Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecGB_VdwNone_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
75     __m128           minushalf = _mm_set1_ps(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     __m128i          vfitab;
78     __m128i          ifour       = _mm_set1_epi32(4);
79     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
80     real             *vftab;
81     __m128           dummy_mask,cutoff_mask;
82     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
83     __m128           one     = _mm_set1_ps(1.0);
84     __m128           two     = _mm_set1_ps(2.0);
85     x                = xx[0];
86     f                = ff[0];
87
88     nri              = nlist->nri;
89     iinr             = nlist->iinr;
90     jindex           = nlist->jindex;
91     jjnr             = nlist->jjnr;
92     shiftidx         = nlist->shift;
93     gid              = nlist->gid;
94     shiftvec         = fr->shift_vec[0];
95     fshift           = fr->fshift[0];
96     facel            = _mm_set1_ps(fr->epsfac);
97     charge           = mdatoms->chargeA;
98
99     invsqrta         = fr->invsqrta;
100     dvda             = fr->dvda;
101     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
102     gbtab            = fr->gbtab.data;
103     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
104
105     /* Avoid stupid compiler warnings */
106     jnrA = jnrB = jnrC = jnrD = 0;
107     j_coord_offsetA = 0;
108     j_coord_offsetB = 0;
109     j_coord_offsetC = 0;
110     j_coord_offsetD = 0;
111
112     outeriter        = 0;
113     inneriter        = 0;
114
115     /* Start outer loop over neighborlists */
116     for(iidx=0; iidx<nri; iidx++)
117     {
118         /* Load shift vector for this list */
119         i_shift_offset   = DIM*shiftidx[iidx];
120         shX              = shiftvec[i_shift_offset+XX];
121         shY              = shiftvec[i_shift_offset+YY];
122         shZ              = shiftvec[i_shift_offset+ZZ];
123
124         /* Load limits for loop over neighbors */
125         j_index_start    = jindex[iidx];
126         j_index_end      = jindex[iidx+1];
127
128         /* Get outer coordinate index */
129         inr              = iinr[iidx];
130         i_coord_offset   = DIM*inr;
131
132         /* Load i particle coords and add shift vector */
133         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
134         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
135         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
136
137         fix0             = _mm_setzero_ps();
138         fiy0             = _mm_setzero_ps();
139         fiz0             = _mm_setzero_ps();
140
141         /* Load parameters for i particles */
142         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
143         isai0            = _mm_load1_ps(invsqrta+inr+0);
144
145         /* Reset potential sums */
146         velecsum         = _mm_setzero_ps();
147         vgbsum           = _mm_setzero_ps();
148         dvdasum          = _mm_setzero_ps();
149
150         /* Start inner kernel loop */
151         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
152         {
153
154             /* Get j neighbor index, and coordinate index */
155             jnrA             = jjnr[jidx];
156             jnrB             = jjnr[jidx+1];
157             jnrC             = jjnr[jidx+2];
158             jnrD             = jjnr[jidx+3];
159
160             j_coord_offsetA  = DIM*jnrA;
161             j_coord_offsetB  = DIM*jnrB;
162             j_coord_offsetC  = DIM*jnrC;
163             j_coord_offsetD  = DIM*jnrD;
164
165             /* load j atom coordinates */
166             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
167                                               x+j_coord_offsetC,x+j_coord_offsetD,
168                                               &jx0,&jy0,&jz0);
169
170             /* Calculate displacement vector */
171             dx00             = _mm_sub_ps(ix0,jx0);
172             dy00             = _mm_sub_ps(iy0,jy0);
173             dz00             = _mm_sub_ps(iz0,jz0);
174
175             /* Calculate squared distance and things based on it */
176             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
177
178             rinv00           = gmx_mm_invsqrt_ps(rsq00);
179
180             /* Load parameters for j particles */
181             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
182                                                               charge+jnrC+0,charge+jnrD+0);
183             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
184                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
185
186             /**************************
187              * CALCULATE INTERACTIONS *
188              **************************/
189
190             r00              = _mm_mul_ps(rsq00,rinv00);
191
192             /* Compute parameters for interactions between i and j atoms */
193             qq00             = _mm_mul_ps(iq0,jq0);
194
195             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
196             isaprod          = _mm_mul_ps(isai0,isaj0);
197             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
198             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
199             dvdaj            = gmx_mm_load_4real_swizzle_ps(dvda+jnrA+0,dvda+jnrB+0,dvda+jnrC+0,dvda+jnrD+0);
200
201             /* Calculate generalized born table index - this is a separate table from the normal one,
202              * but we use the same procedure by multiplying r with scale and truncating to integer.
