Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sse2_single
54  * Electrostatics interaction: None
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           c6grid_00;
97     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
98     real             *vdwgridparam;
99     __m128           one_half = _mm_set1_ps(0.5);
100     __m128           minus_one = _mm_set1_ps(-1.0);
101     __m128           dummy_mask,cutoff_mask;
102     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103     __m128           one     = _mm_set1_ps(1.0);
104     __m128           two     = _mm_set1_ps(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119     vdwgridparam     = fr->ljpme_c6grid;
120     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
121     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
122     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
123
124     rcutoff_scalar   = fr->rvdw;
125     rcutoff          = _mm_set1_ps(rcutoff_scalar);
126     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
127
128     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
129     rvdw             = _mm_set1_ps(fr->rvdw);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }  
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
162         
163         fix0             = _mm_setzero_ps();
164         fiy0             = _mm_setzero_ps();
165         fiz0             = _mm_setzero_ps();
166
167         /* Load parameters for i particles */
168         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
169
170         /* Reset potential sums */
171         vvdwsum          = _mm_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184             j_coord_offsetC  = DIM*jnrC;
185             j_coord_offsetD  = DIM*jnrD;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               x+j_coord_offsetC,x+j_coord_offsetD,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_ps(ix0,jx0);
194             dy00             = _mm_sub_ps(iy0,jy0);
195             dz00             = _mm_sub_ps(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
199
200             rinv00           = gmx_mm_invsqrt_ps(rsq00);
201
202             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             vdwjidx0A        = 2*vdwtype[jnrA+0];
206             vdwjidx0B        = 2*vdwtype[jnrB+0];
207             vdwjidx0C        = 2*vdwtype[jnrC+0];
208             vdwjidx0D        = 2*vdwtype[jnrD+0];
209
210             /**************************
211              * CALCULATE INTERACTIONS *
212              **************************/
213
214             if (gmx_mm_any_lt(rsq00,rcutoff2))
215             {
216
217             r00              = _mm_mul_ps(rsq00,rinv00);
218
219             /* Compute parameters for interactions between i and j atoms */
220             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,
222                                          vdwparam+vdwioffset0+vdwjidx0C,
223                                          vdwparam+vdwioffset0+vdwjidx0D,
224                                          &c6_00,&c12_00);
225             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
226                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
227                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
228                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
229
230             /* Analytical LJ-PME */
231             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
232             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
233             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
234             exponent         = gmx_simd_exp_r(ewcljrsq);
235             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
236             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
237             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
238             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
239             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
240             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
241                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
242             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
243             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
244
245             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
249             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
250
251             fscal            = fvdw;
252
253             fscal            = _mm_and_ps(fscal,cutoff_mask);
254
255             /* Calculate temporary vectorial force */
256             tx               = _mm_mul_ps(fscal,dx00);
257             ty               = _mm_mul_ps(fscal,dy00);
258             tz               = _mm_mul_ps(fscal,dz00);
259
260             /* Update vectorial force */
261             fix0             = _mm_add_ps(fix0,tx);
262             fiy0             = _mm_add_ps(fiy0,ty);
263             fiz0             = _mm_add_ps(fiz0,tz);
264
265             fjptrA             = f+j_coord_offsetA;
266             fjptrB             = f+j_coord_offsetB;
267             fjptrC             = f+j_coord_offsetC;
268             fjptrD             = f+j_coord_offsetD;
269             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
270             
271             }
272
273             /* Inner loop uses 62 flops */
274         }
275
276         if(jidx<j_index_end)
277         {
278
279             /* Get j neighbor index, and coordinate index */
280             jnrlistA         = jjnr[jidx];
281             jnrlistB         = jjnr[jidx+1];
282             jnrlistC         = jjnr[jidx+2];
283             jnrlistD         = jjnr[jidx+3];
284             /* Sign of each element will be negative for non-real atoms.
