Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_sse2_single
54  * Electrostatics interaction: None
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           dummy_mask,cutoff_mask;
97     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
98     __m128           one     = _mm_set1_ps(1.0);
99     __m128           two     = _mm_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     rcutoff_scalar   = fr->rvdw;
116     rcutoff          = _mm_set1_ps(rcutoff_scalar);
117     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
118
119     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
120     rvdw             = _mm_set1_ps(fr->rvdw);
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }  
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153         
154         fix0             = _mm_setzero_ps();
155         fiy0             = _mm_setzero_ps();
156         fiz0             = _mm_setzero_ps();
157
158         /* Load parameters for i particles */
159         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         vvdwsum          = _mm_setzero_ps();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175             j_coord_offsetC  = DIM*jnrC;
176             j_coord_offsetD  = DIM*jnrD;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               x+j_coord_offsetC,x+j_coord_offsetD,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm_sub_ps(ix0,jx0);
185             dy00             = _mm_sub_ps(iy0,jy0);
186             dz00             = _mm_sub_ps(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
190
191             rinvsq00         = gmx_mm_inv_ps(rsq00);
192
193             /* Load parameters for j particles */
194             vdwjidx0A        = 2*vdwtype[jnrA+0];
195             vdwjidx0B        = 2*vdwtype[jnrB+0];
196             vdwjidx0C        = 2*vdwtype[jnrC+0];
197             vdwjidx0D        = 2*vdwtype[jnrD+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             if (gmx_mm_any_lt(rsq00,rcutoff2))
204             {
205
206             /* Compute parameters for interactions between i and j atoms */
207             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
208                                          vdwparam+vdwioffset0+vdwjidx0B,
209                                          vdwparam+vdwioffset0+vdwjidx0C,
210                                          vdwparam+vdwioffset0+vdwjidx0D,
211                                          &c6_00,&c12_00);
212
213             /* LENNARD-JONES DISPERSION/REPULSION */
214
215             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
216             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
217             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
218             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
219                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
220             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
221
222             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
223
224             /* Update potential sum for this i atom from the interaction with this j atom. */
225             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
226             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
227
228             fscal            = fvdw;
229
230             fscal            = _mm_and_ps(fscal,cutoff_mask);
231
232             /* Calculate temporary vectorial force */
233             tx               = _mm_mul_ps(fscal,dx00);
234             ty               = _mm_mul_ps(fscal,dy00);
235             tz               = _mm_mul_ps(fscal,dz00);
236
237             /* Update vectorial force */
238             fix0             = _mm_add_ps(fix0,tx);
239             fiy0             = _mm_add_ps(fiy0,ty);
240             fiz0             = _mm_add_ps(fiz0,tz);
241
242             fjptrA             = f+j_coord_offsetA;
243             fjptrB             = f+j_coord_offsetB;
244             fjptrC             = f+j_coord_offsetC;
245             fjptrD             = f+j_coord_offsetD;
246             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
247             
248             }
249
250             /* Inner loop uses 41 flops */
251         }
252
253         if(jidx<j_index_end)
254         {
255
256             /* Get j neighbor index, and coordinate index */
257             jnrlistA         = jjnr[jidx];
258             jnrlistB         = jjnr[jidx+1];
259             jnrlistC         = jjnr[jidx+2];
260             jnrlistD         = jjnr[jidx+3];
261             /* Sign of each element will be negative for non-real atoms.
