18f2ca30719e33fa58f74f928ee33c0286c96a9f
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sse2_single
52  * Electrostatics interaction: None
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     int              nvdwtype;
89     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
93     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
94     __m128           c6grid_00;
95     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
96     real             *vdwgridparam;
97     __m128           one_half = _mm_set1_ps(0.5);
98     __m128           minus_one = _mm_set1_ps(-1.0);
99     __m128           dummy_mask,cutoff_mask;
100     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101     __m128           one     = _mm_set1_ps(1.0);
102     __m128           two     = _mm_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117     vdwgridparam     = fr->ljpme_c6grid;
118     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
119     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
120     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
121
122     rcutoff_scalar   = fr->rvdw;
123     rcutoff          = _mm_set1_ps(rcutoff_scalar);
124     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
125
126     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
127     rvdw             = _mm_set1_ps(fr->rvdw);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = jnrC = jnrD = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133     j_coord_offsetC = 0;
134     j_coord_offsetD = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }  
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
160         
161         fix0             = _mm_setzero_ps();
162         fiy0             = _mm_setzero_ps();
163         fiz0             = _mm_setzero_ps();
164
165         /* Load parameters for i particles */
166         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
167
168         /* Reset potential sums */
169         vvdwsum          = _mm_setzero_ps();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             jnrC             = jjnr[jidx+2];
179             jnrD             = jjnr[jidx+3];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182             j_coord_offsetC  = DIM*jnrC;
183             j_coord_offsetD  = DIM*jnrD;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               x+j_coord_offsetC,x+j_coord_offsetD,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_ps(ix0,jx0);
192             dy00             = _mm_sub_ps(iy0,jy0);
193             dz00             = _mm_sub_ps(iz0,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
197
198             rinv00           = gmx_mm_invsqrt_ps(rsq00);
199
200             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
201
202             /* Load parameters for j particles */
203             vdwjidx0A        = 2*vdwtype[jnrA+0];
204             vdwjidx0B        = 2*vdwtype[jnrB+0];
205             vdwjidx0C        = 2*vdwtype[jnrC+0];
206             vdwjidx0D        = 2*vdwtype[jnrD+0];
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             if (gmx_mm_any_lt(rsq00,rcutoff2))
213             {
214
215             r00              = _mm_mul_ps(rsq00,rinv00);
216
217             /* Compute parameters for interactions between i and j atoms */
218             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
219                                          vdwparam+vdwioffset0+vdwjidx0B,
220                                          vdwparam+vdwioffset0+vdwjidx0C,
221                                          vdwparam+vdwioffset0+vdwjidx0D,
222                                          &c6_00,&c12_00);
223             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
224                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
225                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
226                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
227
228             /* Analytical LJ-PME */
229             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
230             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
231             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
232             exponent         = gmx_simd_exp_r(ewcljrsq);
233             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
234             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
235             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
236             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
237             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
238             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
239                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
240             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
241             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
242
243             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
244
245             /* Update potential sum for this i atom from the interaction with this j atom. */
246             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
247             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
248
249             fscal            = fvdw;
250
251             fscal            = _mm_and_ps(fscal,cutoff_mask);
252
253             /* Calculate temporary vectorial force */
254             tx               = _mm_mul_ps(fscal,dx00);
255             ty               = _mm_mul_ps(fscal,dy00);
256             tz               = _mm_mul_ps(fscal,dz00);
257
258             /* Update vectorial force */
259             fix0             = _mm_add_ps(fix0,tx);
260             fiy0             = _mm_add_ps(fiy0,ty);
261             fiz0             = _mm_add_ps(fiz0,tz);
262
263             fjptrA             = f+j_coord_offsetA;
264             fjptrB             = f+j_coord_offsetB;
265             fjptrC             = f+j_coord_offsetC;
266             fjptrD             = f+j_coord_offsetD;
267             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
268             
269             }
270
271             /* Inner loop uses 62 flops */
272         }
273
274         if(jidx<j_index_end)
275         {
276
277             /* Get j neighbor index, and coordinate index */
278             jnrlistA         = jjnr[jidx];
279             jnrlistB         = jjnr[jidx+1];
280             jnrlistC         = jjnr[jidx+2];
281             jnrlistD         = jjnr[jidx+3];
282             /* Sign of each element will be negative for non-real atoms.