203              */
204             rt               = _mm_mul_ps(r00,gbscale);
205             gbitab           = _mm_cvttps_epi32(rt);
206             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
207             gbitab           = _mm_slli_epi32(gbitab,2);
208
209             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
210             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
211             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
212             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
213             _MM_TRANSPOSE4_PS(Y,F,G,H);
214             Heps             = _mm_mul_ps(gbeps,H);
215             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
216             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
217             vgb              = _mm_mul_ps(gbqqfactor,VV);
218
219             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
220             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
221             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
222             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
223             gmx_mm_store_4real_swizzle_ps(dvda+jnrA,dvda+jnrB,dvda+jnrC,dvda+jnrD,
224                                           _mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
225             velec            = _mm_mul_ps(qq00,rinv00);
226             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
227
228             /* Update potential sum for this i atom from the interaction with this j atom. */
229             velecsum         = _mm_add_ps(velecsum,velec);
230             vgbsum           = _mm_add_ps(vgbsum,vgb);
231
232             fscal            = felec;
233
234             /* Calculate temporary vectorial force */
235             tx               = _mm_mul_ps(fscal,dx00);
236             ty               = _mm_mul_ps(fscal,dy00);
237             tz               = _mm_mul_ps(fscal,dz00);
238
239             /* Update vectorial force */
240             fix0             = _mm_add_ps(fix0,tx);
241             fiy0             = _mm_add_ps(fiy0,ty);
242             fiz0             = _mm_add_ps(fiz0,tz);
243
244             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
245                                                    f+j_coord_offsetC,f+j_coord_offsetD,
246                                                    tx,ty,tz);
247
248             /* Inner loop uses 58 flops */
249         }
250
251         if(jidx<j_index_end)
252         {
253
254             /* Get j neighbor index, and coordinate index */
255             jnrA             = jjnr[jidx];
256             jnrB             = jjnr[jidx+1];
257             jnrC             = jjnr[jidx+2];
258             jnrD             = jjnr[jidx+3];
259
260             /* Sign of each element will be negative for non-real atoms.
261              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
262              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
263              */
264             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
265             jnrA       = (jnrA>=0) ? jnrA : 0;
266             jnrB       = (jnrB>=0) ? jnrB : 0;
267             jnrC       = (jnrC>=0) ? jnrC : 0;
268             jnrD       = (jnrD>=0) ? jnrD : 0;
269
270             j_coord_offsetA  = DIM*jnrA;
271             j_coord_offsetB  = DIM*jnrB;
272             j_coord_offsetC  = DIM*jnrC;
273             j_coord_offsetD  = DIM*jnrD;
274
275             /* load j atom coordinates */
276             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
277                                               x+j_coord_offsetC,x+j_coord_offsetD,
278                                               &jx0,&jy0,&jz0);
279
280             /* Calculate displacement vector */
281             dx00             = _mm_sub_ps(ix0,jx0);
282             dy00             = _mm_sub_ps(iy0,jy0);
283             dz00             = _mm_sub_ps(iz0,jz0);
284
285             /* Calculate squared distance and things based on it */
286             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
287
288             rinv00           = gmx_mm_invsqrt_ps(rsq00);
289
290             /* Load parameters for j particles */
291             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
292                                                               charge+jnrC+0,charge+jnrD+0);
293             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
294                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             r00              = _mm_mul_ps(rsq00,rinv00);
301             r00              = _mm_andnot_ps(dummy_mask,r00);
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq00             = _mm_mul_ps(iq0,jq0);
305
306             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
307             isaprod          = _mm_mul_ps(isai0,isaj0);
308             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
309             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
310             dvdaj            = gmx_mm_load_4real_swizzle_ps(dvda+jnrA+0,dvda+jnrB+0,dvda+jnrC+0,dvda+jnrD+0);
311
312             /* Calculate generalized born table index - this is a separate table from the normal one,
313              * but we use the same procedure by multiplying r with scale and truncating to integer.