262              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
263              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
264              */
265             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
266             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
267             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
268             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
269             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
270             j_coord_offsetA  = DIM*jnrA;
271             j_coord_offsetB  = DIM*jnrB;
272             j_coord_offsetC  = DIM*jnrC;
273             j_coord_offsetD  = DIM*jnrD;
274
275             /* load j atom coordinates */
276             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
277                                               x+j_coord_offsetC,x+j_coord_offsetD,
278                                               &jx0,&jy0,&jz0);
279
280             /* Calculate displacement vector */
281             dx00             = _mm_sub_ps(ix0,jx0);
282             dy00             = _mm_sub_ps(iy0,jy0);
283             dz00             = _mm_sub_ps(iz0,jz0);
284
285             /* Calculate squared distance and things based on it */
286             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
287
288             rinvsq00         = gmx_mm_inv_ps(rsq00);
289
290             /* Load parameters for j particles */
291             vdwjidx0A        = 2*vdwtype[jnrA+0];
292             vdwjidx0B        = 2*vdwtype[jnrB+0];
293             vdwjidx0C        = 2*vdwtype[jnrC+0];
294             vdwjidx0D        = 2*vdwtype[jnrD+0];
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             if (gmx_mm_any_lt(rsq00,rcutoff2))
301             {
302
303             /* Compute parameters for interactions between i and j atoms */
304             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
305                                          vdwparam+vdwioffset0+vdwjidx0B,
306                                          vdwparam+vdwioffset0+vdwjidx0C,
307                                          vdwparam+vdwioffset0+vdwjidx0D,
308                                          &c6_00,&c12_00);
309
310             /* LENNARD-JONES DISPERSION/REPULSION */
311
312             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
313             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
314             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
315             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
316                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
317             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
318
319             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
323             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
324             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
325
326             fscal            = fvdw;
327
328             fscal            = _mm_and_ps(fscal,cutoff_mask);
329
330             fscal            = _mm_andnot_ps(dummy_mask,fscal);
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm_mul_ps(fscal,dx00);
334             ty               = _mm_mul_ps(fscal,dy00);
335             tz               = _mm_mul_ps(fscal,dz00);
336
337             /* Update vectorial force */
338             fix0             = _mm_add_ps(fix0,tx);
339             fiy0             = _mm_add_ps(fiy0,ty);
340             fiz0             = _mm_add_ps(fiz0,tz);
341
342             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
343             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
344             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
345             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
346             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
347             
348             }
349
350             /* Inner loop uses 41 flops */
351         }
352
353         /* End of innermost loop */
354
355         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
356                                               f+i_coord_offset,fshift+i_shift_offset);
357
358         ggid                        = gid[iidx];
359         /* Update potential energies */
360         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
361
362         /* Increment number of inner iterations */
363         inneriter                  += j_index_end - j_index_start;
364
365         /* Outer loop uses 7 flops */
366     }
367
368     /* Increment number of outer iterations */
369     outeriter        += nri;
370
371     /* Update outer/inner flops */
372
373     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*41);
374 }
375 /*
376  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_sse2_single
377  * Electrostatics interaction: None
378  * VdW interaction:            LennardJones
379  * Geometry:                   Particle-Particle
380  * Calculate force/pot:        Force
381  */
382 void
383 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_sse2_single
384                     (t_nblist                    * gmx_restrict       nlist,
385                      rvec                        * gmx_restrict          xx,
386                      rvec                        * gmx_restrict          ff,
387                      t_forcerec                  * gmx_restrict          fr,
388                      t_mdatoms                   * gmx_restrict     mdatoms,
389                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
390                      t_nrnb                      * gmx_restrict        nrnb)
391 {
392     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
393      * just 0 for non-waters.
394      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
395      * jnr indices corresponding to data put in the four positions in the SIMD register.
