137dd21fa8c814044ba9d938645c0de57ba96609
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecGB_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse2_single
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
91     __m128           minushalf = _mm_set1_ps(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     int              nvdwtype;
94     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
98     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128           dummy_mask,cutoff_mask;
104     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
105     __m128           one     = _mm_set1_ps(1.0);
106     __m128           two     = _mm_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_ps(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     invsqrta         = fr->invsqrta;
125     dvda             = fr->dvda;
126     gbtabscale       = _mm_set1_ps(fr->gbtab->scale);
127     gbtab            = fr->gbtab->data;
128     gbinvepsdiff     = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }  
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
161         
162         fix0             = _mm_setzero_ps();
163         fiy0             = _mm_setzero_ps();
164         fiz0             = _mm_setzero_ps();
165
166         /* Load parameters for i particles */
167         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
168         isai0            = _mm_load1_ps(invsqrta+inr+0);
169         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_ps();
173         vgbsum           = _mm_setzero_ps();
174         vvdwsum          = _mm_setzero_ps();
175         dvdasum          = _mm_setzero_ps();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             jnrC             = jjnr[jidx+2];
185             jnrD             = jjnr[jidx+3];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               x+j_coord_offsetC,x+j_coord_offsetD,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_ps(ix0,jx0);
198             dy00             = _mm_sub_ps(iy0,jy0);
199             dz00             = _mm_sub_ps(iz0,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
203
204             rinv00           = sse2_invsqrt_f(rsq00);
205
206             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
210                                                               charge+jnrC+0,charge+jnrD+0);
211             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
212                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
213             vdwjidx0A        = 2*vdwtype[jnrA+0];
214             vdwjidx0B        = 2*vdwtype[jnrB+0];
215             vdwjidx0C        = 2*vdwtype[jnrC+0];
216             vdwjidx0D        = 2*vdwtype[jnrD+0];
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             r00              = _mm_mul_ps(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq00             = _mm_mul_ps(iq0,jq0);
226             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
227                                          vdwparam+vdwioffset0+vdwjidx0B,
228                                          vdwparam+vdwioffset0+vdwjidx0C,
229                                          vdwparam+vdwioffset0+vdwjidx0D,
230                                          &c6_00,&c12_00);
231
232             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
233             isaprod          = _mm_mul_ps(isai0,isaj0);
234             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
235             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
236
237             /* Calculate generalized born table index - this is a separate table from the normal one,
238              * but we use the same procedure by multiplying r with scale and truncating to integer.
239              */
240             rt               = _mm_mul_ps(r00,gbscale);
241             gbitab           = _mm_cvttps_epi32(rt);
242             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
243             gbitab           = _mm_slli_epi32(gbitab,2);
244
245             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
246             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
247             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
248             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
249             _MM_TRANSPOSE4_PS(Y,F,G,H);
250             Heps             = _mm_mul_ps(gbeps,H);
251             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
252             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
253             vgb              = _mm_mul_ps(gbqqfactor,VV);
254
255             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
256             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
257             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
258             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
259             fjptrA           = dvda+jnrA;
260             fjptrB           = dvda+jnrB;
261             fjptrC           = dvda+jnrC;
262             fjptrD           = dvda+jnrD;
263             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
264             velec            = _mm_mul_ps(qq00,rinv00);
265             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
266
267             /* LENNARD-JONES DISPERSION/REPULSION */
268
269             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
270             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
271             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
272             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
273             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velecsum         = _mm_add_ps(velecsum,velec);
277             vgbsum           = _mm_add_ps(vgbsum,vgb);
278             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
279
280             fscal            = _mm_add_ps(felec,fvdw);
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm_mul_ps(fscal,dx00);
284             ty               = _mm_mul_ps(fscal,dy00);
285             tz               = _mm_mul_ps(fscal,dz00);
286
287             /* Update vectorial force */
288             fix0             = _mm_add_ps(fix0,tx);
289             fiy0             = _mm_add_ps(fiy0,ty);
290             fiz0             = _mm_add_ps(fiz0,tz);
291
292             fjptrA             = f+j_coord_offsetA;
293             fjptrB             = f+j_coord_offsetB;
294             fjptrC             = f+j_coord_offsetC;
295             fjptrD             = f+j_coord_offsetD;
296             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
297             
298             /* Inner loop uses 71 flops */
299         }
300
301         if(jidx<j_index_end)
302         {
303
304             /* Get j neighbor index, and coordinate index */
305             jnrlistA         = jjnr[jidx];
306             jnrlistB         = jjnr[jidx+1];
307             jnrlistC         = jjnr[jidx+2];
308             jnrlistD         = jjnr[jidx+3];
309             /* Sign of each element will be negative for non-real atoms.