314              */
315             rt               = _mm_mul_ps(r00,gbscale);
316             gbitab           = _mm_cvttps_epi32(rt);
317             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
318             gbitab           = _mm_slli_epi32(gbitab,2);
319
320             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
321             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
322             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
323             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
324             _MM_TRANSPOSE4_PS(Y,F,G,H);
325             Heps             = _mm_mul_ps(gbeps,H);
326             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
327             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
328             vgb              = _mm_mul_ps(gbqqfactor,VV);
329
330             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
331             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
332             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
333             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
334             gmx_mm_store_4real_swizzle_ps(dvda+jnrA,dvda+jnrB,dvda+jnrC,dvda+jnrD,
335                                           _mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
336             velec            = _mm_mul_ps(qq00,rinv00);
337             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
338
339             /* Update potential sum for this i atom from the interaction with this j atom. */
340             velec            = _mm_andnot_ps(dummy_mask,velec);
341             velecsum         = _mm_add_ps(velecsum,velec);
342             vgb              = _mm_andnot_ps(dummy_mask,vgb);
343             vgbsum           = _mm_add_ps(vgbsum,vgb);
344
345             fscal            = felec;
346
347             fscal            = _mm_andnot_ps(dummy_mask,fscal);
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm_mul_ps(fscal,dx00);
351             ty               = _mm_mul_ps(fscal,dy00);
352             tz               = _mm_mul_ps(fscal,dz00);
353
354             /* Update vectorial force */
355             fix0             = _mm_add_ps(fix0,tx);
356             fiy0             = _mm_add_ps(fiy0,ty);
357             fiz0             = _mm_add_ps(fiz0,tz);
358
359             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
360                                                    f+j_coord_offsetC,f+j_coord_offsetD,
361                                                    tx,ty,tz);
362
363             /* Inner loop uses 59 flops */
364         }
365
366         /* End of innermost loop */
367
368         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
369                                               f+i_coord_offset,fshift+i_shift_offset);
370
371         ggid                        = gid[iidx];
372         /* Update potential energies */
373         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
374         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
375         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
376         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
377
378         /* Increment number of inner iterations */
379         inneriter                  += j_index_end - j_index_start;
380
381         /* Outer loop uses 12 flops */
382     }
383
384     /* Increment number of outer iterations */
385     outeriter        += nri;
386
387     /* Update outer/inner flops */
388
389     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*12 + inneriter*59);
390 }
391 /*
392  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse2_single
393  * Electrostatics interaction: GeneralizedBorn
394  * VdW interaction:            None
395  * Geometry:                   Particle-Particle
396  * Calculate force/pot:        Force
397  */
398 void
399 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse2_single
400                     (t_nblist * gmx_restrict                nlist,
401                      rvec * gmx_restrict                    xx,
402                      rvec * gmx_restrict                    ff,
403                      t_forcerec * gmx_restrict              fr,
404                      t_mdatoms * gmx_restrict               mdatoms,
405                      nb_kernel_data_t * gmx_restrict        kernel_data,
406                      t_nrnb * gmx_restrict                  nrnb)
407 {
408     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
409      * just 0 for non-waters.
410      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
411      * jnr indices corresponding to data put in the four positions in the SIMD register.
412      */
413     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
414     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
415     int              jnrA,jnrB,jnrC,jnrD;
416     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
417     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
418     real             shX,shY,shZ,rcutoff_scalar;
419     real             *shiftvec,*fshift,*x,*f;
420     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
421     int              vdwioffset0;
422     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
423     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
424     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
425     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
426     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
427     real             *charge;
428     __m128i          gbitab;
429     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
430     __m128           minushalf = _mm_set1_ps(-0.5);
431     real             *invsqrta,*dvda,*gbtab;
432     __m128i          vfitab;
433     __m128i          ifour       = _mm_set1_epi32(4);
434     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
435     real             *vftab;
436     __m128           dummy_mask,cutoff_mask;
437     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
438     __m128           one     = _mm_set1_ps(1.0);
439     __m128           two     = _mm_set1_ps(2.0);
440     x                = xx[0];
441     f                = ff[0];
442
443     nri              = nlist->nri;
444     iinr             = nlist->iinr;
445     jindex           = nlist->jindex;
446     jjnr             = nlist->jjnr;
447     shiftidx         = nlist->shift;
448     gid              = nlist->gid;
449     shiftvec         = fr->shift_vec[0];
450     fshift           = fr->fshift[0];
451     facel            = _mm_set1_ps(fr->epsfac);
452     charge           = mdatoms->chargeA;
453
454     invsqrta         = fr->invsqrta;
455     dvda             = fr->dvda;
456     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
457     gbtab            = fr->gbtab.data;
