42beebae30ac4d1817dac1dc18672dac55a6a2fd
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_sse2_single
52  * Electrostatics interaction: None
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     int              nvdwtype;
89     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
93     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
94     __m128           dummy_mask,cutoff_mask;
95     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
96     __m128           one     = _mm_set1_ps(1.0);
97     __m128           two     = _mm_set1_ps(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     rcutoff_scalar   = fr->rvdw;
114     rcutoff          = _mm_set1_ps(rcutoff_scalar);
115     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
116
117     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
118     rvdw             = _mm_set1_ps(fr->rvdw);
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = jnrC = jnrD = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124     j_coord_offsetC = 0;
125     j_coord_offsetD = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     for(iidx=0;iidx<4*DIM;iidx++)
131     {
132         scratch[iidx] = 0.0;
133     }  
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151         
152         fix0             = _mm_setzero_ps();
153         fiy0             = _mm_setzero_ps();
154         fiz0             = _mm_setzero_ps();
155
156         /* Load parameters for i particles */
157         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
158
159         /* Reset potential sums */
160         vvdwsum          = _mm_setzero_ps();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173             j_coord_offsetC  = DIM*jnrC;
174             j_coord_offsetD  = DIM*jnrD;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               x+j_coord_offsetC,x+j_coord_offsetD,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm_sub_ps(ix0,jx0);
183             dy00             = _mm_sub_ps(iy0,jy0);
184             dz00             = _mm_sub_ps(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
188
189             rinvsq00         = gmx_mm_inv_ps(rsq00);
190
191             /* Load parameters for j particles */
192             vdwjidx0A        = 2*vdwtype[jnrA+0];
193             vdwjidx0B        = 2*vdwtype[jnrB+0];
194             vdwjidx0C        = 2*vdwtype[jnrC+0];
195             vdwjidx0D        = 2*vdwtype[jnrD+0];
196
197             /**************************
198              * CALCULATE INTERACTIONS *
199              **************************/
200
201             if (gmx_mm_any_lt(rsq00,rcutoff2))
202             {
203
204             /* Compute parameters for interactions between i and j atoms */
205             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
206                                          vdwparam+vdwioffset0+vdwjidx0B,
207                                          vdwparam+vdwioffset0+vdwjidx0C,
208                                          vdwparam+vdwioffset0+vdwjidx0D,
209                                          &c6_00,&c12_00);
210
211             /* LENNARD-JONES DISPERSION/REPULSION */
212
213             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
214             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
215             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
216             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
217                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
218             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
219
220             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
221
222             /* Update potential sum for this i atom from the interaction with this j atom. */
223             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
224             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
225
226             fscal            = fvdw;
227
228             fscal            = _mm_and_ps(fscal,cutoff_mask);
229
230             /* Calculate temporary vectorial force */
231             tx               = _mm_mul_ps(fscal,dx00);
232             ty               = _mm_mul_ps(fscal,dy00);
233             tz               = _mm_mul_ps(fscal,dz00);
234
235             /* Update vectorial force */
236             fix0             = _mm_add_ps(fix0,tx);
237             fiy0             = _mm_add_ps(fiy0,ty);
238             fiz0             = _mm_add_ps(fiz0,tz);
239
240             fjptrA             = f+j_coord_offsetA;
241             fjptrB             = f+j_coord_offsetB;
242             fjptrC             = f+j_coord_offsetC;
243             fjptrD             = f+j_coord_offsetD;
244             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
245             
246             }
247
248             /* Inner loop uses 41 flops */
249         }
250
251         if(jidx<j_index_end)
252         {
253
254             /* Get j neighbor index, and coordinate index */
255             jnrlistA         = jjnr[jidx];
256             jnrlistB         = jjnr[jidx+1];
257             jnrlistC         = jjnr[jidx+2];
258             jnrlistD         = jjnr[jidx+3];
259             /* Sign of each element will be negative for non-real atoms.
