Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecNone_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_sse2_single
54  * Electrostatics interaction: None
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           dummy_mask,cutoff_mask;
97     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
98     __m128           one     = _mm_set1_ps(1.0);
99     __m128           two     = _mm_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = jnrC = jnrD = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119     j_coord_offsetC = 0;
120     j_coord_offsetD = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     for(iidx=0;iidx<4*DIM;iidx++)
126     {
127         scratch[iidx] = 0.0;
128     }  
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146         
147         fix0             = _mm_setzero_ps();
148         fiy0             = _mm_setzero_ps();
149         fiz0             = _mm_setzero_ps();
150
151         /* Load parameters for i particles */
152         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
153
154         /* Reset potential sums */
155         vvdwsum          = _mm_setzero_ps();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             jnrC             = jjnr[jidx+2];
165             jnrD             = jjnr[jidx+3];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168             j_coord_offsetC  = DIM*jnrC;
169             j_coord_offsetD  = DIM*jnrD;
170
171             /* load j atom coordinates */
172             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
173                                               x+j_coord_offsetC,x+j_coord_offsetD,
174                                               &jx0,&jy0,&jz0);
175
176             /* Calculate displacement vector */
177             dx00             = _mm_sub_ps(ix0,jx0);
178             dy00             = _mm_sub_ps(iy0,jy0);
179             dz00             = _mm_sub_ps(iz0,jz0);
180
181             /* Calculate squared distance and things based on it */
182             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
183
184             rinvsq00         = gmx_mm_inv_ps(rsq00);
185
186             /* Load parameters for j particles */
187             vdwjidx0A        = 2*vdwtype[jnrA+0];
188             vdwjidx0B        = 2*vdwtype[jnrB+0];
189             vdwjidx0C        = 2*vdwtype[jnrC+0];
190             vdwjidx0D        = 2*vdwtype[jnrD+0];
191
192             /**************************
193              * CALCULATE INTERACTIONS *
194              **************************/
195
196             /* Compute parameters for interactions between i and j atoms */
197             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
198                                          vdwparam+vdwioffset0+vdwjidx0B,
199                                          vdwparam+vdwioffset0+vdwjidx0C,
200                                          vdwparam+vdwioffset0+vdwjidx0D,
201                                          &c6_00,&c12_00);
202
203             /* LENNARD-JONES DISPERSION/REPULSION */
204
205             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
206             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
207             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
208             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
209             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
210
211             /* Update potential sum for this i atom from the interaction with this j atom. */
212             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
213
214             fscal            = fvdw;
215
216             /* Calculate temporary vectorial force */
217             tx               = _mm_mul_ps(fscal,dx00);
218             ty               = _mm_mul_ps(fscal,dy00);
219             tz               = _mm_mul_ps(fscal,dz00);
220
221             /* Update vectorial force */
222             fix0             = _mm_add_ps(fix0,tx);
223             fiy0             = _mm_add_ps(fiy0,ty);
224             fiz0             = _mm_add_ps(fiz0,tz);
225
226             fjptrA             = f+j_coord_offsetA;
227             fjptrB             = f+j_coord_offsetB;
228             fjptrC             = f+j_coord_offsetC;
229             fjptrD             = f+j_coord_offsetD;
230             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
231             
232             /* Inner loop uses 32 flops */
233         }
234
235         if(jidx<j_index_end)
236         {
237
238             /* Get j neighbor index, and coordinate index */
239             jnrlistA         = jjnr[jidx];
240             jnrlistB         = jjnr[jidx+1];
241             jnrlistC         = jjnr[jidx+2];
242             jnrlistD         = jjnr[jidx+3];
243             /* Sign of each element will be negative for non-real atoms.
