Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecNone_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: None
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     int              nvdwtype;
72     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
73     int              *vdwtype;
74     real             *vdwparam;
75     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
76     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
77     __m128           dummy_mask,cutoff_mask;
78     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
79     __m128           one     = _mm_set1_ps(1.0);
80     __m128           two     = _mm_set1_ps(2.0);
81     x                = xx[0];
82     f                = ff[0];
83
84     nri              = nlist->nri;
85     iinr             = nlist->iinr;
86     jindex           = nlist->jindex;
87     jjnr             = nlist->jjnr;
88     shiftidx         = nlist->shift;
89     gid              = nlist->gid;
90     shiftvec         = fr->shift_vec[0];
91     fshift           = fr->fshift[0];
92     nvdwtype         = fr->ntype;
93     vdwparam         = fr->nbfp;
94     vdwtype          = mdatoms->typeA;
95
96     /* Avoid stupid compiler warnings */
97     jnrA = jnrB = jnrC = jnrD = 0;
98     j_coord_offsetA = 0;
99     j_coord_offsetB = 0;
100     j_coord_offsetC = 0;
101     j_coord_offsetD = 0;
102
103     outeriter        = 0;
104     inneriter        = 0;
105
106     /* Start outer loop over neighborlists */
107     for(iidx=0; iidx<nri; iidx++)
108     {
109         /* Load shift vector for this list */
110         i_shift_offset   = DIM*shiftidx[iidx];
111         shX              = shiftvec[i_shift_offset+XX];
112         shY              = shiftvec[i_shift_offset+YY];
113         shZ              = shiftvec[i_shift_offset+ZZ];
114
115         /* Load limits for loop over neighbors */
116         j_index_start    = jindex[iidx];
117         j_index_end      = jindex[iidx+1];
118
119         /* Get outer coordinate index */
120         inr              = iinr[iidx];
121         i_coord_offset   = DIM*inr;
122
123         /* Load i particle coords and add shift vector */
124         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
125         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
126         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
127
128         fix0             = _mm_setzero_ps();
129         fiy0             = _mm_setzero_ps();
130         fiz0             = _mm_setzero_ps();
131
132         /* Load parameters for i particles */
133         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135         /* Reset potential sums */
136         vvdwsum          = _mm_setzero_ps();
137
138         /* Start inner kernel loop */
139         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
140         {
141
142             /* Get j neighbor index, and coordinate index */
143             jnrA             = jjnr[jidx];
144             jnrB             = jjnr[jidx+1];
145             jnrC             = jjnr[jidx+2];
146             jnrD             = jjnr[jidx+3];
147
148             j_coord_offsetA  = DIM*jnrA;
149             j_coord_offsetB  = DIM*jnrB;
150             j_coord_offsetC  = DIM*jnrC;
151             j_coord_offsetD  = DIM*jnrD;
152
153             /* load j atom coordinates */
154             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
155                                               x+j_coord_offsetC,x+j_coord_offsetD,
156                                               &jx0,&jy0,&jz0);
157
158             /* Calculate displacement vector */
159             dx00             = _mm_sub_ps(ix0,jx0);
160             dy00             = _mm_sub_ps(iy0,jy0);
161             dz00             = _mm_sub_ps(iz0,jz0);
162
163             /* Calculate squared distance and things based on it */
164             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
165
166             rinvsq00         = gmx_mm_inv_ps(rsq00);
167
168             /* Load parameters for j particles */
169             vdwjidx0A        = 2*vdwtype[jnrA+0];
170             vdwjidx0B        = 2*vdwtype[jnrB+0];
171             vdwjidx0C        = 2*vdwtype[jnrC+0];
172             vdwjidx0D        = 2*vdwtype[jnrD+0];
173
174             /**************************
175              * CALCULATE INTERACTIONS *
176              **************************/
177
178             /* Compute parameters for interactions between i and j atoms */
179             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
180                                          vdwparam+vdwioffset0+vdwjidx0B,
181                                          vdwparam+vdwioffset0+vdwjidx0C,
182                                          vdwparam+vdwioffset0+vdwjidx0D,
183                                          &c6_00,&c12_00);
184
185             /* LENNARD-JONES DISPERSION/REPULSION */
186
187             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
188             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
189             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
190             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
191             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
192
193             /* Update potential sum for this i atom from the interaction with this j atom. */
194             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
195
196             fscal            = fvdw;
197
198             /* Calculate temporary vectorial force */
199             tx               = _mm_mul_ps(fscal,dx00);
200             ty               = _mm_mul_ps(fscal,dy00);
201             tz               = _mm_mul_ps(fscal,dz00);
202
203             /* Update vectorial force */
204             fix0             = _mm_add_ps(fix0,tx);
205             fiy0             = _mm_add_ps(fiy0,ty);
206             fiz0             = _mm_add_ps(fiz0,tz);
207
208             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
209                                                    f+j_coord_offsetC,f+j_coord_offsetD,
210                                                    tx,ty,tz);
211
212             /* Inner loop uses 32 flops */
213         }
214
215         if(jidx<j_index_end)
216         {
217
218             /* Get j neighbor index, and coordinate index */
219             jnrA             = jjnr[jidx];
220             jnrB             = jjnr[jidx+1];
221             jnrC             = jjnr[jidx+2];
222             jnrD             = jjnr[jidx+3];
223
224             /* Sign of each element will be negative for non-real atoms.
