2dd1b08824cc028fb43216351f2d6d15d2785973
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_single
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
91     __m128           minushalf = _mm_set1_ps(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     int              nvdwtype;
94     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
98     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128           dummy_mask,cutoff_mask;
104     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
105     __m128           one     = _mm_set1_ps(1.0);
106     __m128           two     = _mm_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_ps(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_vdw->data;
125     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
126
127     invsqrta         = fr->invsqrta;
128     dvda             = fr->dvda;
129     gbtabscale       = _mm_set1_ps(fr->gbtab->scale);
130     gbtab            = fr->gbtab->data;
131     gbinvepsdiff     = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }  
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
164         
165         fix0             = _mm_setzero_ps();
166         fiy0             = _mm_setzero_ps();
167         fiz0             = _mm_setzero_ps();
168
169         /* Load parameters for i particles */
170         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
171         isai0            = _mm_load1_ps(invsqrta+inr+0);
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_ps();
176         vgbsum           = _mm_setzero_ps();
177         vvdwsum          = _mm_setzero_ps();
178         dvdasum          = _mm_setzero_ps();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               x+j_coord_offsetC,x+j_coord_offsetD,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_ps(ix0,jx0);
201             dy00             = _mm_sub_ps(iy0,jy0);
202             dz00             = _mm_sub_ps(iz0,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
206
207             rinv00           = sse2_invsqrt_f(rsq00);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
211                                                               charge+jnrC+0,charge+jnrD+0);
212             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
213                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216             vdwjidx0C        = 2*vdwtype[jnrC+0];
217             vdwjidx0D        = 2*vdwtype[jnrD+0];
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             r00              = _mm_mul_ps(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq00             = _mm_mul_ps(iq0,jq0);
227             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
228                                          vdwparam+vdwioffset0+vdwjidx0B,
229                                          vdwparam+vdwioffset0+vdwjidx0C,
230                                          vdwparam+vdwioffset0+vdwjidx0D,
231                                          &c6_00,&c12_00);
232
233             /* Calculate table index by multiplying r with table scale and truncate to integer */
234             rt               = _mm_mul_ps(r00,vftabscale);
235             vfitab           = _mm_cvttps_epi32(rt);
236             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
237             vfitab           = _mm_slli_epi32(vfitab,3);
238
239             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
240             isaprod          = _mm_mul_ps(isai0,isaj0);
241             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
242             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
243
244             /* Calculate generalized born table index - this is a separate table from the normal one,
245              * but we use the same procedure by multiplying r with scale and truncating to integer.
246              */
247             rt               = _mm_mul_ps(r00,gbscale);
248             gbitab           = _mm_cvttps_epi32(rt);
249             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
250             gbitab           = _mm_slli_epi32(gbitab,2);
251
252             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
253             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
254             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
255             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
256             _MM_TRANSPOSE4_PS(Y,F,G,H);
257             Heps             = _mm_mul_ps(gbeps,H);
258             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
259             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
260             vgb              = _mm_mul_ps(gbqqfactor,VV);
261
262             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
263             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
264             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
265             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
266             fjptrA           = dvda+jnrA;
267             fjptrB           = dvda+jnrB;
268             fjptrC           = dvda+jnrC;
269             fjptrD           = dvda+jnrD;
270             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
271             velec            = _mm_mul_ps(qq00,rinv00);
272             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
273
274             /* CUBIC SPLINE TABLE DISPERSION */
275             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
276             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
277             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
278             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
279             _MM_TRANSPOSE4_PS(Y,F,G,H);
280             Heps             = _mm_mul_ps(vfeps,H);
281             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
282             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
283             vvdw6            = _mm_mul_ps(c6_00,VV);
284             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
285             fvdw6            = _mm_mul_ps(c6_00,FF);
286
287             /* CUBIC SPLINE TABLE REPULSION */
288             vfitab           = _mm_add_epi32(vfitab,ifour);
289             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
290             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
291             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
292             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
293             _MM_TRANSPOSE4_PS(Y,F,G,H);
294             Heps             = _mm_mul_ps(vfeps,H);
295             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
296             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
297             vvdw12           = _mm_mul_ps(c12_00,VV);
298             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
299             fvdw12           = _mm_mul_ps(c12_00,FF);
300             vvdw             = _mm_add_ps(vvdw12,vvdw6);
301             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velecsum         = _mm_add_ps(velecsum,velec);
305             vgbsum           = _mm_add_ps(vgbsum,vgb);
306             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
307
308             fscal            = _mm_add_ps(felec,fvdw);
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm_mul_ps(fscal,dx00);
312             ty               = _mm_mul_ps(fscal,dy00);
313             tz               = _mm_mul_ps(fscal,dz00);
314
315             /* Update vectorial force */
316             fix0             = _mm_add_ps(fix0,tx);
317             fiy0             = _mm_add_ps(fiy0,ty);
318             fiz0             = _mm_add_ps(fiz0,tz);
319
320             fjptrA             = f+j_coord_offsetA;
321             fjptrB             = f+j_coord_offsetB;
322             fjptrC             = f+j_coord_offsetC;
323             fjptrD             = f+j_coord_offsetD;
324             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
325             
326             /* Inner loop uses 92 flops */
327         }
328
329         if(jidx<j_index_end)
330         {
331
332             /* Get j neighbor index, and coordinate index */
333             jnrlistA         = jjnr[jidx];
334             jnrlistB         = jjnr[jidx+1];
335             jnrlistC         = jjnr[jidx+2];
336             jnrlistD         = jjnr[jidx+3];
337             /* Sign of each element will be negative for non-real atoms.