285              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
286              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
287              */
288             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
289             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
290             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
291             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
292             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
293             j_coord_offsetA  = DIM*jnrA;
294             j_coord_offsetB  = DIM*jnrB;
295             j_coord_offsetC  = DIM*jnrC;
296             j_coord_offsetD  = DIM*jnrD;
297
298             /* load j atom coordinates */
299             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
300                                               x+j_coord_offsetC,x+j_coord_offsetD,
301                                               &jx0,&jy0,&jz0);
302
303             /* Calculate displacement vector */
304             dx00             = _mm_sub_ps(ix0,jx0);
305             dy00             = _mm_sub_ps(iy0,jy0);
306             dz00             = _mm_sub_ps(iz0,jz0);
307
308             /* Calculate squared distance and things based on it */
309             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
310
311             rinv00           = gmx_mm_invsqrt_ps(rsq00);
312
313             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
314
315             /* Load parameters for j particles */
316             vdwjidx0A        = 2*vdwtype[jnrA+0];
317             vdwjidx0B        = 2*vdwtype[jnrB+0];
318             vdwjidx0C        = 2*vdwtype[jnrC+0];
319             vdwjidx0D        = 2*vdwtype[jnrD+0];
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             if (gmx_mm_any_lt(rsq00,rcutoff2))
326             {
327
328             r00              = _mm_mul_ps(rsq00,rinv00);
329             r00              = _mm_andnot_ps(dummy_mask,r00);
330
331             /* Compute parameters for interactions between i and j atoms */
332             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
333                                          vdwparam+vdwioffset0+vdwjidx0B,
334                                          vdwparam+vdwioffset0+vdwjidx0C,
335                                          vdwparam+vdwioffset0+vdwjidx0D,
336                                          &c6_00,&c12_00);
337             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
338                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
339                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
340                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
341
342             /* Analytical LJ-PME */
343             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
344             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
345             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
346             exponent         = gmx_simd_exp_r(ewcljrsq);
347             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
348             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
349             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
350             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
351             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
352             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
353                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
354             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
355             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
356
357             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
361             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
362             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
363
364             fscal            = fvdw;
365
366             fscal            = _mm_and_ps(fscal,cutoff_mask);
367
368             fscal            = _mm_andnot_ps(dummy_mask,fscal);
369
370             /* Calculate temporary vectorial force */
371             tx               = _mm_mul_ps(fscal,dx00);
372             ty               = _mm_mul_ps(fscal,dy00);
373             tz               = _mm_mul_ps(fscal,dz00);
374
375             /* Update vectorial force */
376             fix0             = _mm_add_ps(fix0,tx);
377             fiy0             = _mm_add_ps(fiy0,ty);
378             fiz0             = _mm_add_ps(fiz0,tz);
379
380             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
381             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
382             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
383             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
384             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
385             
386             }
387
388             /* Inner loop uses 63 flops */
389         }
390
391         /* End of innermost loop */
392
393         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
394                                               f+i_coord_offset,fshift+i_shift_offset);
395
396         ggid                        = gid[iidx];
397         /* Update potential energies */
398         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
399
400         /* Increment number of inner iterations */
401         inneriter                  += j_index_end - j_index_start;
402
403         /* Outer loop uses 7 flops */
404     }
405
406     /* Increment number of outer iterations */
407     outeriter        += nri;
408
409     /* Update outer/inner flops */
410
411     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*63);
412 }
413 /*
414  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sse2_single
415  * Electrostatics interaction: None
416  * VdW interaction:            LJEwald
417  * Geometry:                   Particle-Particle
418  * Calculate force/pot:        Force
419  */
420 void
421 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sse2_single
422                     (t_nblist                    * gmx_restrict       nlist,
423                      rvec                        * gmx_restrict          xx,
424                      rvec                        * gmx_restrict          ff,
425                      t_forcerec                  * gmx_restrict          fr,
426                      t_mdatoms                   * gmx_restrict     mdatoms,
427                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
428                      t_nrnb                      * gmx_restrict        nrnb)
429 {
430     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
431      * just 0 for non-waters.
432      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
433      * jnr indices corresponding to data put in the four positions in the SIMD register.