225              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
226              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
227              */
228             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
229             jnrA       = (jnrA>=0) ? jnrA : 0;
230             jnrB       = (jnrB>=0) ? jnrB : 0;
231             jnrC       = (jnrC>=0) ? jnrC : 0;
232             jnrD       = (jnrD>=0) ? jnrD : 0;
233
234             j_coord_offsetA  = DIM*jnrA;
235             j_coord_offsetB  = DIM*jnrB;
236             j_coord_offsetC  = DIM*jnrC;
237             j_coord_offsetD  = DIM*jnrD;
238
239             /* load j atom coordinates */
240             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
241                                               x+j_coord_offsetC,x+j_coord_offsetD,
242                                               &jx0,&jy0,&jz0);
243
244             /* Calculate displacement vector */
245             dx00             = _mm_sub_ps(ix0,jx0);
246             dy00             = _mm_sub_ps(iy0,jy0);
247             dz00             = _mm_sub_ps(iz0,jz0);
248
249             /* Calculate squared distance and things based on it */
250             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
251
252             rinvsq00         = gmx_mm_inv_ps(rsq00);
253
254             /* Load parameters for j particles */
255             vdwjidx0A        = 2*vdwtype[jnrA+0];
256             vdwjidx0B        = 2*vdwtype[jnrB+0];
257             vdwjidx0C        = 2*vdwtype[jnrC+0];
258             vdwjidx0D        = 2*vdwtype[jnrD+0];
259
260             /**************************
261              * CALCULATE INTERACTIONS *
262              **************************/
263
264             /* Compute parameters for interactions between i and j atoms */
265             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
266                                          vdwparam+vdwioffset0+vdwjidx0B,
267                                          vdwparam+vdwioffset0+vdwjidx0C,
268                                          vdwparam+vdwioffset0+vdwjidx0D,
269                                          &c6_00,&c12_00);
270
271             /* LENNARD-JONES DISPERSION/REPULSION */
272
273             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
274             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
275             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
276             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
277             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
281             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
282
283             fscal            = fvdw;
284
285             fscal            = _mm_andnot_ps(dummy_mask,fscal);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm_mul_ps(fscal,dx00);
289             ty               = _mm_mul_ps(fscal,dy00);
290             tz               = _mm_mul_ps(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm_add_ps(fix0,tx);
294             fiy0             = _mm_add_ps(fiy0,ty);
295             fiz0             = _mm_add_ps(fiz0,tz);
296
297             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
298                                                    f+j_coord_offsetC,f+j_coord_offsetD,
299                                                    tx,ty,tz);
300
301             /* Inner loop uses 32 flops */
302         }
303
304         /* End of innermost loop */
305
306         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
307                                               f+i_coord_offset,fshift+i_shift_offset);
308
309         ggid                        = gid[iidx];
310         /* Update potential energies */
311         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
312
313         /* Increment number of inner iterations */
314         inneriter                  += j_index_end - j_index_start;
315
316         /* Outer loop uses 10 flops */
317     }
318
319     /* Increment number of outer iterations */
320     outeriter        += nri;
321
322     /* Update outer/inner flops */
323
324     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*10 + inneriter*32);
325 }
326 /*
327  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_sse2_single
328  * Electrostatics interaction: None
329  * VdW interaction:            LennardJones
330  * Geometry:                   Particle-Particle
331  * Calculate force/pot:        Force
332  */
333 void
334 nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_sse2_single
335                     (t_nblist * gmx_restrict                nlist,
336                      rvec * gmx_restrict                    xx,
337                      rvec * gmx_restrict                    ff,
338                      t_forcerec * gmx_restrict              fr,
339                      t_mdatoms * gmx_restrict               mdatoms,
340                      nb_kernel_data_t * gmx_restrict        kernel_data,
341                      t_nrnb * gmx_restrict                  nrnb)
342 {
343     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
344      * just 0 for non-waters.
