Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse2_single
52  * Electrostatics interaction: None
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     int              nvdwtype;
89     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
93     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
94     __m128           c6grid_00;
95     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
96     real             *vdwgridparam;
97     __m128           one_half = _mm_set1_ps(0.5);
98     __m128           minus_one = _mm_set1_ps(-1.0);
99     __m128           dummy_mask,cutoff_mask;
100     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101     __m128           one     = _mm_set1_ps(1.0);
102     __m128           two     = _mm_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117     vdwgridparam     = fr->ljpme_c6grid;
118     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
119     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
120     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }  
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153         
154         fix0             = _mm_setzero_ps();
155         fiy0             = _mm_setzero_ps();
156         fiz0             = _mm_setzero_ps();
157
158         /* Load parameters for i particles */
159         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         vvdwsum          = _mm_setzero_ps();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175             j_coord_offsetC  = DIM*jnrC;
176             j_coord_offsetD  = DIM*jnrD;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               x+j_coord_offsetC,x+j_coord_offsetD,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm_sub_ps(ix0,jx0);
185             dy00             = _mm_sub_ps(iy0,jy0);
186             dz00             = _mm_sub_ps(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
190
191             rinv00           = gmx_mm_invsqrt_ps(rsq00);
192
193             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
194
195             /* Load parameters for j particles */
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198             vdwjidx0C        = 2*vdwtype[jnrC+0];
199             vdwjidx0D        = 2*vdwtype[jnrD+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = _mm_mul_ps(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
209                                          vdwparam+vdwioffset0+vdwjidx0B,
210                                          vdwparam+vdwioffset0+vdwjidx0C,
211                                          vdwparam+vdwioffset0+vdwjidx0D,
212                                          &c6_00,&c12_00);
213             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
214                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
215                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
216                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
217
218             /* Analytical LJ-PME */
219             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
220             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
221             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
222             exponent         = gmx_simd_exp_r(ewcljrsq);
223             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
224             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
225             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
226             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
227             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
228             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
229             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
230             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
231
232             /* Update potential sum for this i atom from the interaction with this j atom. */
233             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
234
235             fscal            = fvdw;
236
237             /* Calculate temporary vectorial force */
238             tx               = _mm_mul_ps(fscal,dx00);
239             ty               = _mm_mul_ps(fscal,dy00);
240             tz               = _mm_mul_ps(fscal,dz00);
241
242             /* Update vectorial force */
243             fix0             = _mm_add_ps(fix0,tx);
244             fiy0             = _mm_add_ps(fiy0,ty);
245             fiz0             = _mm_add_ps(fiz0,tz);
246
247             fjptrA             = f+j_coord_offsetA;
248             fjptrB             = f+j_coord_offsetB;
249             fjptrC             = f+j_coord_offsetC;
250             fjptrD             = f+j_coord_offsetD;
251             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
252             
253             /* Inner loop uses 51 flops */
254         }
255
256         if(jidx<j_index_end)
257         {
258
259             /* Get j neighbor index, and coordinate index */
260             jnrlistA         = jjnr[jidx];
261             jnrlistB         = jjnr[jidx+1];
262             jnrlistC         = jjnr[jidx+2];
263             jnrlistD         = jjnr[jidx+3];
264             /* Sign of each element will be negative for non-real atoms.