283              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
284              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
285              */
286             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
287             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
288             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
289             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
290             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
291             j_coord_offsetA  = DIM*jnrA;
292             j_coord_offsetB  = DIM*jnrB;
293             j_coord_offsetC  = DIM*jnrC;
294             j_coord_offsetD  = DIM*jnrD;
295
296             /* load j atom coordinates */
297             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
298                                               x+j_coord_offsetC,x+j_coord_offsetD,
299                                               &jx0,&jy0,&jz0);
300
301             /* Calculate displacement vector */
302             dx00             = _mm_sub_ps(ix0,jx0);
303             dy00             = _mm_sub_ps(iy0,jy0);
304             dz00             = _mm_sub_ps(iz0,jz0);
305
306             /* Calculate squared distance and things based on it */
307             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
308
309             rinv00           = gmx_mm_invsqrt_ps(rsq00);
310
311             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
312
313             /* Load parameters for j particles */
314             vdwjidx0A        = 2*vdwtype[jnrA+0];
315             vdwjidx0B        = 2*vdwtype[jnrB+0];
316             vdwjidx0C        = 2*vdwtype[jnrC+0];
317             vdwjidx0D        = 2*vdwtype[jnrD+0];
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             if (gmx_mm_any_lt(rsq00,rcutoff2))
324             {
325
326             r00              = _mm_mul_ps(rsq00,rinv00);
327             r00              = _mm_andnot_ps(dummy_mask,r00);
328
329             /* Compute parameters for interactions between i and j atoms */
330             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
331                                          vdwparam+vdwioffset0+vdwjidx0B,
332                                          vdwparam+vdwioffset0+vdwjidx0C,
333                                          vdwparam+vdwioffset0+vdwjidx0D,
334                                          &c6_00,&c12_00);
335             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
336                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
337                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
338                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
339
340             /* Analytical LJ-PME */
341             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
342             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
343             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
344             exponent         = gmx_simd_exp_r(ewcljrsq);
345             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
346             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
347             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
348             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
349             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
350             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
351                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
352             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
353             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
354
355             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
359             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
360             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
361
362             fscal            = fvdw;
363
364             fscal            = _mm_and_ps(fscal,cutoff_mask);
365
366             fscal            = _mm_andnot_ps(dummy_mask,fscal);
367
368             /* Calculate temporary vectorial force */
369             tx               = _mm_mul_ps(fscal,dx00);
370             ty               = _mm_mul_ps(fscal,dy00);
371             tz               = _mm_mul_ps(fscal,dz00);
372
373             /* Update vectorial force */
374             fix0             = _mm_add_ps(fix0,tx);
375             fiy0             = _mm_add_ps(fiy0,ty);
376             fiz0             = _mm_add_ps(fiz0,tz);
377
378             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
379             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
380             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
381             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
382             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
383             
384             }
385
386             /* Inner loop uses 63 flops */
387         }
388
389         /* End of innermost loop */
390
391         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
392                                               f+i_coord_offset,fshift+i_shift_offset);
393
394         ggid                        = gid[iidx];
395         /* Update potential energies */
396         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
397
398         /* Increment number of inner iterations */
399         inneriter                  += j_index_end - j_index_start;
400
401         /* Outer loop uses 7 flops */
402     }
403
404     /* Increment number of outer iterations */
405     outeriter        += nri;
406
407     /* Update outer/inner flops */
408
409     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*63);
410 }
411 /*
412  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sse2_single
413  * Electrostatics interaction: None
414  * VdW interaction:            LJEwald
415  * Geometry:                   Particle-Particle
416  * Calculate force/pot:        Force
417  */
418 void
419 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sse2_single
420                     (t_nblist                    * gmx_restrict       nlist,
421                      rvec                        * gmx_restrict          xx,
422                      rvec                        * gmx_restrict          ff,
423                      t_forcerec                  * gmx_restrict          fr,
424                      t_mdatoms                   * gmx_restrict     mdatoms,
425                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
426                      t_nrnb                      * gmx_restrict        nrnb)
427 {
428     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
429      * just 0 for non-waters.
430      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
431      * jnr indices corresponding to data put in the four positions in the SIMD register.