345      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
346      * jnr indices corresponding to data put in the four positions in the SIMD register.
347      */
348     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
349     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
350     int              jnrA,jnrB,jnrC,jnrD;
351     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
352     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
353     real             shX,shY,shZ,rcutoff_scalar;
354     real             *shiftvec,*fshift,*x,*f;
355     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
356     int              vdwioffset0;
357     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
358     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
359     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
360     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
361     int              nvdwtype;
362     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
363     int              *vdwtype;
364     real             *vdwparam;
365     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
366     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
367     __m128           dummy_mask,cutoff_mask;
368     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
369     __m128           one     = _mm_set1_ps(1.0);
370     __m128           two     = _mm_set1_ps(2.0);
371     x                = xx[0];
372     f                = ff[0];
373
374     nri              = nlist->nri;
375     iinr             = nlist->iinr;
376     jindex           = nlist->jindex;
377     jjnr             = nlist->jjnr;
378     shiftidx         = nlist->shift;
379     gid              = nlist->gid;
380     shiftvec         = fr->shift_vec[0];
381     fshift           = fr->fshift[0];
382     nvdwtype         = fr->ntype;
383     vdwparam         = fr->nbfp;
384     vdwtype          = mdatoms->typeA;
385
386     /* Avoid stupid compiler warnings */
387     jnrA = jnrB = jnrC = jnrD = 0;
388     j_coord_offsetA = 0;
389     j_coord_offsetB = 0;
390     j_coord_offsetC = 0;
391     j_coord_offsetD = 0;
392
393     outeriter        = 0;
394     inneriter        = 0;
395
396     /* Start outer loop over neighborlists */
397     for(iidx=0; iidx<nri; iidx++)
398     {
399         /* Load shift vector for this list */
400         i_shift_offset   = DIM*shiftidx[iidx];
401         shX              = shiftvec[i_shift_offset+XX];
402         shY              = shiftvec[i_shift_offset+YY];
403         shZ              = shiftvec[i_shift_offset+ZZ];
404
405         /* Load limits for loop over neighbors */
406         j_index_start    = jindex[iidx];
407         j_index_end      = jindex[iidx+1];
408
409         /* Get outer coordinate index */
410         inr              = iinr[iidx];
411         i_coord_offset   = DIM*inr;
412
413         /* Load i particle coords and add shift vector */
414         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
415         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
416         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
417
418         fix0             = _mm_setzero_ps();
419         fiy0             = _mm_setzero_ps();
420         fiz0             = _mm_setzero_ps();
421
422         /* Load parameters for i particles */
423         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
424
425         /* Start inner kernel loop */
426         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
427         {
428
429             /* Get j neighbor index, and coordinate index */
430             jnrA             = jjnr[jidx];
431             jnrB             = jjnr[jidx+1];
432             jnrC             = jjnr[jidx+2];
433             jnrD             = jjnr[jidx+3];
434
435             j_coord_offsetA  = DIM*jnrA;
436             j_coord_offsetB  = DIM*jnrB;
437             j_coord_offsetC  = DIM*jnrC;
438             j_coord_offsetD  = DIM*jnrD;
439
440             /* load j atom coordinates */
441             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
442                                               x+j_coord_offsetC,x+j_coord_offsetD,
443                                               &jx0,&jy0,&jz0);
444
445             /* Calculate displacement vector */
446             dx00             = _mm_sub_ps(ix0,jx0);
447             dy00             = _mm_sub_ps(iy0,jy0);
448             dz00             = _mm_sub_ps(iz0,jz0);
449
450             /* Calculate squared distance and things based on it */
451             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
452
453             rinvsq00         = gmx_mm_inv_ps(rsq00);
454
455             /* Load parameters for j particles */
456             vdwjidx0A        = 2*vdwtype[jnrA+0];
457             vdwjidx0B        = 2*vdwtype[jnrB+0];
458             vdwjidx0C        = 2*vdwtype[jnrC+0];
459             vdwjidx0D        = 2*vdwtype[jnrD+0];
460
461             /**************************
462              * CALCULATE INTERACTIONS *
463              **************************/
464
465             /* Compute parameters for interactions between i and j atoms */
466             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
467                                          vdwparam+vdwioffset0+vdwjidx0B,