265              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
266              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
267              */
268             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
269             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
270             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
271             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
272             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
273             j_coord_offsetA  = DIM*jnrA;
274             j_coord_offsetB  = DIM*jnrB;
275             j_coord_offsetC  = DIM*jnrC;
276             j_coord_offsetD  = DIM*jnrD;
277
278             /* load j atom coordinates */
279             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
280                                               x+j_coord_offsetC,x+j_coord_offsetD,
281                                               &jx0,&jy0,&jz0);
282
283             /* Calculate displacement vector */
284             dx00             = _mm_sub_ps(ix0,jx0);
285             dy00             = _mm_sub_ps(iy0,jy0);
286             dz00             = _mm_sub_ps(iz0,jz0);
287
288             /* Calculate squared distance and things based on it */
289             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
290
291             rinv00           = gmx_mm_invsqrt_ps(rsq00);
292
293             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
294
295             /* Load parameters for j particles */
296             vdwjidx0A        = 2*vdwtype[jnrA+0];
297             vdwjidx0B        = 2*vdwtype[jnrB+0];
298             vdwjidx0C        = 2*vdwtype[jnrC+0];
299             vdwjidx0D        = 2*vdwtype[jnrD+0];
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             r00              = _mm_mul_ps(rsq00,rinv00);
306             r00              = _mm_andnot_ps(dummy_mask,r00);
307
308             /* Compute parameters for interactions between i and j atoms */
309             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
310                                          vdwparam+vdwioffset0+vdwjidx0B,
311                                          vdwparam+vdwioffset0+vdwjidx0C,
312                                          vdwparam+vdwioffset0+vdwjidx0D,
313                                          &c6_00,&c12_00);
314             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
315                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
316                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
317                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
318
319             /* Analytical LJ-PME */
320             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
321             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
322             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
323             exponent         = gmx_simd_exp_r(ewcljrsq);
324             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
325             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
326             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
327             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
328             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
329             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
330             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
331             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
335             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
336
337             fscal            = fvdw;
338
339             fscal            = _mm_andnot_ps(dummy_mask,fscal);
340
341             /* Calculate temporary vectorial force */
342             tx               = _mm_mul_ps(fscal,dx00);
343             ty               = _mm_mul_ps(fscal,dy00);
344             tz               = _mm_mul_ps(fscal,dz00);
345
346             /* Update vectorial force */
347             fix0             = _mm_add_ps(fix0,tx);
348             fiy0             = _mm_add_ps(fiy0,ty);
349             fiz0             = _mm_add_ps(fiz0,tz);
350
351             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
352             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
353             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
354             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
355             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
356             
357             /* Inner loop uses 52 flops */
358         }
359
360         /* End of innermost loop */
361
362         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
363                                               f+i_coord_offset,fshift+i_shift_offset);
364
365         ggid                        = gid[iidx];
366         /* Update potential energies */
367         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
368
369         /* Increment number of inner iterations */
370         inneriter                  += j_index_end - j_index_start;
371
372         /* Outer loop uses 7 flops */
373     }
374
375     /* Increment number of outer iterations */
376     outeriter        += nri;
377
378     /* Update outer/inner flops */
379
380     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*52);
381 }
382 /*
383  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse2_single
384  * Electrostatics interaction: None
385  * VdW interaction:            LJEwald
386  * Geometry:                   Particle-Particle
387  * Calculate force/pot:        Force
388  */
389 void
390 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse2_single
391                     (t_nblist                    * gmx_restrict       nlist,
392                      rvec                        * gmx_restrict          xx,
393                      rvec                        * gmx_restrict          ff,
394                      t_forcerec                  * gmx_restrict          fr,
395                      t_mdatoms                   * gmx_restrict     mdatoms,
396                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
397                      t_nrnb                      * gmx_restrict        nrnb)
398 {
399     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
400      * just 0 for non-waters.
401      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
402      * jnr indices corresponding to data put in the four positions in the SIMD register.