310              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
311              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
312              */
313             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
314             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
315             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
316             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
317             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
318             j_coord_offsetA  = DIM*jnrA;
319             j_coord_offsetB  = DIM*jnrB;
320             j_coord_offsetC  = DIM*jnrC;
321             j_coord_offsetD  = DIM*jnrD;
322
323             /* load j atom coordinates */
324             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
325                                               x+j_coord_offsetC,x+j_coord_offsetD,
326                                               &jx0,&jy0,&jz0);
327
328             /* Calculate displacement vector */
329             dx00             = _mm_sub_ps(ix0,jx0);
330             dy00             = _mm_sub_ps(iy0,jy0);
331             dz00             = _mm_sub_ps(iz0,jz0);
332
333             /* Calculate squared distance and things based on it */
334             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
335
336             rinv00           = sse2_invsqrt_f(rsq00);
337
338             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
339
340             /* Load parameters for j particles */
341             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
342                                                               charge+jnrC+0,charge+jnrD+0);
343             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
344                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
345             vdwjidx0A        = 2*vdwtype[jnrA+0];
346             vdwjidx0B        = 2*vdwtype[jnrB+0];
347             vdwjidx0C        = 2*vdwtype[jnrC+0];
348             vdwjidx0D        = 2*vdwtype[jnrD+0];
349
350             /**************************
351              * CALCULATE INTERACTIONS *
352              **************************/
353
354             r00              = _mm_mul_ps(rsq00,rinv00);
355             r00              = _mm_andnot_ps(dummy_mask,r00);
356
357             /* Compute parameters for interactions between i and j atoms */
358             qq00             = _mm_mul_ps(iq0,jq0);
359             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
360                                          vdwparam+vdwioffset0+vdwjidx0B,
361                                          vdwparam+vdwioffset0+vdwjidx0C,
362                                          vdwparam+vdwioffset0+vdwjidx0D,
363                                          &c6_00,&c12_00);
364
365             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
366             isaprod          = _mm_mul_ps(isai0,isaj0);
367             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
368             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
369
370             /* Calculate generalized born table index - this is a separate table from the normal one,
371              * but we use the same procedure by multiplying r with scale and truncating to integer.
372              */
373             rt               = _mm_mul_ps(r00,gbscale);
374             gbitab           = _mm_cvttps_epi32(rt);
375             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
376             gbitab           = _mm_slli_epi32(gbitab,2);
377
378             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
379             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
380             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
381             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
382             _MM_TRANSPOSE4_PS(Y,F,G,H);
383             Heps             = _mm_mul_ps(gbeps,H);
384             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
385             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
386             vgb              = _mm_mul_ps(gbqqfactor,VV);
387
388             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
389             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
390             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
391             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
392             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
393             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
394             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
395             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
396             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
397             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
398             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
399             velec            = _mm_mul_ps(qq00,rinv00);
400             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
401
402             /* LENNARD-JONES DISPERSION/REPULSION */
403
404             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
405             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
406             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
407             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
408             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
409
410             /* Update potential sum for this i atom from the interaction with this j atom. */
411             velec            = _mm_andnot_ps(dummy_mask,velec);
412             velecsum         = _mm_add_ps(velecsum,velec);
413             vgb              = _mm_andnot_ps(dummy_mask,vgb);
414             vgbsum           = _mm_add_ps(vgbsum,vgb);
415             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
416             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
417
418             fscal            = _mm_add_ps(felec,fvdw);
419
420             fscal            = _mm_andnot_ps(dummy_mask,fscal);
421
422             /* Calculate temporary vectorial force */
423             tx               = _mm_mul_ps(fscal,dx00);
424             ty               = _mm_mul_ps(fscal,dy00);
425             tz               = _mm_mul_ps(fscal,dz00);
426
427             /* Update vectorial force */
428             fix0             = _mm_add_ps(fix0,tx);
429             fiy0             = _mm_add_ps(fiy0,ty);
430             fiz0             = _mm_add_ps(fiz0,tz);
431
432             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
433             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
434             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
435             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
436             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
437             
438             /* Inner loop uses 72 flops */
439         }
440
441         /* End of innermost loop */
442
443         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
444                                               f+i_coord_offset,fshift+i_shift_offset);
445
446         ggid                        = gid[iidx];
447         /* Update potential energies */
448         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
449         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
450         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
451         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
452         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
453
454         /* Increment number of inner iterations */
455         inneriter                  += j_index_end - j_index_start;
456
457         /* Outer loop uses 10 flops */
458     }
459
460     /* Increment number of outer iterations */
461     outeriter        += nri;
462
463     /* Update outer/inner flops */
464
465     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*72);
466 }
467 /*
468  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse2_single
469  * Electrostatics interaction: GeneralizedBorn
470  * VdW interaction:            LennardJones
471  * Geometry:                   Particle-Particle
472  * Calculate force/pot:        Force
473  */
474 void
475 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse2_single
476                     (t_nblist                    * gmx_restrict       nlist,
477                      rvec                        * gmx_restrict          xx,
478                      rvec                        * gmx_restrict          ff,
479                      struct t_forcerec           * gmx_restrict          fr,
480                      t_mdatoms                   * gmx_restrict     mdatoms,
481                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
482                      t_nrnb                      * gmx_restrict        nrnb)
483 {
484     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
485      * just 0 for non-waters.
