /* Reset potential sums */
153         vvdwsum          = _mm_setzero_ps();
154
155         /* Start inner kernel loop */
156         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
157         {
158
159             /* Get j neighbor index, and coordinate index */
160             jnrA             = jjnr[jidx];
161             jnrB             = jjnr[jidx+1];
162             jnrC             = jjnr[jidx+2];
163             jnrD             = jjnr[jidx+3];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166             j_coord_offsetC  = DIM*jnrC;
167             j_coord_offsetD  = DIM*jnrD;
168
169             /* load j atom coordinates */
170             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
171                                               x+j_coord_offsetC,x+j_coord_offsetD,
172                                               &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm_sub_ps(ix0,jx0);
176             dy00             = _mm_sub_ps(iy0,jy0);
177             dz00             = _mm_sub_ps(iz0,jz0);
178
179             /* Calculate squared distance and things based on it */
180             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
181
182             rinvsq00         = gmx_mm_inv_ps(rsq00);
183
184             /* Load parameters for j particles */
185             vdwjidx0A        = 2*vdwtype[jnrA+0];
186             vdwjidx0B        = 2*vdwtype[jnrB+0];
187             vdwjidx0C        = 2*vdwtype[jnrC+0];
188             vdwjidx0D        = 2*vdwtype[jnrD+0];
189
190             /**************************
191              * CALCULATE INTERACTIONS *
192              **************************/
193
194             /* Compute parameters for interactions between i and j atoms */
195             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
196                                          vdwparam+vdwioffset0+vdwjidx0B,
197                                          vdwparam+vdwioffset0+vdwjidx0C,
198                                          vdwparam+vdwioffset0+vdwjidx0D,
199                                          &c6_00,&c12_00);
200
201             /* LENNARD-JONES DISPERSION/REPULSION */
202
203             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
204             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
205             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
206             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
207             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
208
209             /* Update potential sum for this i atom from the interaction with this j atom. */
210             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
211
212             fscal            = fvdw;
213
214             /* Calculate temporary vectorial force */
215             tx               = _mm_mul_ps(fscal,dx00);
216             ty               = _mm_mul_ps(fscal,dy00);
217             tz               = _mm_mul_ps(fscal,dz00);
218
219             /* Update vectorial force */
220             fix0             = _mm_add_ps(fix0,tx);
221             fiy0             = _mm_add_ps(fiy0,ty);
222             fiz0             = _mm_add_ps(fiz0,tz);
223
224             fjptrA             = f+j_coord_offsetA;
225             fjptrB             = f+j_coord_offsetB;
226             fjptrC             = f+j_coord_offsetC;
227             fjptrD             = f+j_coord_offsetD;
228             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
229             
230             /* Inner loop uses 32 flops */
231         }
232
233         if(jidx<j_index_end)
234         {
235
236             /* Get j neighbor index, and coordinate index */
237             jnrlistA         = jjnr[jidx];
238             jnrlistB         = jjnr[jidx+1];
239             jnrlistC         = jjnr[jidx+2];
240             jnrlistD         = jjnr[jidx+3];
241             /* Sign of each element will be negative for non-real atoms.
242              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
243              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
244              */
245             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
246             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
247             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
248             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
249             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
250             j_coord_offsetA  = DIM*jnrA;
251             j_coord_offsetB  = DIM*jnrB;
252             j_coord_offsetC  = DIM*jnrC;
253             j_coord_offsetD  = DIM*jnrD;
254
255             /* load j atom coordinates */
256             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
257                                               x+j_coord_offsetC,x+j_coord_offsetD,
258                                               &jx0,&jy0,&jz0);
259
260             /* Calculate displacement vector */
261             dx00             = _mm_sub_ps(ix0,jx0);
262             dy00             = _mm_sub_ps(iy0,jy0);
263             dz00             = _mm_sub_ps(iz0,jz0);
264
265             /* Calculate squared distance and things based on it */
266             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
267
268             rinvsq00         = gmx_mm_inv_ps(rsq00);
269
270             /* Load parameters for j particles */
271             vdwjidx0A        = 2*vdwtype[jnrA+0];
272             vdwjidx0B        = 2*vdwtype[jnrB+0];
273             vdwjidx0C        = 2*vdwtype[jnrC+0];
274             vdwjidx0D        = 2*vdwtype[jnrD+0];
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             /* Compute parameters for interactions between i and j atoms */
281             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
282                                          vdwparam+vdwioffset0+vdwjidx0B,
283                                          vdwparam+vdwioffset0+vdwjidx0C,
284                                          vdwparam+vdwioffset0+vdwjidx0D,
285                                          &c6_00,&c12_00);
286
287             /* LENNARD-JONES DISPERSION/REPULSION */
288
289             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
290             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
291             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
292             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
293             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
297             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
298
299             fscal            = fvdw;
300
301             fscal            = _mm_andnot_ps(dummy_mask,fscal);
302
303             /* Calculate temporary vectorial force */