260              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
261              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
262              */
263             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
264             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
265             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
266             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
267             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
268             j_coord_offsetA  = DIM*jnrA;
269             j_coord_offsetB  = DIM*jnrB;
270             j_coord_offsetC  = DIM*jnrC;
271             j_coord_offsetD  = DIM*jnrD;
272
273             /* load j atom coordinates */
274             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
275                                               x+j_coord_offsetC,x+j_coord_offsetD,
276                                               &jx0,&jy0,&jz0);
277
278             /* Calculate displacement vector */
279             dx00             = _mm_sub_ps(ix0,jx0);
280             dy00             = _mm_sub_ps(iy0,jy0);
281             dz00             = _mm_sub_ps(iz0,jz0);
282
283             /* Calculate squared distance and things based on it */
284             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
285
286             rinvsq00         = gmx_mm_inv_ps(rsq00);
287
288             /* Load parameters for j particles */
289             vdwjidx0A        = 2*vdwtype[jnrA+0];
290             vdwjidx0B        = 2*vdwtype[jnrB+0];
291             vdwjidx0C        = 2*vdwtype[jnrC+0];
292             vdwjidx0D        = 2*vdwtype[jnrD+0];
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             if (gmx_mm_any_lt(rsq00,rcutoff2))
299             {
300
301             /* Compute parameters for interactions between i and j atoms */
302             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
303                                          vdwparam+vdwioffset0+vdwjidx0B,
304                                          vdwparam+vdwioffset0+vdwjidx0C,
305                                          vdwparam+vdwioffset0+vdwjidx0D,
306                                          &c6_00,&c12_00);
307
308             /* LENNARD-JONES DISPERSION/REPULSION */
309
310             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
311             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
312             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
313             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
314                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
315             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
316
317             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
321             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
322             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
323
324             fscal            = fvdw;
325
326             fscal            = _mm_and_ps(fscal,cutoff_mask);
327
328             fscal            = _mm_andnot_ps(dummy_mask,fscal);
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm_mul_ps(fscal,dx00);
332             ty               = _mm_mul_ps(fscal,dy00);
333             tz               = _mm_mul_ps(fscal,dz00);
334
335             /* Update vectorial force */
336             fix0             = _mm_add_ps(fix0,tx);
337             fiy0             = _mm_add_ps(fiy0,ty);
338             fiz0             = _mm_add_ps(fiz0,tz);
339
340             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
341             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
342             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
343             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
344             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
345             
346             }
347
348             /* Inner loop uses 41 flops */
349         }
350
351         /* End of innermost loop */
352
353         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
354                                               f+i_coord_offset,fshift+i_shift_offset);
355
356         ggid                        = gid[iidx];
357         /* Update potential energies */
358         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
359
360         /* Increment number of inner iterations */
361         inneriter                  += j_index_end - j_index_start;
362
363         /* Outer loop uses 7 flops */
364     }
365
366     /* Increment number of outer iterations */
367     outeriter        += nri;
368
369     /* Update outer/inner flops */
370
371     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*41);
372 }
373 /*
374  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_sse2_single
375  * Electrostatics interaction: None
376  * VdW interaction:            LennardJones
377  * Geometry:                   Particle-Particle
378  * Calculate force/pot:        Force
379  */
380 void
381 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_sse2_single
382                     (t_nblist                    * gmx_restrict       nlist,
383                      rvec                        * gmx_restrict          xx,
384                      rvec                        * gmx_restrict          ff,
385                      t_forcerec                  * gmx_restrict          fr,
386                      t_mdatoms                   * gmx_restrict     mdatoms,
387                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
388                      t_nrnb                      * gmx_restrict        nrnb)
389 {
390     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
391      * just 0 for non-waters.
392      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
393      * jnr indices corresponding to data put in the four positions in the SIMD register.