468                                          vdwparam+vdwioffset0+vdwjidx0C,
469                                          vdwparam+vdwioffset0+vdwjidx0D,
470                                          &c6_00,&c12_00);
471
472             /* LENNARD-JONES DISPERSION/REPULSION */
473
474             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
475             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
476
477             fscal            = fvdw;
478
479             /* Calculate temporary vectorial force */
480             tx               = _mm_mul_ps(fscal,dx00);
481             ty               = _mm_mul_ps(fscal,dy00);
482             tz               = _mm_mul_ps(fscal,dz00);
483
484             /* Update vectorial force */
485             fix0             = _mm_add_ps(fix0,tx);
486             fiy0             = _mm_add_ps(fiy0,ty);
487             fiz0             = _mm_add_ps(fiz0,tz);
488
489             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
490                                                    f+j_coord_offsetC,f+j_coord_offsetD,
491                                                    tx,ty,tz);
492
493             /* Inner loop uses 27 flops */
494         }
495
496         if(jidx<j_index_end)
497         {
498
499             /* Get j neighbor index, and coordinate index */
500             jnrA             = jjnr[jidx];
501             jnrB             = jjnr[jidx+1];
502             jnrC             = jjnr[jidx+2];
503             jnrD             = jjnr[jidx+3];
504
505             /* Sign of each element will be negative for non-real atoms.
506              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
507              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
508              */
509             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
510             jnrA       = (jnrA>=0) ? jnrA : 0;
511             jnrB       = (jnrB>=0) ? jnrB : 0;
512             jnrC       = (jnrC>=0) ? jnrC : 0;
513             jnrD       = (jnrD>=0) ? jnrD : 0;
514
515             j_coord_offsetA  = DIM*jnrA;
516             j_coord_offsetB  = DIM*jnrB;
517             j_coord_offsetC  = DIM*jnrC;
518             j_coord_offsetD  = DIM*jnrD;
519
520             /* load j atom coordinates */
521             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
522                                               x+j_coord_offsetC,x+j_coord_offsetD,
523                                               &jx0,&jy0,&jz0);
524
525             /* Calculate displacement vector */
526             dx00             = _mm_sub_ps(ix0,jx0);
527             dy00             = _mm_sub_ps(iy0,jy0);
528             dz00             = _mm_sub_ps(iz0,jz0);
529
530             /* Calculate squared distance and things based on it */
531             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
532
533             rinvsq00         = gmx_mm_inv_ps(rsq00);
534
535             /* Load parameters for j particles */
536             vdwjidx0A        = 2*vdwtype[jnrA+0];
537             vdwjidx0B        = 2*vdwtype[jnrB+0];
538             vdwjidx0C        = 2*vdwtype[jnrC+0];
539             vdwjidx0D        = 2*vdwtype[jnrD+0];
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             /* Compute parameters for interactions between i and j atoms */
546             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
547                                          vdwparam+vdwioffset0+vdwjidx0B,
548                                          vdwparam+vdwioffset0+vdwjidx0C,
549                                          vdwparam+vdwioffset0+vdwjidx0D,
550                                          &c6_00,&c12_00);
551
552             /* LENNARD-JONES DISPERSION/REPULSION */
553
554             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
555             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
556
557             fscal            = fvdw;
558
559             fscal            = _mm_andnot_ps(dummy_mask,fscal);
560
561             /* Calculate temporary vectorial force */
562             tx               = _mm_mul_ps(fscal,dx00);
563             ty               = _mm_mul_ps(fscal,dy00);
564             tz               = _mm_mul_ps(fscal,dz00);
565
566             /* Update vectorial force */
567             fix0             = _mm_add_ps(fix0,tx);
568             fiy0             = _mm_add_ps(fiy0,ty);
569             fiz0             = _mm_add_ps(fiz0,tz);
570
571             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
572                                                    f+j_coord_offsetC,f+j_coord_offsetD,
573                                                    tx,ty,tz);
574
575             /* Inner loop uses 27 flops */
576         }
577
578         /* End of innermost loop */
579
580         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
581                                               f+i_coord_offset,fshift+i_shift_offset);
582
583         /* Increment number of inner iterations */
584         inneriter                  += j_index_end - j_index_start;
585
586         /* Outer loop uses 9 flops */
587     }
588
589     /* Increment number of outer iterations */
590     outeriter        += nri;
591
592     /* Update outer/inner flops */
593
594     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*9 + inneriter*27);
595 }