304             tx               = _mm_mul_ps(fscal,dx00);
305             ty               = _mm_mul_ps(fscal,dy00);
306             tz               = _mm_mul_ps(fscal,dz00);
307
308             /* Update vectorial force */
309             fix0             = _mm_add_ps(fix0,tx);
310             fiy0             = _mm_add_ps(fiy0,ty);
311             fiz0             = _mm_add_ps(fiz0,tz);
312
313             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
314             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
315             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
316             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
317             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
318             
319             /* Inner loop uses 32 flops */
320         }
321
322         /* End of innermost loop */
323
324         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
325                                               f+i_coord_offset,fshift+i_shift_offset);
326
327         ggid                        = gid[iidx];
328         /* Update potential energies */
329         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
330
331         /* Increment number of inner iterations */
332         inneriter                  += j_index_end - j_index_start;
333
334         /* Outer loop uses 7 flops */
335     }
336
337     /* Increment number of outer iterations */
338     outeriter        += nri;
339
340     /* Update outer/inner flops */
341
342     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*32);
343 }
344 /*
345  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_sse2_single
346  * Electrostatics interaction: None
347  * VdW interaction:            LennardJones
348  * Geometry:                   Particle-Particle
349  * Calculate force/pot:        Force
350  */
351 void
352 nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_sse2_single
353                     (t_nblist                    * gmx_restrict       nlist,
354                      rvec                        * gmx_restrict          xx,
355                      rvec                        * gmx_restrict          ff,
356                      t_forcerec                  * gmx_restrict          fr,
357                      t_mdatoms                   * gmx_restrict     mdatoms,
358                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
359                      t_nrnb                      * gmx_restrict        nrnb)
360 {
361     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
362      * just 0 for non-waters.
363      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
364      * jnr indices corresponding to data put in the four positions in the SIMD register.
365      */
366     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
367     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
368     int              jnrA,jnrB,jnrC,jnrD;
369     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
370     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
371     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
372     real             rcutoff_scalar;
373     real             *shiftvec,*fshift,*x,*f;
374     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
375     real             scratch[4*DIM];
376     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
377     int              vdwioffset0;
378     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
379     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
380     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
381     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
382     int              nvdwtype;
383     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
384     int              *vdwtype;
385     real             *vdwparam;
386     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
387     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
388     __m128           dummy_mask,cutoff_mask;
389     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
390     __m128           one     = _mm_set1_ps(1.0);
391     __m128           two     = _mm_set1_ps(2.0);
392     x                = xx[0];
393     f                = ff[0];
394
395     nri              = nlist->nri;
396     iinr             = nlist->iinr;
397     jindex           = nlist->jindex;
398     jjnr             = nlist->jjnr;
399     shiftidx         = nlist->shift;
400     gid              = nlist->gid;
401     shiftvec         = fr->shift_vec[0];
402     fshift           = fr->fshift[0];
403     nvdwtype         = fr->ntype;
404     vdwparam         = fr->nbfp;
405     vdwtype          = mdatoms->typeA;
406
407     /* Avoid stupid compiler warnings */
408     jnrA = jnrB = jnrC = jnrD = 0;
409     j_coord_offsetA = 0;
410     j_coord_offsetB = 0;
411     j_coord_offsetC = 0;
412     j_coord_offsetD = 0;
413
414     outeriter        = 0;
415     inneriter        = 0;
416
417     for(iidx=0;iidx<4*DIM;iidx++)
418     {
419         scratch[iidx] = 0.0;
420     }  
421
422     /* Start outer loop over neighborlists */
423     for(iidx=0; iidx<nri; iidx++)
424     {
425         /* Load shift vector for this list */
426         i_shift_offset   = DIM*shiftidx[iidx];
427
428         /* Load limits for loop over neighbors */
429         j_index_start    = jindex[iidx];
430         j_index_end      = jindex[iidx+1];
431
432         /* Get outer coordinate index */
433         inr              = iinr[iidx];
434         i_coord_offset   = DIM*inr;
435
436         /* Load i particle coords and add shift vector */
437         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
438         
439         fix0             = _mm_setzero_ps();
440         fiy0             = _mm_setzero_ps();
441         fiz0             = _mm_setzero_ps();
442
443         /* Load parameters for i particles */
444         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
445
446         /* Start inner kernel loop */
447         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
448         {
449
450             /* Get j neighbor index, and coordinate index */
451             jnrA             = jjnr[jidx];
452             jnrB             = jjnr[jidx+1];
453             jnrC             = jjnr[jidx+2];
454             jnrD             = jjnr[jidx+3];
455             j_coord_offsetA  = DIM*jnrA;
456             j_coord_offsetB  = DIM*jnrB;
457             j_coord_offsetC  = DIM*jnrC;
458             j_coord_offsetD  = DIM*jnrD;
459
460             /* load j atom coordinates */
461             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
462                                               x+j_coord_offsetC,x+j_coord_offsetD,