403      */
404     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
405     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
406     int              jnrA,jnrB,jnrC,jnrD;
407     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
408     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
409     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
410     real             rcutoff_scalar;
411     real             *shiftvec,*fshift,*x,*f;
412     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
413     real             scratch[4*DIM];
414     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
415     int              vdwioffset0;
416     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
417     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
418     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
419     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
420     int              nvdwtype;
421     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
422     int              *vdwtype;
423     real             *vdwparam;
424     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
425     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
426     __m128           c6grid_00;
427     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
428     real             *vdwgridparam;
429     __m128           one_half = _mm_set1_ps(0.5);
430     __m128           minus_one = _mm_set1_ps(-1.0);
431     __m128           dummy_mask,cutoff_mask;
432     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
433     __m128           one     = _mm_set1_ps(1.0);
434     __m128           two     = _mm_set1_ps(2.0);
435     x                = xx[0];
436     f                = ff[0];
437
438     nri              = nlist->nri;
439     iinr             = nlist->iinr;
440     jindex           = nlist->jindex;
441     jjnr             = nlist->jjnr;
442     shiftidx         = nlist->shift;
443     gid              = nlist->gid;
444     shiftvec         = fr->shift_vec[0];
445     fshift           = fr->fshift[0];
446     nvdwtype         = fr->ntype;
447     vdwparam         = fr->nbfp;
448     vdwtype          = mdatoms->typeA;
449     vdwgridparam     = fr->ljpme_c6grid;
450     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
451     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
452     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
453
454     /* Avoid stupid compiler warnings */
455     jnrA = jnrB = jnrC = jnrD = 0;
456     j_coord_offsetA = 0;
457     j_coord_offsetB = 0;
458     j_coord_offsetC = 0;
459     j_coord_offsetD = 0;
460
461     outeriter        = 0;
462     inneriter        = 0;
463
464     for(iidx=0;iidx<4*DIM;iidx++)
465     {
466         scratch[iidx] = 0.0;
467     }  
468
469     /* Start outer loop over neighborlists */
470     for(iidx=0; iidx<nri; iidx++)
471     {
472         /* Load shift vector for this list */
473         i_shift_offset   = DIM*shiftidx[iidx];
474
475         /* Load limits for loop over neighbors */
476         j_index_start    = jindex[iidx];
477         j_index_end      = jindex[iidx+1];
478
479         /* Get outer coordinate index */
480         inr              = iinr[iidx];
481         i_coord_offset   = DIM*inr;
482
483         /* Load i particle coords and add shift vector */
484         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
485         
486         fix0             = _mm_setzero_ps();
487         fiy0             = _mm_setzero_ps();
488         fiz0             = _mm_setzero_ps();
489
490         /* Load parameters for i particles */
491         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
492
493         /* Start inner kernel loop */
494         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
495         {
496
497             /* Get j neighbor index, and coordinate index */
498             jnrA             = jjnr[jidx];
499             jnrB             = jjnr[jidx+1];
500             jnrC             = jjnr[jidx+2];
501             jnrD             = jjnr[jidx+3];
502             j_coord_offsetA  = DIM*jnrA;
503             j_coord_offsetB  = DIM*jnrB;
504             j_coord_offsetC  = DIM*jnrC;
505             j_coord_offsetD  = DIM*jnrD;
506
507             /* load j atom coordinates */
508             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
509                                               x+j_coord_offsetC,x+j_coord_offsetD,
510                                               &jx0,&jy0,&jz0);
511
512             /* Calculate displacement vector */
513             dx00             = _mm_sub_ps(ix0,jx0);
514             dy00             = _mm_sub_ps(iy0,jy0);
515             dz00             = _mm_sub_ps(iz0,jz0);
516
517             /* Calculate squared distance and things based on it */
518             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
519
520             rinv00           = gmx_mm_invsqrt_ps(rsq00);
521
522             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
523
524             /* Load parameters for j particles */
525             vdwjidx0A        = 2*vdwtype[jnrA+0];
526             vdwjidx0B        = 2*vdwtype[jnrB+0];
527             vdwjidx0C        = 2*vdwtype[jnrC+0];
528             vdwjidx0D        = 2*vdwtype[jnrD+0];
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             r00              = _mm_mul_ps(rsq00,rinv00);
535
536             /* Compute parameters for interactions between i and j atoms */
537             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
538                                          vdwparam+vdwioffset0+vdwjidx0B,
539                                          vdwparam+vdwioffset0+vdwjidx0C,
540                                          vdwparam+vdwioffset0+vdwjidx0D,
541                                          &c6_00,&c12_00);
542             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
543                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
544                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
545                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
546
547             /* Analytical LJ-PME */
548             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
549             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
550             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
551             exponent         = gmx_simd_exp_r(ewcljrsq);
552             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
553             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
554             /* f6A = 6 * C6grid * (1 - poly) */
555             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
556             /* f6B = C6grid * exponent * beta^6 */
557             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
558             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
559             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
560
561             fscal            = fvdw;
562
563             /* Calculate temporary vectorial force */
564             tx               = _mm_mul_ps(fscal,dx00);
565             ty               = _mm_mul_ps(fscal,dy00);
566             tz               = _mm_mul_ps(fscal,dz00);
567
568             /* Update vectorial force */
569             fix0             = _mm_add_ps(fix0,tx);
570             fiy0             = _mm_add_ps(fiy0,ty);
571             fiz0             = _mm_add_ps(fiz0,tz);
572
573             fjptrA             = f+j_coord_offsetA;
574             fjptrB             = f+j_coord_offsetB;
575             fjptrC             = f+j_coord_offsetC;
576             fjptrD             = f+j_coord_offsetD;
577             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
578             
579             /* Inner loop uses 46 flops */
580         }
581
582         if(jidx<j_index_end)
583         {
584
585             /* Get j neighbor index, and coordinate index */
586             jnrlistA         = jjnr[jidx];
587             jnrlistB         = jjnr[jidx+1];
588             jnrlistC         = jjnr[jidx+2];
589             jnrlistD         = jjnr[jidx+3];
590             /* Sign of each element will be negative for non-real atoms.