458     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
459
460     /* Avoid stupid compiler warnings */
461     jnrA = jnrB = jnrC = jnrD = 0;
462     j_coord_offsetA = 0;
463     j_coord_offsetB = 0;
464     j_coord_offsetC = 0;
465     j_coord_offsetD = 0;
466
467     outeriter        = 0;
468     inneriter        = 0;
469
470     /* Start outer loop over neighborlists */
471     for(iidx=0; iidx<nri; iidx++)
472     {
473         /* Load shift vector for this list */
474         i_shift_offset   = DIM*shiftidx[iidx];
475         shX              = shiftvec[i_shift_offset+XX];
476         shY              = shiftvec[i_shift_offset+YY];
477         shZ              = shiftvec[i_shift_offset+ZZ];
478
479         /* Load limits for loop over neighbors */
480         j_index_start    = jindex[iidx];
481         j_index_end      = jindex[iidx+1];
482
483         /* Get outer coordinate index */
484         inr              = iinr[iidx];
485         i_coord_offset   = DIM*inr;
486
487         /* Load i particle coords and add shift vector */
488         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
489         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
490         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
491
492         fix0             = _mm_setzero_ps();
493         fiy0             = _mm_setzero_ps();
494         fiz0             = _mm_setzero_ps();
495
496         /* Load parameters for i particles */
497         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
498         isai0            = _mm_load1_ps(invsqrta+inr+0);
499
500         dvdasum          = _mm_setzero_ps();
501
502         /* Start inner kernel loop */
503         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
504         {
505
506             /* Get j neighbor index, and coordinate index */
507             jnrA             = jjnr[jidx];
508             jnrB             = jjnr[jidx+1];
509             jnrC             = jjnr[jidx+2];
510             jnrD             = jjnr[jidx+3];
511
512             j_coord_offsetA  = DIM*jnrA;
513             j_coord_offsetB  = DIM*jnrB;
514             j_coord_offsetC  = DIM*jnrC;
515             j_coord_offsetD  = DIM*jnrD;
516
517             /* load j atom coordinates */
518             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
519                                               x+j_coord_offsetC,x+j_coord_offsetD,
520                                               &jx0,&jy0,&jz0);
521
522             /* Calculate displacement vector */
523             dx00             = _mm_sub_ps(ix0,jx0);
524             dy00             = _mm_sub_ps(iy0,jy0);
525             dz00             = _mm_sub_ps(iz0,jz0);
526
527             /* Calculate squared distance and things based on it */
528             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
529
530             rinv00           = gmx_mm_invsqrt_ps(rsq00);
531
532             /* Load parameters for j particles */
533             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
534                                                               charge+jnrC+0,charge+jnrD+0);
535             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
536                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
537
538             /**************************
539              * CALCULATE INTERACTIONS *
540              **************************/
541
542             r00              = _mm_mul_ps(rsq00,rinv00);
543
544             /* Compute parameters for interactions between i and j atoms */
545             qq00             = _mm_mul_ps(iq0,jq0);
546
547             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
548             isaprod          = _mm_mul_ps(isai0,isaj0);
549             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
550             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
551             dvdaj            = gmx_mm_load_4real_swizzle_ps(dvda+jnrA+0,dvda+jnrB+0,dvda+jnrC+0,dvda+jnrD+0);
552
553             /* Calculate generalized born table index - this is a separate table from the normal one,
554              * but we use the same procedure by multiplying r with scale and truncating to integer.
555              */
556             rt               = _mm_mul_ps(r00,gbscale);
557             gbitab           = _mm_cvttps_epi32(rt);
558             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
559             gbitab           = _mm_slli_epi32(gbitab,2);
560
561             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
562             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
563             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
564             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
565             _MM_TRANSPOSE4_PS(Y,F,G,H);
566             Heps             = _mm_mul_ps(gbeps,H);
567             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
568             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
569             vgb              = _mm_mul_ps(gbqqfactor,VV);
570
571             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
572             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
573             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
574             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
575             gmx_mm_store_4real_swizzle_ps(dvda+jnrA,dvda+jnrB,dvda+jnrC,dvda+jnrD,
576                                           _mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
577             velec            = _mm_mul_ps(qq00,rinv00);
578             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
579
580             fscal            = felec;
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm_mul_ps(fscal,dx00);
584             ty               = _mm_mul_ps(fscal,dy00);
585             tz               = _mm_mul_ps(fscal,dz00);
586
587             /* Update vectorial force */
588             fix0             = _mm_add_ps(fix0,tx);
589             fiy0             = _mm_add_ps(fiy0,ty);
590             fiz0             = _mm_add_ps(fiz0,tz);
591
592             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
593                                                    f+j_coord_offsetC,f+j_coord_offsetD,
594                                                    tx,ty,tz);
595
596             /* Inner loop uses 56 flops */
597         }
598
599         if(jidx<j_index_end)
600         {
601
602             /* Get j neighbor index, and coordinate index */
603             jnrA             = jjnr[jidx];
604             jnrB             = jjnr[jidx+1];
605             jnrC             = jjnr[jidx+2];
606             jnrD             = jjnr[jidx+3];
607
608             /* Sign of each element will be negative for non-real atoms.