338              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
339              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
340              */
341             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
342             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
343             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
344             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
345             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
346             j_coord_offsetA  = DIM*jnrA;
347             j_coord_offsetB  = DIM*jnrB;
348             j_coord_offsetC  = DIM*jnrC;
349             j_coord_offsetD  = DIM*jnrD;
350
351             /* load j atom coordinates */
352             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
353                                               x+j_coord_offsetC,x+j_coord_offsetD,
354                                               &jx0,&jy0,&jz0);
355
356             /* Calculate displacement vector */
357             dx00             = _mm_sub_ps(ix0,jx0);
358             dy00             = _mm_sub_ps(iy0,jy0);
359             dz00             = _mm_sub_ps(iz0,jz0);
360
361             /* Calculate squared distance and things based on it */
362             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
363
364             rinv00           = sse2_invsqrt_f(rsq00);
365
366             /* Load parameters for j particles */
367             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
368                                                               charge+jnrC+0,charge+jnrD+0);
369             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
370                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
371             vdwjidx0A        = 2*vdwtype[jnrA+0];
372             vdwjidx0B        = 2*vdwtype[jnrB+0];
373             vdwjidx0C        = 2*vdwtype[jnrC+0];
374             vdwjidx0D        = 2*vdwtype[jnrD+0];
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             r00              = _mm_mul_ps(rsq00,rinv00);
381             r00              = _mm_andnot_ps(dummy_mask,r00);
382
383             /* Compute parameters for interactions between i and j atoms */
384             qq00             = _mm_mul_ps(iq0,jq0);
385             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
386                                          vdwparam+vdwioffset0+vdwjidx0B,
387                                          vdwparam+vdwioffset0+vdwjidx0C,
388                                          vdwparam+vdwioffset0+vdwjidx0D,
389                                          &c6_00,&c12_00);
390
391             /* Calculate table index by multiplying r with table scale and truncate to integer */
392             rt               = _mm_mul_ps(r00,vftabscale);
393             vfitab           = _mm_cvttps_epi32(rt);
394             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
395             vfitab           = _mm_slli_epi32(vfitab,3);
396
397             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
398             isaprod          = _mm_mul_ps(isai0,isaj0);
399             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
400             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
401
402             /* Calculate generalized born table index - this is a separate table from the normal one,
403              * but we use the same procedure by multiplying r with scale and truncating to integer.
404              */
405             rt               = _mm_mul_ps(r00,gbscale);
406             gbitab           = _mm_cvttps_epi32(rt);
407             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
408             gbitab           = _mm_slli_epi32(gbitab,2);
409
410             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
411             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
412             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
413             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
414             _MM_TRANSPOSE4_PS(Y,F,G,H);
415             Heps             = _mm_mul_ps(gbeps,H);
416             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
417             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
418             vgb              = _mm_mul_ps(gbqqfactor,VV);
419
420             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
421             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
422             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
423             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
424             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
425             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
426             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
427             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
428             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
429             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
430             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
431             velec            = _mm_mul_ps(qq00,rinv00);
432             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
433
434             /* CUBIC SPLINE TABLE DISPERSION */
435             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
436             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
437             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
438             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
439             _MM_TRANSPOSE4_PS(Y,F,G,H);
440             Heps             = _mm_mul_ps(vfeps,H);
441             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
442             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
443             vvdw6            = _mm_mul_ps(c6_00,VV);
444             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
445             fvdw6            = _mm_mul_ps(c6_00,FF);
446
447             /* CUBIC SPLINE TABLE REPULSION */
448             vfitab           = _mm_add_epi32(vfitab,ifour);
449             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
450             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
451             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
452             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
453             _MM_TRANSPOSE4_PS(Y,F,G,H);
454             Heps             = _mm_mul_ps(vfeps,H);
455             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
456             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
457             vvdw12           = _mm_mul_ps(c12_00,VV);
458             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
459             fvdw12           = _mm_mul_ps(c12_00,FF);
460             vvdw             = _mm_add_ps(vvdw12,vvdw6);
461             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
462