396      */
397     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
398     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
399     int              jnrA,jnrB,jnrC,jnrD;
400     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
401     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
402     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
403     real             rcutoff_scalar;
404     real             *shiftvec,*fshift,*x,*f;
405     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
406     real             scratch[4*DIM];
407     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
408     int              vdwioffset0;
409     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
410     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
411     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
412     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
413     int              nvdwtype;
414     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
415     int              *vdwtype;
416     real             *vdwparam;
417     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
418     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
419     __m128           dummy_mask,cutoff_mask;
420     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
421     __m128           one     = _mm_set1_ps(1.0);
422     __m128           two     = _mm_set1_ps(2.0);
423     x                = xx[0];
424     f                = ff[0];
425
426     nri              = nlist->nri;
427     iinr             = nlist->iinr;
428     jindex           = nlist->jindex;
429     jjnr             = nlist->jjnr;
430     shiftidx         = nlist->shift;
431     gid              = nlist->gid;
432     shiftvec         = fr->shift_vec[0];
433     fshift           = fr->fshift[0];
434     nvdwtype         = fr->ntype;
435     vdwparam         = fr->nbfp;
436     vdwtype          = mdatoms->typeA;
437
438     rcutoff_scalar   = fr->rvdw;
439     rcutoff          = _mm_set1_ps(rcutoff_scalar);
440     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
441
442     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
443     rvdw             = _mm_set1_ps(fr->rvdw);
444
445     /* Avoid stupid compiler warnings */
446     jnrA = jnrB = jnrC = jnrD = 0;
447     j_coord_offsetA = 0;
448     j_coord_offsetB = 0;
449     j_coord_offsetC = 0;
450     j_coord_offsetD = 0;
451
452     outeriter        = 0;
453     inneriter        = 0;
454
455     for(iidx=0;iidx<4*DIM;iidx++)
456     {
457         scratch[iidx] = 0.0;
458     }  
459
460     /* Start outer loop over neighborlists */
461     for(iidx=0; iidx<nri; iidx++)
462     {
463         /* Load shift vector for this list */
464         i_shift_offset   = DIM*shiftidx[iidx];
465
466         /* Load limits for loop over neighbors */
467         j_index_start    = jindex[iidx];
468         j_index_end      = jindex[iidx+1];
469
470         /* Get outer coordinate index */
471         inr              = iinr[iidx];
472         i_coord_offset   = DIM*inr;
473
474         /* Load i particle coords and add shift vector */
475         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
476         
477         fix0             = _mm_setzero_ps();
478         fiy0             = _mm_setzero_ps();
479         fiz0             = _mm_setzero_ps();
480
481         /* Load parameters for i particles */
482         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
483
484         /* Start inner kernel loop */
485         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
486         {
487
488             /* Get j neighbor index, and coordinate index */
489             jnrA             = jjnr[jidx];
490             jnrB             = jjnr[jidx+1];
491             jnrC             = jjnr[jidx+2];
492             jnrD             = jjnr[jidx+3];
493             j_coord_offsetA  = DIM*jnrA;
494             j_coord_offsetB  = DIM*jnrB;
495             j_coord_offsetC  = DIM*jnrC;
496             j_coord_offsetD  = DIM*jnrD;
497
498             /* load j atom coordinates */
499             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
500                                               x+j_coord_offsetC,x+j_coord_offsetD,
501                                               &jx0,&jy0,&jz0);
502
503             /* Calculate displacement vector */
504             dx00             = _mm_sub_ps(ix0,jx0);
505             dy00             = _mm_sub_ps(iy0,jy0);
506             dz00             = _mm_sub_ps(iz0,jz0);
507
508             /* Calculate squared distance and things based on it */
509             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
510
511             rinvsq00         = gmx_mm_inv_ps(rsq00);
512
513             /* Load parameters for j particles */
514             vdwjidx0A        = 2*vdwtype[jnrA+0];
515             vdwjidx0B        = 2*vdwtype[jnrB+0];
516             vdwjidx0C        = 2*vdwtype[jnrC+0];
517             vdwjidx0D        = 2*vdwtype[jnrD+0];
518
519             /**************************
520              * CALCULATE INTERACTIONS *
521              **************************/
522
523             if (gmx_mm_any_lt(rsq00,rcutoff2))
524             {
525
526             /* Compute parameters for interactions between i and j atoms */
527             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
528                                          vdwparam+vdwioffset0+vdwjidx0B,
529                                          vdwparam+vdwioffset0+vdwjidx0C,
530                                          vdwparam+vdwioffset0+vdwjidx0D,
531                                          &c6_00,&c12_00);
532
533             /* LENNARD-JONES DISPERSION/REPULSION */
534
535             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
536             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
537
538             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
539
540             fscal            = fvdw;
541
542             fscal            = _mm_and_ps(fscal,cutoff_mask);
543
544             /* Calculate temporary vectorial force */
545             tx               = _mm_mul_ps(fscal,dx00);
546             ty               = _mm_mul_ps(fscal,dy00);
547             tz               = _mm_mul_ps(fscal,dz00);
548
549             /* Update vectorial force */
550             fix0             = _mm_add_ps(fix0,tx);
551             fiy0             = _mm_add_ps(fiy0,ty);
552             fiz0             = _mm_add_ps(fiz0,tz);
553
554             fjptrA             = f+j_coord_offsetA;
555             fjptrB             = f+j_coord_offsetB;
556             fjptrC             = f+j_coord_offsetC;
557             fjptrD             = f+j_coord_offsetD;
558             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
559             
560             }
561
562             /* Inner loop uses 30 flops */
563         }
564
565         if(jidx<j_index_end)
566         {
567
568             /* Get j neighbor index, and coordinate index */
569             jnrlistA         = jjnr[jidx];
570             jnrlistB         = jjnr[jidx+1];
571             jnrlistC         = jjnr[jidx+2];
572             jnrlistD         = jjnr[jidx+3];
573             /* Sign of each element will be negative for non-real atoms.
