Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecGB_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     __m128i          gbitab;
77     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
78     __m128           minushalf = _mm_set1_ps(-0.5);
79     real             *invsqrta,*dvda,*gbtab;
80     int              nvdwtype;
81     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
82     int              *vdwtype;
83     real             *vdwparam;
84     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
85     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
86     __m128i          vfitab;
87     __m128i          ifour       = _mm_set1_epi32(4);
88     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
89     real             *vftab;
90     __m128           dummy_mask,cutoff_mask;
91     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
92     __m128           one     = _mm_set1_ps(1.0);
93     __m128           two     = _mm_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     invsqrta         = fr->invsqrta;
112     dvda             = fr->dvda;
113     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
114     gbtab            = fr->gbtab.data;
115     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = jnrC = jnrD = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121     j_coord_offsetC = 0;
122     j_coord_offsetD = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     for(iidx=0;iidx<4*DIM;iidx++)
128     {
129         scratch[iidx] = 0.0;
130     }  
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
148         
149         fix0             = _mm_setzero_ps();
150         fiy0             = _mm_setzero_ps();
151         fiz0             = _mm_setzero_ps();
152
153         /* Load parameters for i particles */
154         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
155         isai0            = _mm_load1_ps(invsqrta+inr+0);
156         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
157
158         /* Reset potential sums */
159         velecsum         = _mm_setzero_ps();
160         vgbsum           = _mm_setzero_ps();
161         vvdwsum          = _mm_setzero_ps();
162         dvdasum          = _mm_setzero_ps();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175             j_coord_offsetC  = DIM*jnrC;
176             j_coord_offsetD  = DIM*jnrD;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               x+j_coord_offsetC,x+j_coord_offsetD,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm_sub_ps(ix0,jx0);
185             dy00             = _mm_sub_ps(iy0,jy0);
186             dz00             = _mm_sub_ps(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
190
191             rinv00           = gmx_mm_invsqrt_ps(rsq00);
192
193             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
194
195             /* Load parameters for j particles */
196             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
197                                                               charge+jnrC+0,charge+jnrD+0);
198             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
199                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
200             vdwjidx0A        = 2*vdwtype[jnrA+0];
201             vdwjidx0B        = 2*vdwtype[jnrB+0];
202             vdwjidx0C        = 2*vdwtype[jnrC+0];
203             vdwjidx0D        = 2*vdwtype[jnrD+0];
204
205             /**************************
206              * CALCULATE INTERACTIONS *
207              **************************/
208
209             r00              = _mm_mul_ps(rsq00,rinv00);
210
211             /* Compute parameters for interactions between i and j atoms */
212             qq00             = _mm_mul_ps(iq0,jq0);
213             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
214                                          vdwparam+vdwioffset0+vdwjidx0B,
215                                          vdwparam+vdwioffset0+vdwjidx0C,
216                                          vdwparam+vdwioffset0+vdwjidx0D,
217                                          &c6_00,&c12_00);
218
219             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
220             isaprod          = _mm_mul_ps(isai0,isaj0);
221             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
222             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
223
224             /* Calculate generalized born table index - this is a separate table from the normal one,
225              * but we use the same procedure by multiplying r with scale and truncating to integer.
226              */
227             rt               = _mm_mul_ps(r00,gbscale);
228             gbitab           = _mm_cvttps_epi32(rt);
229             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
230             gbitab           = _mm_slli_epi32(gbitab,2);
231
232             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
233             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
234             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
235             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
236             _MM_TRANSPOSE4_PS(Y,F,G,H);
237             Heps             = _mm_mul_ps(gbeps,H);
238             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
239             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
240             vgb              = _mm_mul_ps(gbqqfactor,VV);
241
242             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
243             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
244             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
245             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
246             fjptrA           = dvda+jnrA;
247             fjptrB           = dvda+jnrB;
248             fjptrC           = dvda+jnrC;
249             fjptrD           = dvda+jnrD;
250             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
251             velec            = _mm_mul_ps(qq00,rinv00);
252             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
253
254             /* LENNARD-JONES DISPERSION/REPULSION */
255
256             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
257             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
258             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
259             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
260             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velecsum         = _mm_add_ps(velecsum,velec);
264             vgbsum           = _mm_add_ps(vgbsum,vgb);
265             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
266
267             fscal            = _mm_add_ps(felec,fvdw);
268
269             /* Calculate temporary vectorial force */
270             tx               = _mm_mul_ps(fscal,dx00);
271             ty               = _mm_mul_ps(fscal,dy00);
272             tz               = _mm_mul_ps(fscal,dz00);
273
274             /* Update vectorial force */
275             fix0             = _mm_add_ps(fix0,tx);
276             fiy0             = _mm_add_ps(fiy0,ty);
277             fiz0             = _mm_add_ps(fiz0,tz);
278
279             fjptrA             = f+j_coord_offsetA;
280             fjptrB             = f+j_coord_offsetB;
281             fjptrC             = f+j_coord_offsetC;
282             fjptrD             = f+j_coord_offsetD;
283             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
284             
285             /* Inner loop uses 71 flops */
286         }
287
288         if(jidx<j_index_end)
289         {
290
291             /* Get j neighbor index, and coordinate index */
292             jnrlistA         = jjnr[jidx];
293             jnrlistB         = jjnr[jidx+1];
294             jnrlistC         = jjnr[jidx+2];
295             jnrlistD         = jjnr[jidx+3];
296             /* Sign of each element will be negative for non-real atoms.
