Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sse2_single
51  * Electrostatics interaction: None
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     int              nvdwtype;
88     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
92     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
93     __m128           c6grid_00;
94     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
95     real             *vdwgridparam;
96     __m128           one_half = _mm_set1_ps(0.5);
97     __m128           minus_one = _mm_set1_ps(-1.0);
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116     vdwgridparam     = fr->ljpme_c6grid;
117     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
118     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
119     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
120
121     rcutoff_scalar   = fr->ic->rvdw;
122     rcutoff          = _mm_set1_ps(rcutoff_scalar);
123     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
124
125     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
126     rvdw             = _mm_set1_ps(fr->ic->rvdw);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     for(iidx=0;iidx<4*DIM;iidx++)
139     {
140         scratch[iidx] = 0.0;
141     }  
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
159         
160         fix0             = _mm_setzero_ps();
161         fiy0             = _mm_setzero_ps();
162         fiz0             = _mm_setzero_ps();
163
164         /* Load parameters for i particles */
165         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
166
167         /* Reset potential sums */
168         vvdwsum          = _mm_setzero_ps();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               x+j_coord_offsetC,x+j_coord_offsetD,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_ps(ix0,jx0);
191             dy00             = _mm_sub_ps(iy0,jy0);
192             dz00             = _mm_sub_ps(iz0,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
196
197             rinv00           = sse2_invsqrt_f(rsq00);
198
199             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
200
201             /* Load parameters for j particles */
202             vdwjidx0A        = 2*vdwtype[jnrA+0];
203             vdwjidx0B        = 2*vdwtype[jnrB+0];
204             vdwjidx0C        = 2*vdwtype[jnrC+0];
205             vdwjidx0D        = 2*vdwtype[jnrD+0];
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             if (gmx_mm_any_lt(rsq00,rcutoff2))
212             {
213
214             r00              = _mm_mul_ps(rsq00,rinv00);
215
216             /* Compute parameters for interactions between i and j atoms */
217             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
218                                          vdwparam+vdwioffset0+vdwjidx0B,
219                                          vdwparam+vdwioffset0+vdwjidx0C,
220                                          vdwparam+vdwioffset0+vdwjidx0D,
221                                          &c6_00,&c12_00);
222             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
223                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
224                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
225                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
226
227             /* Analytical LJ-PME */
228             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
229             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
230             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
231             exponent         = sse2_exp_f(ewcljrsq);
232             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
233             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
234             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
235             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
236             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
237             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
238                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
239             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
240             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
241
242             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
246             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
247
248             fscal            = fvdw;
249
250             fscal            = _mm_and_ps(fscal,cutoff_mask);
251
252             /* Calculate temporary vectorial force */
253             tx               = _mm_mul_ps(fscal,dx00);
254             ty               = _mm_mul_ps(fscal,dy00);
255             tz               = _mm_mul_ps(fscal,dz00);
256
257             /* Update vectorial force */
258             fix0             = _mm_add_ps(fix0,tx);
259             fiy0             = _mm_add_ps(fiy0,ty);
260             fiz0             = _mm_add_ps(fiz0,tz);
261
262             fjptrA             = f+j_coord_offsetA;
263             fjptrB             = f+j_coord_offsetB;
264             fjptrC             = f+j_coord_offsetC;
265             fjptrD             = f+j_coord_offsetD;
266             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
267             
268             }
269
270             /* Inner loop uses 62 flops */
271         }
272
273         if(jidx<j_index_end)
274         {
275
276             /* Get j neighbor index, and coordinate index */
277             jnrlistA         = jjnr[jidx];
278             jnrlistB         = jjnr[jidx+1];
279             jnrlistC         = jjnr[jidx+2];
280             jnrlistD         = jjnr[jidx+3];
281             /* Sign of each element will be negative for non-real atoms.