591              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
592              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
593              */
594             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
595             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
596             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
597             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
598             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
599             j_coord_offsetA  = DIM*jnrA;
600             j_coord_offsetB  = DIM*jnrB;
601             j_coord_offsetC  = DIM*jnrC;
602             j_coord_offsetD  = DIM*jnrD;
603
604             /* load j atom coordinates */
605             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
606                                               x+j_coord_offsetC,x+j_coord_offsetD,
607                                               &jx0,&jy0,&jz0);
608
609             /* Calculate displacement vector */
610             dx00             = _mm_sub_ps(ix0,jx0);
611             dy00             = _mm_sub_ps(iy0,jy0);
612             dz00             = _mm_sub_ps(iz0,jz0);
613
614             /* Calculate squared distance and things based on it */
615             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
616
617             rinv00           = gmx_mm_invsqrt_ps(rsq00);
618
619             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
620
621             /* Load parameters for j particles */
622             vdwjidx0A        = 2*vdwtype[jnrA+0];
623             vdwjidx0B        = 2*vdwtype[jnrB+0];
624             vdwjidx0C        = 2*vdwtype[jnrC+0];
625             vdwjidx0D        = 2*vdwtype[jnrD+0];
626
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             r00              = _mm_mul_ps(rsq00,rinv00);
632             r00              = _mm_andnot_ps(dummy_mask,r00);
633
634             /* Compute parameters for interactions between i and j atoms */
635             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
636                                          vdwparam+vdwioffset0+vdwjidx0B,
637                                          vdwparam+vdwioffset0+vdwjidx0C,
638                                          vdwparam+vdwioffset0+vdwjidx0D,
639                                          &c6_00,&c12_00);
640             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
641                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
642                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
643                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
644
645             /* Analytical LJ-PME */
646             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
647             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
648             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
649             exponent         = gmx_simd_exp_r(ewcljrsq);
650             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
651             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
652             /* f6A = 6 * C6grid * (1 - poly) */
653             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
654             /* f6B = C6grid * exponent * beta^6 */
655             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
656             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
657             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
658
659             fscal            = fvdw;
660
661             fscal            = _mm_andnot_ps(dummy_mask,fscal);
662
663             /* Calculate temporary vectorial force */
664             tx               = _mm_mul_ps(fscal,dx00);
665             ty               = _mm_mul_ps(fscal,dy00);
666             tz               = _mm_mul_ps(fscal,dz00);
667
668             /* Update vectorial force */
669             fix0             = _mm_add_ps(fix0,tx);
670             fiy0             = _mm_add_ps(fiy0,ty);
671             fiz0             = _mm_add_ps(fiz0,tz);
672
673             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
674             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
675             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
676             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
677             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
678             
679             /* Inner loop uses 47 flops */
680         }
681
682         /* End of innermost loop */
683
684         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
685                                               f+i_coord_offset,fshift+i_shift_offset);
686
687         /* Increment number of inner iterations */
688         inneriter                  += j_index_end - j_index_start;
689
690         /* Outer loop uses 6 flops */
691     }
692
693     /* Increment number of outer iterations */
694     outeriter        += nri;
695
696     /* Update outer/inner flops */
697
698     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*47);
699 }