297              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
298              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
299              */
300             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
301             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
302             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
303             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
304             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
305             j_coord_offsetA  = DIM*jnrA;
306             j_coord_offsetB  = DIM*jnrB;
307             j_coord_offsetC  = DIM*jnrC;
308             j_coord_offsetD  = DIM*jnrD;
309
310             /* load j atom coordinates */
311             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
312                                               x+j_coord_offsetC,x+j_coord_offsetD,
313                                               &jx0,&jy0,&jz0);
314
315             /* Calculate displacement vector */
316             dx00             = _mm_sub_ps(ix0,jx0);
317             dy00             = _mm_sub_ps(iy0,jy0);
318             dz00             = _mm_sub_ps(iz0,jz0);
319
320             /* Calculate squared distance and things based on it */
321             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
322
323             rinv00           = gmx_mm_invsqrt_ps(rsq00);
324
325             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
326
327             /* Load parameters for j particles */
328             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
329                                                               charge+jnrC+0,charge+jnrD+0);
330             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
331                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
332             vdwjidx0A        = 2*vdwtype[jnrA+0];
333             vdwjidx0B        = 2*vdwtype[jnrB+0];
334             vdwjidx0C        = 2*vdwtype[jnrC+0];
335             vdwjidx0D        = 2*vdwtype[jnrD+0];
336
337             /**************************
338              * CALCULATE INTERACTIONS *
339              **************************/
340
341             r00              = _mm_mul_ps(rsq00,rinv00);
342             r00              = _mm_andnot_ps(dummy_mask,r00);
343
344             /* Compute parameters for interactions between i and j atoms */
345             qq00             = _mm_mul_ps(iq0,jq0);
346             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
347                                          vdwparam+vdwioffset0+vdwjidx0B,
348                                          vdwparam+vdwioffset0+vdwjidx0C,
349                                          vdwparam+vdwioffset0+vdwjidx0D,
350                                          &c6_00,&c12_00);
351
352             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
353             isaprod          = _mm_mul_ps(isai0,isaj0);
354             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
355             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
356
357             /* Calculate generalized born table index - this is a separate table from the normal one,
358              * but we use the same procedure by multiplying r with scale and truncating to integer.
359              */
360             rt               = _mm_mul_ps(r00,gbscale);
361             gbitab           = _mm_cvttps_epi32(rt);
362             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
363             gbitab           = _mm_slli_epi32(gbitab,2);
364
365             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
366             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
367             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
368             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
369             _MM_TRANSPOSE4_PS(Y,F,G,H);
370             Heps             = _mm_mul_ps(gbeps,H);
371             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
372             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
373             vgb              = _mm_mul_ps(gbqqfactor,VV);
374
375             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
376             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
377             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
378             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
379             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
380             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
381             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
382             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
383             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
384             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
385             velec            = _mm_mul_ps(qq00,rinv00);
386             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
387
388             /* LENNARD-JONES DISPERSION/REPULSION */
389
390             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
391             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
392             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
393             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
394             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
395
396             /* Update potential sum for this i atom from the interaction with this j atom. */
397             velec            = _mm_andnot_ps(dummy_mask,velec);
398             velecsum         = _mm_add_ps(velecsum,velec);
399             vgb              = _mm_andnot_ps(dummy_mask,vgb);
400             vgbsum           = _mm_add_ps(vgbsum,vgb);
401             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
402             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
403
404             fscal            = _mm_add_ps(felec,fvdw);
405
406             fscal            = _mm_andnot_ps(dummy_mask,fscal);
407
408             /* Calculate temporary vectorial force */
409             tx               = _mm_mul_ps(fscal,dx00);
410             ty               = _mm_mul_ps(fscal,dy00);
411             tz               = _mm_mul_ps(fscal,dz00);
412
413             /* Update vectorial force */
414             fix0             = _mm_add_ps(fix0,tx);
415             fiy0             = _mm_add_ps(fiy0,ty);