486      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
487      * jnr indices corresponding to data put in the four positions in the SIMD register.
488      */
489     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
490     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
491     int              jnrA,jnrB,jnrC,jnrD;
492     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
493     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
494     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
495     real             rcutoff_scalar;
496     real             *shiftvec,*fshift,*x,*f;
497     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
498     real             scratch[4*DIM];
499     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
500     int              vdwioffset0;
501     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
502     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
503     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
504     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
505     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
506     real             *charge;
507     __m128i          gbitab;
508     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
509     __m128           minushalf = _mm_set1_ps(-0.5);
510     real             *invsqrta,*dvda,*gbtab;
511     int              nvdwtype;
512     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
513     int              *vdwtype;
514     real             *vdwparam;
515     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
516     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
517     __m128i          vfitab;
518     __m128i          ifour       = _mm_set1_epi32(4);
519     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
520     real             *vftab;
521     __m128           dummy_mask,cutoff_mask;
522     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
523     __m128           one     = _mm_set1_ps(1.0);
524     __m128           two     = _mm_set1_ps(2.0);
525     x                = xx[0];
526     f                = ff[0];
527
528     nri              = nlist->nri;
529     iinr             = nlist->iinr;
530     jindex           = nlist->jindex;
531     jjnr             = nlist->jjnr;
532     shiftidx         = nlist->shift;
533     gid              = nlist->gid;
534     shiftvec         = fr->shift_vec[0];
535     fshift           = fr->fshift[0];
536     facel            = _mm_set1_ps(fr->ic->epsfac);
537     charge           = mdatoms->chargeA;
538     nvdwtype         = fr->ntype;
539     vdwparam         = fr->nbfp;
540     vdwtype          = mdatoms->typeA;
541
542     invsqrta         = fr->invsqrta;
543     dvda             = fr->dvda;
544     gbtabscale       = _mm_set1_ps(fr->gbtab->scale);
545     gbtab            = fr->gbtab->data;
546     gbinvepsdiff     = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
547
548     /* Avoid stupid compiler warnings */
549     jnrA = jnrB = jnrC = jnrD = 0;
550     j_coord_offsetA = 0;
551     j_coord_offsetB = 0;
552     j_coord_offsetC = 0;
553     j_coord_offsetD = 0;
554
555     outeriter        = 0;
556     inneriter        = 0;
557
558     for(iidx=0;iidx<4*DIM;iidx++)
559     {
560         scratch[iidx] = 0.0;
561     }  
562
563     /* Start outer loop over neighborlists */
564     for(iidx=0; iidx<nri; iidx++)
565     {
566         /* Load shift vector for this list */
567         i_shift_offset   = DIM*shiftidx[iidx];
568
569         /* Load limits for loop over neighbors */
570         j_index_start    = jindex[iidx];
571         j_index_end      = jindex[iidx+1];
572
573         /* Get outer coordinate index */
574         inr              = iinr[iidx];
575         i_coord_offset   = DIM*inr;
576
577         /* Load i particle coords and add shift vector */
578         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
579         
580         fix0             = _mm_setzero_ps();
581         fiy0             = _mm_setzero_ps();
582         fiz0             = _mm_setzero_ps();
583
584         /* Load parameters for i particles */
585         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
586         isai0            = _mm_load1_ps(invsqrta+inr+0);
587         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
588
589         dvdasum          = _mm_setzero_ps();
590
591         /* Start inner kernel loop */
592         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
593         {
594
595             /* Get j neighbor index, and coordinate index */
596             jnrA             = jjnr[jidx];
597             jnrB             = jjnr[jidx+1];
598             jnrC             = jjnr[jidx+2];
599             jnrD             = jjnr[jidx+3];
600             j_coord_offsetA  = DIM*jnrA;
601             j_coord_offsetB  = DIM*jnrB;
602             j_coord_offsetC  = DIM*jnrC;
603             j_coord_offsetD  = DIM*jnrD;
604
605             /* load j atom coordinates */
606             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
607                                               x+j_coord_offsetC,x+j_coord_offsetD,
608                                               &jx0,&jy0,&jz0);
609
610             /* Calculate displacement vector */