244              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
245              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
246              */
247             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
248             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
249             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
250             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
251             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
252             j_coord_offsetA  = DIM*jnrA;
253             j_coord_offsetB  = DIM*jnrB;
254             j_coord_offsetC  = DIM*jnrC;
255             j_coord_offsetD  = DIM*jnrD;
256
257             /* load j atom coordinates */
258             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
259                                               x+j_coord_offsetC,x+j_coord_offsetD,
260                                               &jx0,&jy0,&jz0);
261
262             /* Calculate displacement vector */
263             dx00             = _mm_sub_ps(ix0,jx0);
264             dy00             = _mm_sub_ps(iy0,jy0);
265             dz00             = _mm_sub_ps(iz0,jz0);
266
267             /* Calculate squared distance and things based on it */
268             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
269
270             rinvsq00         = gmx_mm_inv_ps(rsq00);
271
272             /* Load parameters for j particles */
273             vdwjidx0A        = 2*vdwtype[jnrA+0];
274             vdwjidx0B        = 2*vdwtype[jnrB+0];
275             vdwjidx0C        = 2*vdwtype[jnrC+0];
276             vdwjidx0D        = 2*vdwtype[jnrD+0];
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             /* Compute parameters for interactions between i and j atoms */
283             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
284                                          vdwparam+vdwioffset0+vdwjidx0B,
285                                          vdwparam+vdwioffset0+vdwjidx0C,
286                                          vdwparam+vdwioffset0+vdwjidx0D,
287                                          &c6_00,&c12_00);
288
289             /* LENNARD-JONES DISPERSION/REPULSION */
290
291             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
292             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
293             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
294             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
295             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
299             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
300
301             fscal            = fvdw;
302
303             fscal            = _mm_andnot_ps(dummy_mask,fscal);
304
305             /* Calculate temporary vectorial force */
306             tx               = _mm_mul_ps(fscal,dx00);
307             ty               = _mm_mul_ps(fscal,dy00);
308             tz               = _mm_mul_ps(fscal,dz00);
309
310             /* Update vectorial force */
311             fix0             = _mm_add_ps(fix0,tx);
312             fiy0             = _mm_add_ps(fiy0,ty);
313             fiz0             = _mm_add_ps(fiz0,tz);
314
315             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
316             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
317             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
318             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
319             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
320             
321             /* Inner loop uses 32 flops */
322         }
323
324         /* End of innermost loop */
325
326         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
327                                               f+i_coord_offset,fshift+i_shift_offset);
328
329         ggid                        = gid[iidx];
330         /* Update potential energies */
331         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
332
333         /* Increment number of inner iterations */
334         inneriter                  += j_index_end - j_index_start;
335
336         /* Outer loop uses 7 flops */
337     }
338
339     /* Increment number of outer iterations */
340     outeriter        += nri;
341
342     /* Update outer/inner flops */
343
344     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*32);
345 }
346 /*
347  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_sse2_single
348  * Electrostatics interaction: None
349  * VdW interaction:            LennardJones
350  * Geometry:                   Particle-Particle
351  * Calculate force/pot:        Force
352  */
353 void
354 nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_sse2_single
355                     (t_nblist                    * gmx_restrict       nlist,
356                      rvec                        * gmx_restrict          xx,
357                      rvec                        * gmx_restrict          ff,
358                      t_forcerec                  * gmx_restrict          fr,
359                      t_mdatoms                   * gmx_restrict     mdatoms,
360                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
361                      t_nrnb                      * gmx_restrict        nrnb)
362 {
363     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
364      * just 0 for non-waters.
365      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
366      * jnr indices corresponding to data put in the four positions in the SIMD register.