416             fiz0             = _mm_add_ps(fiz0,tz);
417
418             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
419             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
420             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
421             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
422             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
423             
424             /* Inner loop uses 72 flops */
425         }
426
427         /* End of innermost loop */
428
429         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
430                                               f+i_coord_offset,fshift+i_shift_offset);
431
432         ggid                        = gid[iidx];
433         /* Update potential energies */
434         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
435         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
436         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
437         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
438         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
439
440         /* Increment number of inner iterations */
441         inneriter                  += j_index_end - j_index_start;
442
443         /* Outer loop uses 10 flops */
444     }
445
446     /* Increment number of outer iterations */
447     outeriter        += nri;
448
449     /* Update outer/inner flops */
450
451     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*72);
452 }
453 /*
454  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse2_single
455  * Electrostatics interaction: GeneralizedBorn
456  * VdW interaction:            LennardJones
457  * Geometry:                   Particle-Particle
458  * Calculate force/pot:        Force
459  */
460 void
461 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse2_single
462                     (t_nblist * gmx_restrict                nlist,
463                      rvec * gmx_restrict                    xx,
464                      rvec * gmx_restrict                    ff,
465                      t_forcerec * gmx_restrict              fr,
466                      t_mdatoms * gmx_restrict               mdatoms,
467                      nb_kernel_data_t * gmx_restrict        kernel_data,
468                      t_nrnb * gmx_restrict                  nrnb)
469 {
470     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
471      * just 0 for non-waters.
472      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
473      * jnr indices corresponding to data put in the four positions in the SIMD register.
474      */
475     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
476     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
477     int              jnrA,jnrB,jnrC,jnrD;
478     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
479     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
480     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
481     real             rcutoff_scalar;
482     real             *shiftvec,*fshift,*x,*f;
483     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
484     real             scratch[4*DIM];
485     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
486     int              vdwioffset0;
487     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
488     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
489     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
490     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
491     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
492     real             *charge;
493     __m128i          gbitab;
494     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
495     __m128           minushalf = _mm_set1_ps(-0.5);
496     real             *invsqrta,*dvda,*gbtab;
497     int              nvdwtype;
498     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
499     int              *vdwtype;
500     real             *vdwparam;
501     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
502     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
503     __m128i          vfitab;
504     __m128i          ifour       = _mm_set1_epi32(4);
505     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
506     real             *vftab;
507     __m128           dummy_mask,cutoff_mask;
508     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
509     __m128           one     = _mm_set1_ps(1.0);
510     __m128           two     = _mm_set1_ps(2.0);
511     x                = xx[0];
512     f                = ff[0];
513
514     nri              = nlist->nri;
515     iinr             = nlist->iinr;
516     jindex           = nlist->jindex;
517     jjnr             = nlist->jjnr;
518     shiftidx         = nlist->shift;
519     gid              = nlist->gid;
520     shiftvec         = fr->shift_vec[0];
521     fshift           = fr->fshift[0];
522     facel            = _mm_set1_ps(fr->epsfac);
523     charge           = mdatoms->chargeA;
524     nvdwtype         = fr->ntype;
525     vdwparam         = fr->nbfp;
526     vdwtype          = mdatoms->typeA;
527
528     invsqrta         = fr->invsqrta;
529     dvda             = fr->dvda;
530     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
531     gbtab            = fr->gbtab.data;
532     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
533
534     /* Avoid stupid compiler warnings */
535     jnrA = jnrB = jnrC = jnrD = 0;
536     j_coord_offsetA = 0;
537     j_coord_offsetB = 0;
538     j_coord_offsetC = 0;
539     j_coord_offsetD = 0;
540
541     outeriter        = 0;
542     inneriter        = 0;
543
544     for(iidx=0;iidx<4*DIM;iidx++)
545     {
546         scratch[iidx] = 0.0;
547     }  
548
549     /* Start outer loop over neighborlists */
550     for(iidx=0; iidx<nri; iidx++)
551     {
552         /* Load shift vector for this list */
553         i_shift_offset   = DIM*shiftidx[iidx];
554
555         /* Load limits for loop over neighbors */
556         j_index_start    = jindex[iidx];
557         j_index_end      = jindex[iidx+1];
558
559         /* Get outer coordinate index */
560         inr              = iinr[iidx];
561         i_coord_offset   = DIM*inr;
562
563         /* Load i particle coords and add shift vector */
564         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
565         
566         fix0             = _mm_setzero_ps();
567         fiy0             = _mm_setzero_ps();