282              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
283              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
284              */
285             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
286             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
287             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
288             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
289             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
290             j_coord_offsetA  = DIM*jnrA;
291             j_coord_offsetB  = DIM*jnrB;
292             j_coord_offsetC  = DIM*jnrC;
293             j_coord_offsetD  = DIM*jnrD;
294
295             /* load j atom coordinates */
296             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
297                                               x+j_coord_offsetC,x+j_coord_offsetD,
298                                               &jx0,&jy0,&jz0);
299
300             /* Calculate displacement vector */
301             dx00             = _mm_sub_ps(ix0,jx0);
302             dy00             = _mm_sub_ps(iy0,jy0);
303             dz00             = _mm_sub_ps(iz0,jz0);
304
305             /* Calculate squared distance and things based on it */
306             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
307
308             rinv00           = sse2_invsqrt_f(rsq00);
309
310             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
311
312             /* Load parameters for j particles */
313             vdwjidx0A        = 2*vdwtype[jnrA+0];
314             vdwjidx0B        = 2*vdwtype[jnrB+0];
315             vdwjidx0C        = 2*vdwtype[jnrC+0];
316             vdwjidx0D        = 2*vdwtype[jnrD+0];
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             if (gmx_mm_any_lt(rsq00,rcutoff2))
323             {
324
325             r00              = _mm_mul_ps(rsq00,rinv00);
326             r00              = _mm_andnot_ps(dummy_mask,r00);
327
328             /* Compute parameters for interactions between i and j atoms */
329             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
330                                          vdwparam+vdwioffset0+vdwjidx0B,
331                                          vdwparam+vdwioffset0+vdwjidx0C,
332                                          vdwparam+vdwioffset0+vdwjidx0D,
333                                          &c6_00,&c12_00);
334             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
335                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
336                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
337                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
338
339             /* Analytical LJ-PME */
340             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
341             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
342             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
343             exponent         = sse2_exp_f(ewcljrsq);
344             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
345             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
346             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
347             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
348             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
349             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
350                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
351             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
352             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
353
354             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
358             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
359             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
360
361             fscal            = fvdw;
362
363             fscal            = _mm_and_ps(fscal,cutoff_mask);
364
365             fscal            = _mm_andnot_ps(dummy_mask,fscal);
366
367             /* Calculate temporary vectorial force */
368             tx               = _mm_mul_ps(fscal,dx00);
369             ty               = _mm_mul_ps(fscal,dy00);
370             tz               = _mm_mul_ps(fscal,dz00);
371
372             /* Update vectorial force */
373             fix0             = _mm_add_ps(fix0,tx);
374             fiy0             = _mm_add_ps(fiy0,ty);
375             fiz0             = _mm_add_ps(fiz0,tz);
376
377             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
378             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
379             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
380             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
381             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
382             
383             }
384
385             /* Inner loop uses 63 flops */
386         }
387
388         /* End of innermost loop */
389
390         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
391                                               f+i_coord_offset,fshift+i_shift_offset);
392
393         ggid                        = gid[iidx];
394         /* Update potential energies */
395         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
396
397         /* Increment number of inner iterations */
398         inneriter                  += j_index_end - j_index_start;
399
400         /* Outer loop uses 7 flops */
401     }
402
403     /* Increment number of outer iterations */
404     outeriter        += nri;
405
406     /* Update outer/inner flops */
407
408     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*63);
409 }
410 /*
411  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sse2_single
412  * Electrostatics interaction: None
413  * VdW interaction:            LJEwald
414  * Geometry:                   Particle-Particle
415  * Calculate force/pot:        Force
416  */
417 void
418 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sse2_single
419                     (t_nblist                    * gmx_restrict       nlist,
420                      rvec                        * gmx_restrict          xx,
421                      rvec                        * gmx_restrict          ff,
422                      struct t_forcerec           * gmx_restrict          fr,
423                      t_mdatoms                   * gmx_restrict     mdatoms,
424                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
425                      t_nrnb                      * gmx_restrict        nrnb)
426 {
427     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
428      * just 0 for non-waters.
429      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
430      * jnr indices corresponding to data put in the four positions in the SIMD register.