463                                               &jx0,&jy0,&jz0);
464
465             /* Calculate displacement vector */
466             dx00             = _mm_sub_ps(ix0,jx0);
467             dy00             = _mm_sub_ps(iy0,jy0);
468             dz00             = _mm_sub_ps(iz0,jz0);
469
470             /* Calculate squared distance and things based on it */
471             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
472
473             rinvsq00         = gmx_mm_inv_ps(rsq00);
474
475             /* Load parameters for j particles */
476             vdwjidx0A        = 2*vdwtype[jnrA+0];
477             vdwjidx0B        = 2*vdwtype[jnrB+0];
478             vdwjidx0C        = 2*vdwtype[jnrC+0];
479             vdwjidx0D        = 2*vdwtype[jnrD+0];
480
481             /**************************
482              * CALCULATE INTERACTIONS *
483              **************************/
484
485             /* Compute parameters for interactions between i and j atoms */
486             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
487                                          vdwparam+vdwioffset0+vdwjidx0B,
488                                          vdwparam+vdwioffset0+vdwjidx0C,
489                                          vdwparam+vdwioffset0+vdwjidx0D,
490                                          &c6_00,&c12_00);
491
492             /* LENNARD-JONES DISPERSION/REPULSION */
493
494             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
495             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
496
497             fscal            = fvdw;
498
499             /* Calculate temporary vectorial force */
500             tx               = _mm_mul_ps(fscal,dx00);
501             ty               = _mm_mul_ps(fscal,dy00);
502             tz               = _mm_mul_ps(fscal,dz00);
503
504             /* Update vectorial force */
505             fix0             = _mm_add_ps(fix0,tx);
506             fiy0             = _mm_add_ps(fiy0,ty);
507             fiz0             = _mm_add_ps(fiz0,tz);
508
509             fjptrA             = f+j_coord_offsetA;
510             fjptrB             = f+j_coord_offsetB;
511             fjptrC             = f+j_coord_offsetC;
512             fjptrD             = f+j_coord_offsetD;
513             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
514             
515             /* Inner loop uses 27 flops */
516         }
517
518         if(jidx<j_index_end)
519         {
520
521             /* Get j neighbor index, and coordinate index */
522             jnrlistA         = jjnr[jidx];
523             jnrlistB         = jjnr[jidx+1];
524             jnrlistC         = jjnr[jidx+2];
525             jnrlistD         = jjnr[jidx+3];
526             /* Sign of each element will be negative for non-real atoms.
527              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
528              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
529              */
530             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
531             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
532             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
533             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
534             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
535             j_coord_offsetA  = DIM*jnrA;
536             j_coord_offsetB  = DIM*jnrB;
537             j_coord_offsetC  = DIM*jnrC;
538             j_coord_offsetD  = DIM*jnrD;
539
540             /* load j atom coordinates */
541             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
542                                               x+j_coord_offsetC,x+j_coord_offsetD,
543                                               &jx0,&jy0,&jz0);
544
545             /* Calculate displacement vector */
546             dx00             = _mm_sub_ps(ix0,jx0);
547             dy00             = _mm_sub_ps(iy0,jy0);
548             dz00             = _mm_sub_ps(iz0,jz0);
549
550             /* Calculate squared distance and things based on it */
551             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
552
553             rinvsq00         = gmx_mm_inv_ps(rsq00);
554
555             /* Load parameters for j particles */
556             vdwjidx0A        = 2*vdwtype[jnrA+0];
557             vdwjidx0B        = 2*vdwtype[jnrB+0];
558             vdwjidx0C        = 2*vdwtype[jnrC+0];
559             vdwjidx0D        = 2*vdwtype[jnrD+0];
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             /* Compute parameters for interactions between i and j atoms */
566             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
567                                          vdwparam+vdwioffset0+vdwjidx0B,
568                                          vdwparam+vdwioffset0+vdwjidx0C,
569                                          vdwparam+vdwioffset0+vdwjidx0D,
570                                          &c6_00,&c12_00);
571
572             /* LENNARD-JONES DISPERSION/REPULSION */
573
574             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
575             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
576
577             fscal            = fvdw;
578
579             fscal            = _mm_andnot_ps(dummy_mask,fscal);
580
581             /* Calculate temporary vectorial force */
582             tx               = _mm_mul_ps(fscal,dx00);
583             ty               = _mm_mul_ps(fscal,dy00);
584             tz               = _mm_mul_ps(fscal,dz00);
585
586             /* Update vectorial force */
587             fix0             = _mm_add_ps(fix0,tx);
588             fiy0             = _mm_add_ps(fiy0,ty);
589             fiz0             = _mm_add_ps(fiz0,tz);
590
591             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
592             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
593             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
594             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
595             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
596             
597             /* Inner loop uses 27 flops */
598         }
599
600         /* End of innermost loop */
601
602         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
603                                               f+i_coord_offset,fshift+i_shift_offset);
604
605         /* Increment number of inner iterations */
606         inneriter                  += j_index_end - j_index_start;
607
608         /* Outer loop uses 6 flops */
609     }
610
611     /* Increment number of outer iterations */
612     outeriter        += nri;
613
614     /* Update outer/inner flops */
615
616     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*27);
617 }