568         fiz0             = _mm_setzero_ps();
569
570         /* Load parameters for i particles */
571         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
572         isai0            = _mm_load1_ps(invsqrta+inr+0);
573         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
574
575         dvdasum          = _mm_setzero_ps();
576
577         /* Start inner kernel loop */
578         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
579         {
580
581             /* Get j neighbor index, and coordinate index */
582             jnrA             = jjnr[jidx];
583             jnrB             = jjnr[jidx+1];
584             jnrC             = jjnr[jidx+2];
585             jnrD             = jjnr[jidx+3];
586             j_coord_offsetA  = DIM*jnrA;
587             j_coord_offsetB  = DIM*jnrB;
588             j_coord_offsetC  = DIM*jnrC;
589             j_coord_offsetD  = DIM*jnrD;
590
591             /* load j atom coordinates */
592             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
593                                               x+j_coord_offsetC,x+j_coord_offsetD,
594                                               &jx0,&jy0,&jz0);
595
596             /* Calculate displacement vector */
597             dx00             = _mm_sub_ps(ix0,jx0);
598             dy00             = _mm_sub_ps(iy0,jy0);
599             dz00             = _mm_sub_ps(iz0,jz0);
600
601             /* Calculate squared distance and things based on it */
602             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
603
604             rinv00           = gmx_mm_invsqrt_ps(rsq00);
605
606             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
607
608             /* Load parameters for j particles */
609             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
610                                                               charge+jnrC+0,charge+jnrD+0);
611             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
612                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
613             vdwjidx0A        = 2*vdwtype[jnrA+0];
614             vdwjidx0B        = 2*vdwtype[jnrB+0];
615             vdwjidx0C        = 2*vdwtype[jnrC+0];
616             vdwjidx0D        = 2*vdwtype[jnrD+0];
617
618             /**************************
619              * CALCULATE INTERACTIONS *
620              **************************/
621
622             r00              = _mm_mul_ps(rsq00,rinv00);
623
624             /* Compute parameters for interactions between i and j atoms */
625             qq00             = _mm_mul_ps(iq0,jq0);
626             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
627                                          vdwparam+vdwioffset0+vdwjidx0B,
628                                          vdwparam+vdwioffset0+vdwjidx0C,
629                                          vdwparam+vdwioffset0+vdwjidx0D,
630                                          &c6_00,&c12_00);
631
632             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
633             isaprod          = _mm_mul_ps(isai0,isaj0);
634             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
635             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
636
637             /* Calculate generalized born table index - this is a separate table from the normal one,
638              * but we use the same procedure by multiplying r with scale and truncating to integer.
639              */
640             rt               = _mm_mul_ps(r00,gbscale);
641             gbitab           = _mm_cvttps_epi32(rt);
642             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
643             gbitab           = _mm_slli_epi32(gbitab,2);
644
645             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
646             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
647             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
648             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
649             _MM_TRANSPOSE4_PS(Y,F,G,H);
650             Heps             = _mm_mul_ps(gbeps,H);
651             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
652             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
653             vgb              = _mm_mul_ps(gbqqfactor,VV);
654
655             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
656             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
657             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
658             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
659             fjptrA           = dvda+jnrA;
660             fjptrB           = dvda+jnrB;
661             fjptrC           = dvda+jnrC;
662             fjptrD           = dvda+jnrD;
663             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
664             velec            = _mm_mul_ps(qq00,rinv00);
665             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
666
667             /* LENNARD-JONES DISPERSION/REPULSION */
668
669             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
670             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
671
672             fscal            = _mm_add_ps(felec,fvdw);
673
674             /* Calculate temporary vectorial force */
675             tx               = _mm_mul_ps(fscal,dx00);
676             ty               = _mm_mul_ps(fscal,dy00);
677             tz               = _mm_mul_ps(fscal,dz00);
678
679             /* Update vectorial force */
680             fix0             = _mm_add_ps(fix0,tx);
681             fiy0             = _mm_add_ps(fiy0,ty);
682             fiz0             = _mm_add_ps(fiz0,tz);
683
684             fjptrA             = f+j_coord_offsetA;
685             fjptrB             = f+j_coord_offsetB;
686             fjptrC             = f+j_coord_offsetC;
687             fjptrD             = f+j_coord_offsetD;
688             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
689             
690             /* Inner loop uses 64 flops */
691         }
692
693         if(jidx<j_index_end)
694         {
695
696             /* Get j neighbor index, and coordinate index */
697             jnrlistA         = jjnr[jidx];
698             jnrlistB         = jjnr[jidx+1];
699             jnrlistC         = jjnr[jidx+2];
700             jnrlistD         = jjnr[jidx+3];
701             /* Sign of each element will be negative for non-real atoms.