367      */
368     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
369     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
370     int              jnrA,jnrB,jnrC,jnrD;
371     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
372     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
373     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
374     real             rcutoff_scalar;
375     real             *shiftvec,*fshift,*x,*f;
376     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
377     real             scratch[4*DIM];
378     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
379     int              vdwioffset0;
380     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
381     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
382     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
383     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
384     int              nvdwtype;
385     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
386     int              *vdwtype;
387     real             *vdwparam;
388     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
389     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
390     __m128           dummy_mask,cutoff_mask;
391     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
392     __m128           one     = _mm_set1_ps(1.0);
393     __m128           two     = _mm_set1_ps(2.0);
394     x                = xx[0];
395     f                = ff[0];
396
397     nri              = nlist->nri;
398     iinr             = nlist->iinr;
399     jindex           = nlist->jindex;
400     jjnr             = nlist->jjnr;
401     shiftidx         = nlist->shift;
402     gid              = nlist->gid;
403     shiftvec         = fr->shift_vec[0];
404     fshift           = fr->fshift[0];
405     nvdwtype         = fr->ntype;
406     vdwparam         = fr->nbfp;
407     vdwtype          = mdatoms->typeA;
408
409     /* Avoid stupid compiler warnings */
410     jnrA = jnrB = jnrC = jnrD = 0;
411     j_coord_offsetA = 0;
412     j_coord_offsetB = 0;
413     j_coord_offsetC = 0;
414     j_coord_offsetD = 0;
415
416     outeriter        = 0;
417     inneriter        = 0;
418
419     for(iidx=0;iidx<4*DIM;iidx++)
420     {
421         scratch[iidx] = 0.0;
422     }  
423
424     /* Start outer loop over neighborlists */
425     for(iidx=0; iidx<nri; iidx++)
426     {
427         /* Load shift vector for this list */
428         i_shift_offset   = DIM*shiftidx[iidx];
429
430         /* Load limits for loop over neighbors */
431         j_index_start    = jindex[iidx];
432         j_index_end      = jindex[iidx+1];
433
434         /* Get outer coordinate index */
435         inr              = iinr[iidx];
436         i_coord_offset   = DIM*inr;
437
438         /* Load i particle coords and add shift vector */
439         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
440         
441         fix0             = _mm_setzero_ps();
442         fiy0             = _mm_setzero_ps();
443         fiz0             = _mm_setzero_ps();
444
445         /* Load parameters for i particles */
446         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
447
448         /* Start inner kernel loop */
449         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
450         {
451
452             /* Get j neighbor index, and coordinate index */
453             jnrA             = jjnr[jidx];
454             jnrB             = jjnr[jidx+1];
455             jnrC             = jjnr[jidx+2];
456             jnrD             = jjnr[jidx+3];
457             j_coord_offsetA  = DIM*jnrA;
458             j_coord_offsetB  = DIM*jnrB;
459             j_coord_offsetC  = DIM*jnrC;
460             j_coord_offsetD  = DIM*jnrD;
461
462             /* load j atom coordinates */
463             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
464                                               x+j_coord_offsetC,x+j_coord_offsetD,
465                                               &jx0,&jy0,&jz0);
466
467             /* Calculate displacement vector */
468             dx00             = _mm_sub_ps(ix0,jx0);
469             dy00             = _mm_sub_ps(iy0,jy0);
470             dz00             = _mm_sub_ps(iz0,jz0);
471
472             /* Calculate squared distance and things based on it */
473             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
474
475             rinvsq00         = gmx_mm_inv_ps(rsq00);
476
477             /* Load parameters for j particles */
478             vdwjidx0A        = 2*vdwtype[jnrA+0];
479             vdwjidx0B        = 2*vdwtype[jnrB+0];
480             vdwjidx0C        = 2*vdwtype[jnrC+0];
481             vdwjidx0D        = 2*vdwtype[jnrD+0];
482
483             /**************************
484              * CALCULATE INTERACTIONS *
485              **************************/
486
487             /* Compute parameters for interactions between i and j atoms */
488             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
489                                          vdwparam+vdwioffset0+vdwjidx0B,
490                                          vdwparam+vdwioffset0+vdwjidx0C,
491                                          vdwparam+vdwioffset0+vdwjidx0D,
492                                          &c6_00,&c12_00);
493
494             /* LENNARD-JONES DISPERSION/REPULSION */
495
496             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
497             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
498
499             fscal            = fvdw;
500
501             /* Calculate temporary vectorial force */
502             tx               = _mm_mul_ps(fscal,dx00);
503             ty               = _mm_mul_ps(fscal,dy00);
504             tz               = _mm_mul_ps(fscal,dz00);
505
506             /* Update vectorial force */
507             fix0             = _mm_add_ps(fix0,tx);
508             fiy0             = _mm_add_ps(fiy0,ty);
509             fiz0             = _mm_add_ps(fiz0,tz);
510
511             fjptrA             = f+j_coord_offsetA;
512             fjptrB             = f+j_coord_offsetB;
513             fjptrC             = f+j_coord_offsetC;
514             fjptrD             = f+j_coord_offsetD;
515             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
516             
517             /* Inner loop uses 27 flops */
518         }
519
520         if(jidx<j_index_end)
521         {
522
523             /* Get j neighbor index, and coordinate index */
524             jnrlistA         = jjnr[jidx];
525             jnrlistB         = jjnr[jidx+1];
526             jnrlistC         = jjnr[jidx+2];
527             jnrlistD         = jjnr[jidx+3];
528             /* Sign of each element will be negative for non-real atoms.