431      */
432     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
433     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
434     int              jnrA,jnrB,jnrC,jnrD;
435     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
436     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
437     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
438     real             rcutoff_scalar;
439     real             *shiftvec,*fshift,*x,*f;
440     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
441     real             scratch[4*DIM];
442     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
443     int              vdwioffset0;
444     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
445     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
446     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
447     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
448     int              nvdwtype;
449     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
450     int              *vdwtype;
451     real             *vdwparam;
452     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
453     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
454     __m128           c6grid_00;
455     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
456     real             *vdwgridparam;
457     __m128           one_half = _mm_set1_ps(0.5);
458     __m128           minus_one = _mm_set1_ps(-1.0);
459     __m128           dummy_mask,cutoff_mask;
460     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
461     __m128           one     = _mm_set1_ps(1.0);
462     __m128           two     = _mm_set1_ps(2.0);
463     x                = xx[0];
464     f                = ff[0];
465
466     nri              = nlist->nri;
467     iinr             = nlist->iinr;
468     jindex           = nlist->jindex;
469     jjnr             = nlist->jjnr;
470     shiftidx         = nlist->shift;
471     gid              = nlist->gid;
472     shiftvec         = fr->shift_vec[0];
473     fshift           = fr->fshift[0];
474     nvdwtype         = fr->ntype;
475     vdwparam         = fr->nbfp;
476     vdwtype          = mdatoms->typeA;
477     vdwgridparam     = fr->ljpme_c6grid;
478     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
479     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
480     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
481
482     rcutoff_scalar   = fr->ic->rvdw;
483     rcutoff          = _mm_set1_ps(rcutoff_scalar);
484     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
485
486     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
487     rvdw             = _mm_set1_ps(fr->ic->rvdw);
488
489     /* Avoid stupid compiler warnings */
490     jnrA = jnrB = jnrC = jnrD = 0;
491     j_coord_offsetA = 0;
492     j_coord_offsetB = 0;
493     j_coord_offsetC = 0;
494     j_coord_offsetD = 0;
495
496     outeriter        = 0;
497     inneriter        = 0;
498
499     for(iidx=0;iidx<4*DIM;iidx++)
500     {
501         scratch[iidx] = 0.0;
502     }  
503
504     /* Start outer loop over neighborlists */
505     for(iidx=0; iidx<nri; iidx++)
506     {
507         /* Load shift vector for this list */
508         i_shift_offset   = DIM*shiftidx[iidx];
509
510         /* Load limits for loop over neighbors */
511         j_index_start    = jindex[iidx];
512         j_index_end      = jindex[iidx+1];
513
514         /* Get outer coordinate index */
515         inr              = iinr[iidx];
516         i_coord_offset   = DIM*inr;
517
518         /* Load i particle coords and add shift vector */
519         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
520         
521         fix0             = _mm_setzero_ps();
522         fiy0             = _mm_setzero_ps();
523         fiz0             = _mm_setzero_ps();
524
525         /* Load parameters for i particles */
526         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
527
528         /* Start inner kernel loop */
529         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
530         {
531
532             /* Get j neighbor index, and coordinate index */
533             jnrA             = jjnr[jidx];
534             jnrB             = jjnr[jidx+1];
535             jnrC             = jjnr[jidx+2];
536             jnrD             = jjnr[jidx+3];
537             j_coord_offsetA  = DIM*jnrA;
538             j_coord_offsetB  = DIM*jnrB;
539             j_coord_offsetC  = DIM*jnrC;
540             j_coord_offsetD  = DIM*jnrD;
541
542             /* load j atom coordinates */
543             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
544                                               x+j_coord_offsetC,x+j_coord_offsetD,
545                                               &jx0,&jy0,&jz0);
546
547             /* Calculate displacement vector */
548             dx00             = _mm_sub_ps(ix0,jx0);
549             dy00             = _mm_sub_ps(iy0,jy0);
550             dz00             = _mm_sub_ps(iz0,jz0);
551
552             /* Calculate squared distance and things based on it */
553             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
554
555             rinv00           = sse2_invsqrt_f(rsq00);
556
557             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
558
559             /* Load parameters for j particles */
560             vdwjidx0A        = 2*vdwtype[jnrA+0];
561             vdwjidx0B        = 2*vdwtype[jnrB+0];
562             vdwjidx0C        = 2*vdwtype[jnrC+0];
563             vdwjidx0D        = 2*vdwtype[jnrD+0];
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             if (gmx_mm_any_lt(rsq00,rcutoff2))
570             {
571
572             r00              = _mm_mul_ps(rsq00,rinv00);
573
574             /* Compute parameters for interactions between i and j atoms */
575             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
576                                          vdwparam+vdwioffset0+vdwjidx0B,
577                                          vdwparam+vdwioffset0+vdwjidx0C,
578                                          vdwparam+vdwioffset0+vdwjidx0D,
579                                          &c6_00,&c12_00);
580             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
581                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
582                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
583                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
584
585             /* Analytical LJ-PME */
586             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
587             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
588             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
589             exponent         = sse2_exp_f(ewcljrsq);
590             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
591             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
592             /* f6A = 6 * C6grid * (1 - poly) */
593             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
594             /* f6B = C6grid * exponent * beta^6 */
595             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
596             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
597             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
598
599             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
600
601             fscal            = fvdw;
602
603             fscal            = _mm_and_ps(fscal,cutoff_mask);
604
605             /* Calculate temporary vectorial force */
606             tx               = _mm_mul_ps(fscal,dx00);
607             ty               = _mm_mul_ps(fscal,dy00);
608             tz               = _mm_mul_ps(fscal,dz00);
609
610             /* Update vectorial force */
611             fix0             = _mm_add_ps(fix0,tx);
612             fiy0             = _mm_add_ps(fiy0,ty);
613             fiz0             = _mm_add_ps(fiz0,tz);
614
615             fjptrA             = f+j_coord_offsetA;
616             fjptrB             = f+j_coord_offsetB;
617             fjptrC             = f+j_coord_offsetC;
618             fjptrD             = f+j_coord_offsetD;
619             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
620             
621             }
622
623             /* Inner loop uses 49 flops */
624         }
625
626         if(jidx<j_index_end)
627         {
628
629             /* Get j neighbor index, and coordinate index */
630             jnrlistA         = jjnr[jidx];
631             jnrlistB         = jjnr[jidx+1];
632             jnrlistC         = jjnr[jidx+2];
633             jnrlistD         = jjnr[jidx+3];
634             /* Sign of each element will be negative for non-real atoms.