432      */
433     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
434     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
435     int              jnrA,jnrB,jnrC,jnrD;
436     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
437     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
438     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
439     real             rcutoff_scalar;
440     real             *shiftvec,*fshift,*x,*f;
441     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
442     real             scratch[4*DIM];
443     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
444     int              vdwioffset0;
445     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
446     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
447     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
448     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
449     int              nvdwtype;
450     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
451     int              *vdwtype;
452     real             *vdwparam;
453     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
454     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
455     __m128           c6grid_00;
456     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
457     real             *vdwgridparam;
458     __m128           one_half = _mm_set1_ps(0.5);
459     __m128           minus_one = _mm_set1_ps(-1.0);
460     __m128           dummy_mask,cutoff_mask;
461     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
462     __m128           one     = _mm_set1_ps(1.0);
463     __m128           two     = _mm_set1_ps(2.0);
464     x                = xx[0];
465     f                = ff[0];
466
467     nri              = nlist->nri;
468     iinr             = nlist->iinr;
469     jindex           = nlist->jindex;
470     jjnr             = nlist->jjnr;
471     shiftidx         = nlist->shift;
472     gid              = nlist->gid;
473     shiftvec         = fr->shift_vec[0];
474     fshift           = fr->fshift[0];
475     nvdwtype         = fr->ntype;
476     vdwparam         = fr->nbfp;
477     vdwtype          = mdatoms->typeA;
478     vdwgridparam     = fr->ljpme_c6grid;
479     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
480     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
481     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
482
483     rcutoff_scalar   = fr->rvdw;
484     rcutoff          = _mm_set1_ps(rcutoff_scalar);
485     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
486
487     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
488     rvdw             = _mm_set1_ps(fr->rvdw);
489
490     /* Avoid stupid compiler warnings */
491     jnrA = jnrB = jnrC = jnrD = 0;
492     j_coord_offsetA = 0;
493     j_coord_offsetB = 0;
494     j_coord_offsetC = 0;
495     j_coord_offsetD = 0;
496
497     outeriter        = 0;
498     inneriter        = 0;
499
500     for(iidx=0;iidx<4*DIM;iidx++)
501     {
502         scratch[iidx] = 0.0;
503     }  
504
505     /* Start outer loop over neighborlists */
506     for(iidx=0; iidx<nri; iidx++)
507     {
508         /* Load shift vector for this list */
509         i_shift_offset   = DIM*shiftidx[iidx];
510
511         /* Load limits for loop over neighbors */
512         j_index_start    = jindex[iidx];
513         j_index_end      = jindex[iidx+1];
514
515         /* Get outer coordinate index */
516         inr              = iinr[iidx];
517         i_coord_offset   = DIM*inr;
518
519         /* Load i particle coords and add shift vector */
520         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
521         
522         fix0             = _mm_setzero_ps();
523         fiy0             = _mm_setzero_ps();
524         fiz0             = _mm_setzero_ps();
525
526         /* Load parameters for i particles */
527         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
528
529         /* Start inner kernel loop */
530         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
531         {
532
533             /* Get j neighbor index, and coordinate index */
534             jnrA             = jjnr[jidx];
535             jnrB             = jjnr[jidx+1];
536             jnrC             = jjnr[jidx+2];
537             jnrD             = jjnr[jidx+3];
538             j_coord_offsetA  = DIM*jnrA;
539             j_coord_offsetB  = DIM*jnrB;
540             j_coord_offsetC  = DIM*jnrC;
541             j_coord_offsetD  = DIM*jnrD;
542
543             /* load j atom coordinates */
544             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
545                                               x+j_coord_offsetC,x+j_coord_offsetD,
546                                               &jx0,&jy0,&jz0);
547
548             /* Calculate displacement vector */
549             dx00             = _mm_sub_ps(ix0,jx0);
550             dy00             = _mm_sub_ps(iy0,jy0);
551             dz00             = _mm_sub_ps(iz0,jz0);
552
553             /* Calculate squared distance and things based on it */
554             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
555
556             rinv00           = gmx_mm_invsqrt_ps(rsq00);
557
558             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
559
560             /* Load parameters for j particles */
561             vdwjidx0A        = 2*vdwtype[jnrA+0];
562             vdwjidx0B        = 2*vdwtype[jnrB+0];
563             vdwjidx0C        = 2*vdwtype[jnrC+0];
564             vdwjidx0D        = 2*vdwtype[jnrD+0];
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             if (gmx_mm_any_lt(rsq00,rcutoff2))
571             {
572
573             r00              = _mm_mul_ps(rsq00,rinv00);
574
575             /* Compute parameters for interactions between i and j atoms */
576             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
577                                          vdwparam+vdwioffset0+vdwjidx0B,
578                                          vdwparam+vdwioffset0+vdwjidx0C,
579                                          vdwparam+vdwioffset0+vdwjidx0D,
580                                          &c6_00,&c12_00);
581             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
582                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
583                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
584                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
585
586             /* Analytical LJ-PME */
587             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
588             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
589             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
590             exponent         = gmx_simd_exp_r(ewcljrsq);
591             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
592             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
593             /* f6A = 6 * C6grid * (1 - poly) */
594             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
595             /* f6B = C6grid * exponent * beta^6 */
596             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
597             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
598             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
599
600             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
601
602             fscal            = fvdw;
603
604             fscal            = _mm_and_ps(fscal,cutoff_mask);
605
606             /* Calculate temporary vectorial force */
607             tx               = _mm_mul_ps(fscal,dx00);
608             ty               = _mm_mul_ps(fscal,dy00);
609             tz               = _mm_mul_ps(fscal,dz00);
610
611             /* Update vectorial force */
612             fix0             = _mm_add_ps(fix0,tx);
613             fiy0             = _mm_add_ps(fiy0,ty);
614             fiz0             = _mm_add_ps(fiz0,tz);
615
616             fjptrA             = f+j_coord_offsetA;
617             fjptrB             = f+j_coord_offsetB;
618             fjptrC             = f+j_coord_offsetC;
619             fjptrD             = f+j_coord_offsetD;
620             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
621             
622             }
623
624             /* Inner loop uses 49 flops */
625         }
626
627         if(jidx<j_index_end)
628         {
629
630             /* Get j neighbor index, and coordinate index */
631             jnrlistA         = jjnr[jidx];
632             jnrlistB         = jjnr[jidx+1];
633             jnrlistC         = jjnr[jidx+2];
634             jnrlistD         = jjnr[jidx+3];
635             /* Sign of each element will be negative for non-real atoms.