434      */
435     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
436     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
437     int              jnrA,jnrB,jnrC,jnrD;
438     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
439     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
440     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
441     real             rcutoff_scalar;
442     real             *shiftvec,*fshift,*x,*f;
443     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
444     real             scratch[4*DIM];
445     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
446     int              vdwioffset0;
447     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
448     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
449     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
450     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
451     int              nvdwtype;
452     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
453     int              *vdwtype;
454     real             *vdwparam;
455     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
456     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
457     __m128           c6grid_00;
458     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
459     real             *vdwgridparam;
460     __m128           one_half = _mm_set1_ps(0.5);
461     __m128           minus_one = _mm_set1_ps(-1.0);
462     __m128           dummy_mask,cutoff_mask;
463     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
464     __m128           one     = _mm_set1_ps(1.0);
465     __m128           two     = _mm_set1_ps(2.0);
466     x                = xx[0];
467     f                = ff[0];
468
469     nri              = nlist->nri;
470     iinr             = nlist->iinr;
471     jindex           = nlist->jindex;
472     jjnr             = nlist->jjnr;
473     shiftidx         = nlist->shift;
474     gid              = nlist->gid;
475     shiftvec         = fr->shift_vec[0];
476     fshift           = fr->fshift[0];
477     nvdwtype         = fr->ntype;
478     vdwparam         = fr->nbfp;
479     vdwtype          = mdatoms->typeA;
480     vdwgridparam     = fr->ljpme_c6grid;
481     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
482     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
483     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
484
485     rcutoff_scalar   = fr->rvdw;
486     rcutoff          = _mm_set1_ps(rcutoff_scalar);
487     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
488
489     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
490     rvdw             = _mm_set1_ps(fr->rvdw);
491
492     /* Avoid stupid compiler warnings */
493     jnrA = jnrB = jnrC = jnrD = 0;
494     j_coord_offsetA = 0;
495     j_coord_offsetB = 0;
496     j_coord_offsetC = 0;
497     j_coord_offsetD = 0;
498
499     outeriter        = 0;
500     inneriter        = 0;
501
502     for(iidx=0;iidx<4*DIM;iidx++)
503     {
504         scratch[iidx] = 0.0;
505     }  
506
507     /* Start outer loop over neighborlists */
508     for(iidx=0; iidx<nri; iidx++)
509     {
510         /* Load shift vector for this list */
511         i_shift_offset   = DIM*shiftidx[iidx];
512
513         /* Load limits for loop over neighbors */
514         j_index_start    = jindex[iidx];
515         j_index_end      = jindex[iidx+1];
516
517         /* Get outer coordinate index */
518         inr              = iinr[iidx];
519         i_coord_offset   = DIM*inr;
520
521         /* Load i particle coords and add shift vector */
522         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
523         
524         fix0             = _mm_setzero_ps();
525         fiy0             = _mm_setzero_ps();
526         fiz0             = _mm_setzero_ps();
527
528         /* Load parameters for i particles */
529         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
530
531         /* Start inner kernel loop */
532         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
533         {
534
535             /* Get j neighbor index, and coordinate index */
536             jnrA             = jjnr[jidx];
537             jnrB             = jjnr[jidx+1];
538             jnrC             = jjnr[jidx+2];
539             jnrD             = jjnr[jidx+3];
540             j_coord_offsetA  = DIM*jnrA;
541             j_coord_offsetB  = DIM*jnrB;
542             j_coord_offsetC  = DIM*jnrC;
543             j_coord_offsetD  = DIM*jnrD;
544
545             /* load j atom coordinates */
546             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
547                                               x+j_coord_offsetC,x+j_coord_offsetD,
548                                               &jx0,&jy0,&jz0);
549
550             /* Calculate displacement vector */
551             dx00             = _mm_sub_ps(ix0,jx0);
552             dy00             = _mm_sub_ps(iy0,jy0);
553             dz00             = _mm_sub_ps(iz0,jz0);
554
555             /* Calculate squared distance and things based on it */
556             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
557
558             rinv00           = gmx_mm_invsqrt_ps(rsq00);
559
560             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
561
562             /* Load parameters for j particles */
563             vdwjidx0A        = 2*vdwtype[jnrA+0];
564             vdwjidx0B        = 2*vdwtype[jnrB+0];
565             vdwjidx0C        = 2*vdwtype[jnrC+0];
566             vdwjidx0D        = 2*vdwtype[jnrD+0];
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             if (gmx_mm_any_lt(rsq00,rcutoff2))
573             {
574
575             r00              = _mm_mul_ps(rsq00,rinv00);
576
577             /* Compute parameters for interactions between i and j atoms */
578             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
579                                          vdwparam+vdwioffset0+vdwjidx0B,
580                                          vdwparam+vdwioffset0+vdwjidx0C,
581                                          vdwparam+vdwioffset0+vdwjidx0D,
582                                          &c6_00,&c12_00);
583             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
584                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
585                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
586                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
587
588             /* Analytical LJ-PME */
589             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
590             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
591             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
592             exponent         = gmx_simd_exp_r(ewcljrsq);
593             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
594             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
595             /* f6A = 6 * C6grid * (1 - poly) */
596             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
597             /* f6B = C6grid * exponent * beta^6 */
598             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
599             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
600             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
601
602             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
603
604             fscal            = fvdw;
605
606             fscal            = _mm_and_ps(fscal,cutoff_mask);
607
608             /* Calculate temporary vectorial force */
609             tx               = _mm_mul_ps(fscal,dx00);
610             ty               = _mm_mul_ps(fscal,dy00);
611             tz               = _mm_mul_ps(fscal,dz00);
612
613             /* Update vectorial force */
614             fix0             = _mm_add_ps(fix0,tx);
615             fiy0             = _mm_add_ps(fiy0,ty);
616             fiz0             = _mm_add_ps(fiz0,tz);
617
618             fjptrA             = f+j_coord_offsetA;
619             fjptrB             = f+j_coord_offsetB;
620             fjptrC             = f+j_coord_offsetC;
621             fjptrD             = f+j_coord_offsetD;
622             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
623             
624             }
625
626             /* Inner loop uses 49 flops */
627         }
628
629         if(jidx<j_index_end)
630         {
631
632             /* Get j neighbor index, and coordinate index */
633             jnrlistA         = jjnr[jidx];
634             jnrlistB         = jjnr[jidx+1];
635             jnrlistC         = jjnr[jidx+2];
636             jnrlistD         = jjnr[jidx+3];
637             /* Sign of each element will be negative for non-real atoms.