611             dx00             = _mm_sub_ps(ix0,jx0);
612             dy00             = _mm_sub_ps(iy0,jy0);
613             dz00             = _mm_sub_ps(iz0,jz0);
614
615             /* Calculate squared distance and things based on it */
616             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
617
618             rinv00           = sse2_invsqrt_f(rsq00);
619
620             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
621
622             /* Load parameters for j particles */
623             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
624                                                               charge+jnrC+0,charge+jnrD+0);
625             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
626                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
627             vdwjidx0A        = 2*vdwtype[jnrA+0];
628             vdwjidx0B        = 2*vdwtype[jnrB+0];
629             vdwjidx0C        = 2*vdwtype[jnrC+0];
630             vdwjidx0D        = 2*vdwtype[jnrD+0];
631
632             /**************************
633              * CALCULATE INTERACTIONS *
634              **************************/
635
636             r00              = _mm_mul_ps(rsq00,rinv00);
637
638             /* Compute parameters for interactions between i and j atoms */
639             qq00             = _mm_mul_ps(iq0,jq0);
640             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
641                                          vdwparam+vdwioffset0+vdwjidx0B,
642                                          vdwparam+vdwioffset0+vdwjidx0C,
643                                          vdwparam+vdwioffset0+vdwjidx0D,
644                                          &c6_00,&c12_00);
645
646             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
647             isaprod          = _mm_mul_ps(isai0,isaj0);
648             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
649             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
650
651             /* Calculate generalized born table index - this is a separate table from the normal one,
652              * but we use the same procedure by multiplying r with scale and truncating to integer.
653              */
654             rt               = _mm_mul_ps(r00,gbscale);
655             gbitab           = _mm_cvttps_epi32(rt);
656             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
657             gbitab           = _mm_slli_epi32(gbitab,2);
658
659             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
660             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
661             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
662             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
663             _MM_TRANSPOSE4_PS(Y,F,G,H);
664             Heps             = _mm_mul_ps(gbeps,H);
665             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
666             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
667             vgb              = _mm_mul_ps(gbqqfactor,VV);
668
669             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
670             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
671             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
672             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
673             fjptrA           = dvda+jnrA;
674             fjptrB           = dvda+jnrB;
675             fjptrC           = dvda+jnrC;
676             fjptrD           = dvda+jnrD;
677             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
678             velec            = _mm_mul_ps(qq00,rinv00);
679             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
680
681             /* LENNARD-JONES DISPERSION/REPULSION */
682
683             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
684             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
685
686             fscal            = _mm_add_ps(felec,fvdw);
687
688             /* Calculate temporary vectorial force */
689             tx               = _mm_mul_ps(fscal,dx00);
690             ty               = _mm_mul_ps(fscal,dy00);
691             tz               = _mm_mul_ps(fscal,dz00);
692
693             /* Update vectorial force */
694             fix0             = _mm_add_ps(fix0,tx);
695             fiy0             = _mm_add_ps(fiy0,ty);
696             fiz0             = _mm_add_ps(fiz0,tz);
697
698             fjptrA             = f+j_coord_offsetA;
699             fjptrB             = f+j_coord_offsetB;
700             fjptrC             = f+j_coord_offsetC;
701             fjptrD             = f+j_coord_offsetD;
702             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
703             
704             /* Inner loop uses 64 flops */
705         }
706
707         if(jidx<j_index_end)
708         {
709
710             /* Get j neighbor index, and coordinate index */
711             jnrlistA         = jjnr[jidx];
712             jnrlistB         = jjnr[jidx+1];
713             jnrlistC         = jjnr[jidx+2];
714             jnrlistD         = jjnr[jidx+3];
715             /* Sign of each element will be negative for non-real atoms.