702              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
703              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
704              */
705             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
706             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
707             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
708             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
709             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
710             j_coord_offsetA  = DIM*jnrA;
711             j_coord_offsetB  = DIM*jnrB;
712             j_coord_offsetC  = DIM*jnrC;
713             j_coord_offsetD  = DIM*jnrD;
714
715             /* load j atom coordinates */
716             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
717                                               x+j_coord_offsetC,x+j_coord_offsetD,
718                                               &jx0,&jy0,&jz0);
719
720             /* Calculate displacement vector */
721             dx00             = _mm_sub_ps(ix0,jx0);
722             dy00             = _mm_sub_ps(iy0,jy0);
723             dz00             = _mm_sub_ps(iz0,jz0);
724
725             /* Calculate squared distance and things based on it */
726             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
727
728             rinv00           = gmx_mm_invsqrt_ps(rsq00);
729
730             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
731
732             /* Load parameters for j particles */
733             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
734                                                               charge+jnrC+0,charge+jnrD+0);
735             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
736                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
737             vdwjidx0A        = 2*vdwtype[jnrA+0];
738             vdwjidx0B        = 2*vdwtype[jnrB+0];
739             vdwjidx0C        = 2*vdwtype[jnrC+0];
740             vdwjidx0D        = 2*vdwtype[jnrD+0];
741
742             /**************************
743              * CALCULATE INTERACTIONS *
744              **************************/
745
746             r00              = _mm_mul_ps(rsq00,rinv00);
747             r00              = _mm_andnot_ps(dummy_mask,r00);
748
749             /* Compute parameters for interactions between i and j atoms */
750             qq00             = _mm_mul_ps(iq0,jq0);
751             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
752                                          vdwparam+vdwioffset0+vdwjidx0B,
753                                          vdwparam+vdwioffset0+vdwjidx0C,
754                                          vdwparam+vdwioffset0+vdwjidx0D,
755                                          &c6_00,&c12_00);
756
757             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
758             isaprod          = _mm_mul_ps(isai0,isaj0);
759             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
760             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
761
762             /* Calculate generalized born table index - this is a separate table from the normal one,
763              * but we use the same procedure by multiplying r with scale and truncating to integer.
764              */
765             rt               = _mm_mul_ps(r00,gbscale);
766             gbitab           = _mm_cvttps_epi32(rt);
767             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
768             gbitab           = _mm_slli_epi32(gbitab,2);
769
770             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
771             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
772             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
773             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
774             _MM_TRANSPOSE4_PS(Y,F,G,H);
775             Heps             = _mm_mul_ps(gbeps,H);
776             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
777             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
778             vgb              = _mm_mul_ps(gbqqfactor,VV);
779
780             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
781             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
782             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
783             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
784             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
785             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
786             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
787             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
788             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
789             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
790             velec            = _mm_mul_ps(qq00,rinv00);
791             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
792
793             /* LENNARD-JONES DISPERSION/REPULSION */
794
795             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
796             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
797
798             fscal            = _mm_add_ps(felec,fvdw);
799
800             fscal            = _mm_andnot_ps(dummy_mask,fscal);
801
802             /* Calculate temporary vectorial force */
803             tx               = _mm_mul_ps(fscal,dx00);
804             ty               = _mm_mul_ps(fscal,dy00);
805             tz               = _mm_mul_ps(fscal,dz00);
806
807             /* Update vectorial force */
808             fix0             = _mm_add_ps(fix0,tx);
809             fiy0             = _mm_add_ps(fiy0,ty);
810             fiz0             = _mm_add_ps(fiz0,tz);
811
812             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
813             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
814             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
815             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
816             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
817             
818             /* Inner loop uses 65 flops */
819         }
820
821         /* End of innermost loop */
822
823         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
824                                               f+i_coord_offset,fshift+i_shift_offset);
825
826         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
827         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
828
829         /* Increment number of inner iterations */
830         inneriter                  += j_index_end - j_index_start;
831
832         /* Outer loop uses 7 flops */
833     }
834
835     /* Increment number of outer iterations */
836     outeriter        += nri;
837
838     /* Update outer/inner flops */
839
840     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*65);
841 }