394      */
395     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
396     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
397     int              jnrA,jnrB,jnrC,jnrD;
398     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
399     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
400     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
401     real             rcutoff_scalar;
402     real             *shiftvec,*fshift,*x,*f;
403     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
404     real             scratch[4*DIM];
405     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
406     int              vdwioffset0;
407     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
408     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
409     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
410     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
411     int              nvdwtype;
412     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
413     int              *vdwtype;
414     real             *vdwparam;
415     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
416     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
417     __m128           dummy_mask,cutoff_mask;
418     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
419     __m128           one     = _mm_set1_ps(1.0);
420     __m128           two     = _mm_set1_ps(2.0);
421     x                = xx[0];
422     f                = ff[0];
423
424     nri              = nlist->nri;
425     iinr             = nlist->iinr;
426     jindex           = nlist->jindex;
427     jjnr             = nlist->jjnr;
428     shiftidx         = nlist->shift;
429     gid              = nlist->gid;
430     shiftvec         = fr->shift_vec[0];
431     fshift           = fr->fshift[0];
432     nvdwtype         = fr->ntype;
433     vdwparam         = fr->nbfp;
434     vdwtype          = mdatoms->typeA;
435
436     rcutoff_scalar   = fr->rvdw;
437     rcutoff          = _mm_set1_ps(rcutoff_scalar);
438     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
439
440     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
441     rvdw             = _mm_set1_ps(fr->rvdw);
442
443     /* Avoid stupid compiler warnings */
444     jnrA = jnrB = jnrC = jnrD = 0;
445     j_coord_offsetA = 0;
446     j_coord_offsetB = 0;
447     j_coord_offsetC = 0;
448     j_coord_offsetD = 0;
449
450     outeriter        = 0;
451     inneriter        = 0;
452
453     for(iidx=0;iidx<4*DIM;iidx++)
454     {
455         scratch[iidx] = 0.0;
456     }  
457
458     /* Start outer loop over neighborlists */
459     for(iidx=0; iidx<nri; iidx++)
460     {
461         /* Load shift vector for this list */
462         i_shift_offset   = DIM*shiftidx[iidx];
463
464         /* Load limits for loop over neighbors */
465         j_index_start    = jindex[iidx];
466         j_index_end      = jindex[iidx+1];
467
468         /* Get outer coordinate index */
469         inr              = iinr[iidx];
470         i_coord_offset   = DIM*inr;
471
472         /* Load i particle coords and add shift vector */
473         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
474         
475         fix0             = _mm_setzero_ps();
476         fiy0             = _mm_setzero_ps();
477         fiz0             = _mm_setzero_ps();
478
479         /* Load parameters for i particles */
480         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
481
482         /* Start inner kernel loop */
483         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
484         {
485
486             /* Get j neighbor index, and coordinate index */
487             jnrA             = jjnr[jidx];
488             jnrB             = jjnr[jidx+1];
489             jnrC             = jjnr[jidx+2];
490             jnrD             = jjnr[jidx+3];
491             j_coord_offsetA  = DIM*jnrA;
492             j_coord_offsetB  = DIM*jnrB;
493             j_coord_offsetC  = DIM*jnrC;
494             j_coord_offsetD  = DIM*jnrD;
495
496             /* load j atom coordinates */
497             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
498                                               x+j_coord_offsetC,x+j_coord_offsetD,
499                                               &jx0,&jy0,&jz0);
500
501             /* Calculate displacement vector */
502             dx00             = _mm_sub_ps(ix0,jx0);
503             dy00             = _mm_sub_ps(iy0,jy0);
504             dz00             = _mm_sub_ps(iz0,jz0);
505
506             /* Calculate squared distance and things based on it */
507             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
508
509             rinvsq00         = gmx_mm_inv_ps(rsq00);
510
511             /* Load parameters for j particles */
512             vdwjidx0A        = 2*vdwtype[jnrA+0];
513             vdwjidx0B        = 2*vdwtype[jnrB+0];
514             vdwjidx0C        = 2*vdwtype[jnrC+0];
515             vdwjidx0D        = 2*vdwtype[jnrD+0];
516
517             /**************************
518              * CALCULATE INTERACTIONS *
519              **************************/
520
521             if (gmx_mm_any_lt(rsq00,rcutoff2))
522             {
523
524             /* Compute parameters for interactions between i and j atoms */
525             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
526                                          vdwparam+vdwioffset0+vdwjidx0B,
527                                          vdwparam+vdwioffset0+vdwjidx0C,
528                                          vdwparam+vdwioffset0+vdwjidx0D,
529                                          &c6_00,&c12_00);
530
531             /* LENNARD-JONES DISPERSION/REPULSION */
532
533             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
534             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
535
536             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
537
538             fscal            = fvdw;
539
540             fscal            = _mm_and_ps(fscal,cutoff_mask);
541
542             /* Calculate temporary vectorial force */
543             tx               = _mm_mul_ps(fscal,dx00);
544             ty               = _mm_mul_ps(fscal,dy00);
545             tz               = _mm_mul_ps(fscal,dz00);
546
547             /* Update vectorial force */
548             fix0             = _mm_add_ps(fix0,tx);
549             fiy0             = _mm_add_ps(fiy0,ty);
550             fiz0             = _mm_add_ps(fiz0,tz);
551
552             fjptrA             = f+j_coord_offsetA;
553             fjptrB             = f+j_coord_offsetB;
554             fjptrC             = f+j_coord_offsetC;
555             fjptrD             = f+j_coord_offsetD;
556             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
557             
558             }
559
560             /* Inner loop uses 30 flops */
561         }
562
563         if(jidx<j_index_end)
564         {
565
566             /* Get j neighbor index, and coordinate index */
567             jnrlistA         = jjnr[jidx];
568             jnrlistB         = jjnr[jidx+1];
569             jnrlistC         = jjnr[jidx+2];
570             jnrlistD         = jjnr[jidx+3];
571             /* Sign of each element will be negative for non-real atoms.