636              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
637              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
638              */
639             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
640             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
641             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
642             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
643             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
644             j_coord_offsetA  = DIM*jnrA;
645             j_coord_offsetB  = DIM*jnrB;
646             j_coord_offsetC  = DIM*jnrC;
647             j_coord_offsetD  = DIM*jnrD;
648
649             /* load j atom coordinates */
650             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
651                                               x+j_coord_offsetC,x+j_coord_offsetD,
652                                               &jx0,&jy0,&jz0);
653
654             /* Calculate displacement vector */
655             dx00             = _mm_sub_ps(ix0,jx0);
656             dy00             = _mm_sub_ps(iy0,jy0);
657             dz00             = _mm_sub_ps(iz0,jz0);
658
659             /* Calculate squared distance and things based on it */
660             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
661
662             rinv00           = gmx_mm_invsqrt_ps(rsq00);
663
664             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
665
666             /* Load parameters for j particles */
667             vdwjidx0A        = 2*vdwtype[jnrA+0];
668             vdwjidx0B        = 2*vdwtype[jnrB+0];
669             vdwjidx0C        = 2*vdwtype[jnrC+0];
670             vdwjidx0D        = 2*vdwtype[jnrD+0];
671
672             /**************************
673              * CALCULATE INTERACTIONS *
674              **************************/
675
676             if (gmx_mm_any_lt(rsq00,rcutoff2))
677             {
678
679             r00              = _mm_mul_ps(rsq00,rinv00);
680             r00              = _mm_andnot_ps(dummy_mask,r00);
681
682             /* Compute parameters for interactions between i and j atoms */
683             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
684                                          vdwparam+vdwioffset0+vdwjidx0B,
685                                          vdwparam+vdwioffset0+vdwjidx0C,
686                                          vdwparam+vdwioffset0+vdwjidx0D,
687                                          &c6_00,&c12_00);
688             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
689                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
690                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
691                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
692
693             /* Analytical LJ-PME */
694             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
695             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
696             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
697             exponent         = gmx_simd_exp_r(ewcljrsq);
698             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
699             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
700             /* f6A = 6 * C6grid * (1 - poly) */
701             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
702             /* f6B = C6grid * exponent * beta^6 */
703             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
704             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
705             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
706
707             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
708
709             fscal            = fvdw;
710
711             fscal            = _mm_and_ps(fscal,cutoff_mask);
712
713             fscal            = _mm_andnot_ps(dummy_mask,fscal);
714
715             /* Calculate temporary vectorial force */
716             tx               = _mm_mul_ps(fscal,dx00);
717             ty               = _mm_mul_ps(fscal,dy00);
718             tz               = _mm_mul_ps(fscal,dz00);
719
720             /* Update vectorial force */
721             fix0             = _mm_add_ps(fix0,tx);
722             fiy0             = _mm_add_ps(fiy0,ty);
723             fiz0             = _mm_add_ps(fiz0,tz);
724
725             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
726             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
727             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
728             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
729             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
730             
731             }
732
733             /* Inner loop uses 50 flops */
734         }
735
736         /* End of innermost loop */
737
738         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
739                                               f+i_coord_offset,fshift+i_shift_offset);
740
741         /* Increment number of inner iterations */
742         inneriter                  += j_index_end - j_index_start;
743
744         /* Outer loop uses 6 flops */
745     }
746
747     /* Increment number of outer iterations */
748     outeriter        += nri;
749
750     /* Update outer/inner flops */
751
752     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*50);
753 }