529              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
530              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
531              */
532             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
533             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
534             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
535             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
536             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
537             j_coord_offsetA  = DIM*jnrA;
538             j_coord_offsetB  = DIM*jnrB;
539             j_coord_offsetC  = DIM*jnrC;
540             j_coord_offsetD  = DIM*jnrD;
541
542             /* load j atom coordinates */
543             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
544                                               x+j_coord_offsetC,x+j_coord_offsetD,
545                                               &jx0,&jy0,&jz0);
546
547             /* Calculate displacement vector */
548             dx00             = _mm_sub_ps(ix0,jx0);
549             dy00             = _mm_sub_ps(iy0,jy0);
550             dz00             = _mm_sub_ps(iz0,jz0);
551
552             /* Calculate squared distance and things based on it */
553             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
554
555             rinvsq00         = gmx_mm_inv_ps(rsq00);
556
557             /* Load parameters for j particles */
558             vdwjidx0A        = 2*vdwtype[jnrA+0];
559             vdwjidx0B        = 2*vdwtype[jnrB+0];
560             vdwjidx0C        = 2*vdwtype[jnrC+0];
561             vdwjidx0D        = 2*vdwtype[jnrD+0];
562
563             /**************************
564              * CALCULATE INTERACTIONS *
565              **************************/
566
567             /* Compute parameters for interactions between i and j atoms */
568             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
569                                          vdwparam+vdwioffset0+vdwjidx0B,
570                                          vdwparam+vdwioffset0+vdwjidx0C,
571                                          vdwparam+vdwioffset0+vdwjidx0D,
572                                          &c6_00,&c12_00);
573
574             /* LENNARD-JONES DISPERSION/REPULSION */
575
576             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
577             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
578
579             fscal            = fvdw;
580
581             fscal            = _mm_andnot_ps(dummy_mask,fscal);
582
583             /* Calculate temporary vectorial force */
584             tx               = _mm_mul_ps(fscal,dx00);
585             ty               = _mm_mul_ps(fscal,dy00);
586             tz               = _mm_mul_ps(fscal,dz00);
587
588             /* Update vectorial force */
589             fix0             = _mm_add_ps(fix0,tx);
590             fiy0             = _mm_add_ps(fiy0,ty);
591             fiz0             = _mm_add_ps(fiz0,tz);
592
593             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
594             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
595             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
596             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
597             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
598             
599             /* Inner loop uses 27 flops */
600         }
601
602         /* End of innermost loop */
603
604         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
605                                               f+i_coord_offset,fshift+i_shift_offset);
606
607         /* Increment number of inner iterations */
608         inneriter                  += j_index_end - j_index_start;
609
610         /* Outer loop uses 6 flops */
611     }
612
613     /* Increment number of outer iterations */
614     outeriter        += nri;
615
616     /* Update outer/inner flops */
617
618     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*27);
619 }