574              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
575              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
576              */
577             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
578             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
579             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
580             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
581             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
582             j_coord_offsetA  = DIM*jnrA;
583             j_coord_offsetB  = DIM*jnrB;
584             j_coord_offsetC  = DIM*jnrC;
585             j_coord_offsetD  = DIM*jnrD;
586
587             /* load j atom coordinates */
588             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
589                                               x+j_coord_offsetC,x+j_coord_offsetD,
590                                               &jx0,&jy0,&jz0);
591
592             /* Calculate displacement vector */
593             dx00             = _mm_sub_ps(ix0,jx0);
594             dy00             = _mm_sub_ps(iy0,jy0);
595             dz00             = _mm_sub_ps(iz0,jz0);
596
597             /* Calculate squared distance and things based on it */
598             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
599
600             rinvsq00         = gmx_mm_inv_ps(rsq00);
601
602             /* Load parameters for j particles */
603             vdwjidx0A        = 2*vdwtype[jnrA+0];
604             vdwjidx0B        = 2*vdwtype[jnrB+0];
605             vdwjidx0C        = 2*vdwtype[jnrC+0];
606             vdwjidx0D        = 2*vdwtype[jnrD+0];
607
608             /**************************
609              * CALCULATE INTERACTIONS *
610              **************************/
611
612             if (gmx_mm_any_lt(rsq00,rcutoff2))
613             {
614
615             /* Compute parameters for interactions between i and j atoms */
616             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
617                                          vdwparam+vdwioffset0+vdwjidx0B,
618                                          vdwparam+vdwioffset0+vdwjidx0C,
619                                          vdwparam+vdwioffset0+vdwjidx0D,
620                                          &c6_00,&c12_00);
621
622             /* LENNARD-JONES DISPERSION/REPULSION */
623
624             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
625             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
626
627             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
628
629             fscal            = fvdw;
630
631             fscal            = _mm_and_ps(fscal,cutoff_mask);
632
633             fscal            = _mm_andnot_ps(dummy_mask,fscal);
634
635             /* Calculate temporary vectorial force */
636             tx               = _mm_mul_ps(fscal,dx00);
637             ty               = _mm_mul_ps(fscal,dy00);
638             tz               = _mm_mul_ps(fscal,dz00);
639
640             /* Update vectorial force */
641             fix0             = _mm_add_ps(fix0,tx);
642             fiy0             = _mm_add_ps(fiy0,ty);
643             fiz0             = _mm_add_ps(fiz0,tz);
644
645             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
646             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
647             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
648             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
649             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
650             
651             }
652
653             /* Inner loop uses 30 flops */
654         }
655
656         /* End of innermost loop */
657
658         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
659                                               f+i_coord_offset,fshift+i_shift_offset);
660
661         /* Increment number of inner iterations */
662         inneriter                  += j_index_end - j_index_start;
663
664         /* Outer loop uses 6 flops */
665     }
666
667     /* Increment number of outer iterations */
668     outeriter        += nri;
669
670     /* Update outer/inner flops */
671
672     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*30);
673 }