716              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
717              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
718              */
719             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
720             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
721             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
722             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
723             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
724             j_coord_offsetA  = DIM*jnrA;
725             j_coord_offsetB  = DIM*jnrB;
726             j_coord_offsetC  = DIM*jnrC;
727             j_coord_offsetD  = DIM*jnrD;
728
729             /* load j atom coordinates */
730             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
731                                               x+j_coord_offsetC,x+j_coord_offsetD,
732                                               &jx0,&jy0,&jz0);
733
734             /* Calculate displacement vector */
735             dx00             = _mm_sub_ps(ix0,jx0);
736             dy00             = _mm_sub_ps(iy0,jy0);
737             dz00             = _mm_sub_ps(iz0,jz0);
738
739             /* Calculate squared distance and things based on it */
740             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
741
742             rinv00           = sse2_invsqrt_f(rsq00);
743
744             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
745
746             /* Load parameters for j particles */
747             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
748                                                               charge+jnrC+0,charge+jnrD+0);
749             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
750                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
751             vdwjidx0A        = 2*vdwtype[jnrA+0];
752             vdwjidx0B        = 2*vdwtype[jnrB+0];
753             vdwjidx0C        = 2*vdwtype[jnrC+0];
754             vdwjidx0D        = 2*vdwtype[jnrD+0];
755
756             /**************************
757              * CALCULATE INTERACTIONS *
758              **************************/
759
760             r00              = _mm_mul_ps(rsq00,rinv00);
761             r00              = _mm_andnot_ps(dummy_mask,r00);
762
763             /* Compute parameters for interactions between i and j atoms */
764             qq00             = _mm_mul_ps(iq0,jq0);
765             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
766                                          vdwparam+vdwioffset0+vdwjidx0B,
767                                          vdwparam+vdwioffset0+vdwjidx0C,
768                                          vdwparam+vdwioffset0+vdwjidx0D,
769                                          &c6_00,&c12_00);
770
771             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
772             isaprod          = _mm_mul_ps(isai0,isaj0);
773             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
774             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
775
776             /* Calculate generalized born table index - this is a separate table from the normal one,
777              * but we use the same procedure by multiplying r with scale and truncating to integer.
778              */
779             rt               = _mm_mul_ps(r00,gbscale);
780             gbitab           = _mm_cvttps_epi32(rt);
781             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
782             gbitab           = _mm_slli_epi32(gbitab,2);
783
784             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
785             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
786             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
787             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
788             _MM_TRANSPOSE4_PS(Y,F,G,H);
789             Heps             = _mm_mul_ps(gbeps,H);
790             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
791             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
792             vgb              = _mm_mul_ps(gbqqfactor,VV);
793
794             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
795             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
796             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
797             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
798             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
799             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
800             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
801             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
802             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
803             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
804             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
805             velec            = _mm_mul_ps(qq00,rinv00);
806             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
807
808             /* LENNARD-JONES DISPERSION/REPULSION */
809
810             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
811             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
812
813             fscal            = _mm_add_ps(felec,fvdw);
814
815             fscal            = _mm_andnot_ps(dummy_mask,fscal);
816
817             /* Calculate temporary vectorial force */
818             tx               = _mm_mul_ps(fscal,dx00);
819             ty               = _mm_mul_ps(fscal,dy00);
820             tz               = _mm_mul_ps(fscal,dz00);
821
822             /* Update vectorial force */
823             fix0             = _mm_add_ps(fix0,tx);
824             fiy0             = _mm_add_ps(fiy0,ty);
825             fiz0             = _mm_add_ps(fiz0,tz);
826
827             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
828             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
829             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
830             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
831             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
832             
833             /* Inner loop uses 65 flops */
834         }
835
836         /* End of innermost loop */
837
838         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
839                                               f+i_coord_offset,fshift+i_shift_offset);
840
841         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
842         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
843
844         /* Increment number of inner iterations */
845         inneriter                  += j_index_end - j_index_start;
846
847         /* Outer loop uses 7 flops */
848     }
849
850     /* Increment number of outer iterations */
851     outeriter        += nri;
852
853     /* Update outer/inner flops */
854
855     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*65);
856 }