638              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
639              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
640              */
641             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
642             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
643             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
644             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
645             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
646             j_coord_offsetA  = DIM*jnrA;
647             j_coord_offsetB  = DIM*jnrB;
648             j_coord_offsetC  = DIM*jnrC;
649             j_coord_offsetD  = DIM*jnrD;
650
651             /* load j atom coordinates */
652             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
653                                               x+j_coord_offsetC,x+j_coord_offsetD,
654                                               &jx0,&jy0,&jz0);
655
656             /* Calculate displacement vector */
657             dx00             = _mm_sub_ps(ix0,jx0);
658             dy00             = _mm_sub_ps(iy0,jy0);
659             dz00             = _mm_sub_ps(iz0,jz0);
660
661             /* Calculate squared distance and things based on it */
662             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
663
664             rinv00           = gmx_mm_invsqrt_ps(rsq00);
665
666             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
667
668             /* Load parameters for j particles */
669             vdwjidx0A        = 2*vdwtype[jnrA+0];
670             vdwjidx0B        = 2*vdwtype[jnrB+0];
671             vdwjidx0C        = 2*vdwtype[jnrC+0];
672             vdwjidx0D        = 2*vdwtype[jnrD+0];
673
674             /**************************
675              * CALCULATE INTERACTIONS *
676              **************************/
677
678             if (gmx_mm_any_lt(rsq00,rcutoff2))
679             {
680
681             r00              = _mm_mul_ps(rsq00,rinv00);
682             r00              = _mm_andnot_ps(dummy_mask,r00);
683
684             /* Compute parameters for interactions between i and j atoms */
685             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
686                                          vdwparam+vdwioffset0+vdwjidx0B,
687                                          vdwparam+vdwioffset0+vdwjidx0C,
688                                          vdwparam+vdwioffset0+vdwjidx0D,
689                                          &c6_00,&c12_00);
690             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
691                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
692                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
693                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
694
695             /* Analytical LJ-PME */
696             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
697             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
698             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
699             exponent         = gmx_simd_exp_r(ewcljrsq);
700             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
701             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
702             /* f6A = 6 * C6grid * (1 - poly) */
703             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
704             /* f6B = C6grid * exponent * beta^6 */
705             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
706             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
707             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
708
709             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
710
711             fscal            = fvdw;
712
713             fscal            = _mm_and_ps(fscal,cutoff_mask);
714
715             fscal            = _mm_andnot_ps(dummy_mask,fscal);
716
717             /* Calculate temporary vectorial force */
718             tx               = _mm_mul_ps(fscal,dx00);
719             ty               = _mm_mul_ps(fscal,dy00);
720             tz               = _mm_mul_ps(fscal,dz00);
721
722             /* Update vectorial force */
723             fix0             = _mm_add_ps(fix0,tx);
724             fiy0             = _mm_add_ps(fiy0,ty);
725             fiz0             = _mm_add_ps(fiz0,tz);
726
727             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
728             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
729             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
730             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
731             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
732             
733             }
734
735             /* Inner loop uses 50 flops */
736         }
737
738         /* End of innermost loop */
739
740         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
741                                               f+i_coord_offset,fshift+i_shift_offset);
742
743         /* Increment number of inner iterations */
744         inneriter                  += j_index_end - j_index_start;
745
746         /* Outer loop uses 6 flops */
747     }
748
749     /* Increment number of outer iterations */
750     outeriter        += nri;
751
752     /* Update outer/inner flops */
753
754     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*50);
755 }