635              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
636              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
637              */
638             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
639             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
640             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
641             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
642             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
643             j_coord_offsetA  = DIM*jnrA;
644             j_coord_offsetB  = DIM*jnrB;
645             j_coord_offsetC  = DIM*jnrC;
646             j_coord_offsetD  = DIM*jnrD;
647
648             /* load j atom coordinates */
649             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
650                                               x+j_coord_offsetC,x+j_coord_offsetD,
651                                               &jx0,&jy0,&jz0);
652
653             /* Calculate displacement vector */
654             dx00             = _mm_sub_ps(ix0,jx0);
655             dy00             = _mm_sub_ps(iy0,jy0);
656             dz00             = _mm_sub_ps(iz0,jz0);
657
658             /* Calculate squared distance and things based on it */
659             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
660
661             rinv00           = sse2_invsqrt_f(rsq00);
662
663             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
664
665             /* Load parameters for j particles */
666             vdwjidx0A        = 2*vdwtype[jnrA+0];
667             vdwjidx0B        = 2*vdwtype[jnrB+0];
668             vdwjidx0C        = 2*vdwtype[jnrC+0];
669             vdwjidx0D        = 2*vdwtype[jnrD+0];
670
671             /**************************
672              * CALCULATE INTERACTIONS *
673              **************************/
674
675             if (gmx_mm_any_lt(rsq00,rcutoff2))
676             {
677
678             r00              = _mm_mul_ps(rsq00,rinv00);
679             r00              = _mm_andnot_ps(dummy_mask,r00);
680
681             /* Compute parameters for interactions between i and j atoms */
682             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
683                                          vdwparam+vdwioffset0+vdwjidx0B,
684                                          vdwparam+vdwioffset0+vdwjidx0C,
685                                          vdwparam+vdwioffset0+vdwjidx0D,
686                                          &c6_00,&c12_00);
687             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
688                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
689                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
690                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
691
692             /* Analytical LJ-PME */
693             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
694             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
695             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
696             exponent         = sse2_exp_f(ewcljrsq);
697             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
698             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
699             /* f6A = 6 * C6grid * (1 - poly) */
700             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
701             /* f6B = C6grid * exponent * beta^6 */
702             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
703             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
704             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
705
706             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
707
708             fscal            = fvdw;
709
710             fscal            = _mm_and_ps(fscal,cutoff_mask);
711
712             fscal            = _mm_andnot_ps(dummy_mask,fscal);
713
714             /* Calculate temporary vectorial force */
715             tx               = _mm_mul_ps(fscal,dx00);
716             ty               = _mm_mul_ps(fscal,dy00);
717             tz               = _mm_mul_ps(fscal,dz00);
718
719             /* Update vectorial force */
720             fix0             = _mm_add_ps(fix0,tx);
721             fiy0             = _mm_add_ps(fiy0,ty);
722             fiz0             = _mm_add_ps(fiz0,tz);
723
724             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
725             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
726             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
727             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
728             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
729             
730             }
731
732             /* Inner loop uses 50 flops */
733         }
734
735         /* End of innermost loop */
736
737         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
738                                               f+i_coord_offset,fshift+i_shift_offset);
739
740         /* Increment number of inner iterations */
741         inneriter                  += j_index_end - j_index_start;
742
743         /* Outer loop uses 6 flops */
744     }
745
746     /* Increment number of outer iterations */
747     outeriter        += nri;
748
749     /* Update outer/inner flops */
750
751     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*50);
752 }