572              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
573              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
574              */
575             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
576             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
577             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
578             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
579             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
580             j_coord_offsetA  = DIM*jnrA;
581             j_coord_offsetB  = DIM*jnrB;
582             j_coord_offsetC  = DIM*jnrC;
583             j_coord_offsetD  = DIM*jnrD;
584
585             /* load j atom coordinates */
586             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
587                                               x+j_coord_offsetC,x+j_coord_offsetD,
588                                               &jx0,&jy0,&jz0);
589
590             /* Calculate displacement vector */
591             dx00             = _mm_sub_ps(ix0,jx0);
592             dy00             = _mm_sub_ps(iy0,jy0);
593             dz00             = _mm_sub_ps(iz0,jz0);
594
595             /* Calculate squared distance and things based on it */
596             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
597
598             rinvsq00         = gmx_mm_inv_ps(rsq00);
599
600             /* Load parameters for j particles */
601             vdwjidx0A        = 2*vdwtype[jnrA+0];
602             vdwjidx0B        = 2*vdwtype[jnrB+0];
603             vdwjidx0C        = 2*vdwtype[jnrC+0];
604             vdwjidx0D        = 2*vdwtype[jnrD+0];
605
606             /**************************
607              * CALCULATE INTERACTIONS *
608              **************************/
609
610             if (gmx_mm_any_lt(rsq00,rcutoff2))
611             {
612
613             /* Compute parameters for interactions between i and j atoms */
614             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
615                                          vdwparam+vdwioffset0+vdwjidx0B,
616                                          vdwparam+vdwioffset0+vdwjidx0C,
617                                          vdwparam+vdwioffset0+vdwjidx0D,
618                                          &c6_00,&c12_00);
619
620             /* LENNARD-JONES DISPERSION/REPULSION */
621
622             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
623             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
624
625             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
626
627             fscal            = fvdw;
628
629             fscal            = _mm_and_ps(fscal,cutoff_mask);
630
631             fscal            = _mm_andnot_ps(dummy_mask,fscal);
632
633             /* Calculate temporary vectorial force */
634             tx               = _mm_mul_ps(fscal,dx00);
635             ty               = _mm_mul_ps(fscal,dy00);
636             tz               = _mm_mul_ps(fscal,dz00);
637
638             /* Update vectorial force */
639             fix0             = _mm_add_ps(fix0,tx);
640             fiy0             = _mm_add_ps(fiy0,ty);
641             fiz0             = _mm_add_ps(fiz0,tz);
642
643             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
644             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
645             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
646             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
647             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
648             
649             }
650
651             /* Inner loop uses 30 flops */
652         }
653
654         /* End of innermost loop */
655
656         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
657                                               f+i_coord_offset,fshift+i_shift_offset);
658
659         /* Increment number of inner iterations */
660         inneriter                  += j_index_end - j_index_start;
661
662         /* Outer loop uses 6 flops */
663     }
664
665     /* Increment number of outer iterations */
666     outeriter        += nri;
667
668     /* Update outer/inner flops */
669
670     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*30);
671 }