609              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
610              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
611              */
612             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
613             jnrA       = (jnrA>=0) ? jnrA : 0;
614             jnrB       = (jnrB>=0) ? jnrB : 0;
615             jnrC       = (jnrC>=0) ? jnrC : 0;
616             jnrD       = (jnrD>=0) ? jnrD : 0;
617
618             j_coord_offsetA  = DIM*jnrA;
619             j_coord_offsetB  = DIM*jnrB;
620             j_coord_offsetC  = DIM*jnrC;
621             j_coord_offsetD  = DIM*jnrD;
622
623             /* load j atom coordinates */
624             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
625                                               x+j_coord_offsetC,x+j_coord_offsetD,
626                                               &jx0,&jy0,&jz0);
627
628             /* Calculate displacement vector */
629             dx00             = _mm_sub_ps(ix0,jx0);
630             dy00             = _mm_sub_ps(iy0,jy0);
631             dz00             = _mm_sub_ps(iz0,jz0);
632
633             /* Calculate squared distance and things based on it */
634             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
635
636             rinv00           = gmx_mm_invsqrt_ps(rsq00);
637
638             /* Load parameters for j particles */
639             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
640                                                               charge+jnrC+0,charge+jnrD+0);
641             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
642                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
643
644             /**************************
645              * CALCULATE INTERACTIONS *
646              **************************/
647
648             r00              = _mm_mul_ps(rsq00,rinv00);
649             r00              = _mm_andnot_ps(dummy_mask,r00);
650
651             /* Compute parameters for interactions between i and j atoms */
652             qq00             = _mm_mul_ps(iq0,jq0);
653
654             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
655             isaprod          = _mm_mul_ps(isai0,isaj0);
656             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
657             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
658             dvdaj            = gmx_mm_load_4real_swizzle_ps(dvda+jnrA+0,dvda+jnrB+0,dvda+jnrC+0,dvda+jnrD+0);
659
660             /* Calculate generalized born table index - this is a separate table from the normal one,
661              * but we use the same procedure by multiplying r with scale and truncating to integer.
662              */
663             rt               = _mm_mul_ps(r00,gbscale);
664             gbitab           = _mm_cvttps_epi32(rt);
665             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
666             gbitab           = _mm_slli_epi32(gbitab,2);
667
668             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
669             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
670             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
671             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
672             _MM_TRANSPOSE4_PS(Y,F,G,H);
673             Heps             = _mm_mul_ps(gbeps,H);
674             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
675             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
676             vgb              = _mm_mul_ps(gbqqfactor,VV);
677
678             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
679             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
680             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
681             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
682             gmx_mm_store_4real_swizzle_ps(dvda+jnrA,dvda+jnrB,dvda+jnrC,dvda+jnrD,
683                                           _mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
684             velec            = _mm_mul_ps(qq00,rinv00);
685             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
686
687             fscal            = felec;
688
689             fscal            = _mm_andnot_ps(dummy_mask,fscal);
690
691             /* Calculate temporary vectorial force */
692             tx               = _mm_mul_ps(fscal,dx00);
693             ty               = _mm_mul_ps(fscal,dy00);
694             tz               = _mm_mul_ps(fscal,dz00);
695
696             /* Update vectorial force */
697             fix0             = _mm_add_ps(fix0,tx);
698             fiy0             = _mm_add_ps(fiy0,ty);
699             fiz0             = _mm_add_ps(fiz0,tz);
700
701             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
702                                                    f+j_coord_offsetC,f+j_coord_offsetD,
703                                                    tx,ty,tz);
704
705             /* Inner loop uses 57 flops */
706         }
707
708         /* End of innermost loop */
709
710         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
711                                               f+i_coord_offset,fshift+i_shift_offset);
712
713         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
714         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
715
716         /* Increment number of inner iterations */
717         inneriter                  += j_index_end - j_index_start;
718
719         /* Outer loop uses 10 flops */
720     }
721
722     /* Increment number of outer iterations */
723     outeriter        += nri;
724
725     /* Update outer/inner flops */
726
727     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*10 + inneriter*57);
728 }