463             /* Update potential sum for this i atom from the interaction with this j atom. */
464             velec            = _mm_andnot_ps(dummy_mask,velec);
465             velecsum         = _mm_add_ps(velecsum,velec);
466             vgb              = _mm_andnot_ps(dummy_mask,vgb);
467             vgbsum           = _mm_add_ps(vgbsum,vgb);
468             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
469             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
470
471             fscal            = _mm_add_ps(felec,fvdw);
472
473             fscal            = _mm_andnot_ps(dummy_mask,fscal);
474
475             /* Calculate temporary vectorial force */
476             tx               = _mm_mul_ps(fscal,dx00);
477             ty               = _mm_mul_ps(fscal,dy00);
478             tz               = _mm_mul_ps(fscal,dz00);
479
480             /* Update vectorial force */
481             fix0             = _mm_add_ps(fix0,tx);
482             fiy0             = _mm_add_ps(fiy0,ty);
483             fiz0             = _mm_add_ps(fiz0,tz);
484
485             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
486             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
487             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
488             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
489             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
490             
491             /* Inner loop uses 93 flops */
492         }
493
494         /* End of innermost loop */
495
496         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
497                                               f+i_coord_offset,fshift+i_shift_offset);
498
499         ggid                        = gid[iidx];
500         /* Update potential energies */
501         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
502         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
503         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
504         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
505         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
506
507         /* Increment number of inner iterations */
508         inneriter                  += j_index_end - j_index_start;
509
510         /* Outer loop uses 10 flops */
511     }
512
513     /* Increment number of outer iterations */
514     outeriter        += nri;
515
516     /* Update outer/inner flops */
517
518     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*93);
519 }
520 /*
521  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_single
522  * Electrostatics interaction: GeneralizedBorn
523  * VdW interaction:            CubicSplineTable
524  * Geometry:                   Particle-Particle
525  * Calculate force/pot:        Force
526  */
527 void
528 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_single
529                     (t_nblist                    * gmx_restrict       nlist,
530                      rvec                        * gmx_restrict          xx,
531                      rvec                        * gmx_restrict          ff,
532                      struct t_forcerec           * gmx_restrict          fr,
533                      t_mdatoms                   * gmx_restrict     mdatoms,
534                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
535                      t_nrnb                      * gmx_restrict        nrnb)
536 {
537     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
538      * just 0 for non-waters.
539      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
540      * jnr indices corresponding to data put in the four positions in the SIMD register.
541      */
542     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
543     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
544     int              jnrA,jnrB,jnrC,jnrD;
545     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
546     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
547     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
548     real             rcutoff_scalar;
549     real             *shiftvec,*fshift,*x,*f;
550     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
551     real             scratch[4*DIM];
552     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
553     int              vdwioffset0;
554     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
555     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
556     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
557     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
558     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
559     real             *charge;
560     __m128i          gbitab;
561     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
562     __m128           minushalf = _mm_set1_ps(-0.5);
563     real             *invsqrta,*dvda,*gbtab;
564     int              nvdwtype;
565     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
566     int              *vdwtype;
567     real             *vdwparam;
568     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
569     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
570     __m128i          vfitab;
571     __m128i          ifour       = _mm_set1_epi32(4);
572     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
573     real             *vftab;
574     __m128           dummy_mask,cutoff_mask;
575     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
576     __m128           one     = _mm_set1_ps(1.0);
577     __m128           two     = _mm_set1_ps(2.0);
578     x                = xx[0];
579     f                = ff[0];
580
581     nri              = nlist->nri;
582     iinr             = nlist->iinr;
583     jindex           = nlist->jindex;
584     jjnr             = nlist->jjnr;
585     shiftidx         = nlist->shift;
586     gid              = nlist->gid;
587     shiftvec         = fr->shift_vec[0];
588     fshift           = fr->fshift[0];
589     facel            = _mm_set1_ps(fr->ic->epsfac);
590     charge           = mdatoms->chargeA;
591     nvdwtype         = fr->ntype;
592     vdwparam         = fr->nbfp;
593     vdwtype          = mdatoms->typeA;
594
595     vftab            = kernel_data->table_vdw->data;
596     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
597
598     invsqrta         = fr->invsqrta;
599     dvda             = fr->dvda;
600     gbtabscale       = _mm_set1_ps(fr->gbtab->scale);
601     gbtab            = fr->gbtab->data;
602     gbinvepsdiff     = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
603
604     /* Avoid stupid compiler warnings */
605     jnrA = jnrB = jnrC = jnrD = 0;
606     j_coord_offsetA = 0;
607     j_coord_offsetB = 0;
608     j_coord_offsetC = 0;
609     j_coord_offsetD = 0;
610
611     outeriter        = 0;
612     inneriter        = 0;
613
614     for(iidx=0;iidx<4*DIM;iidx++)
615     {
616         scratch[iidx] = 0.0;
617     }  
618
619     /* Start outer loop over neighborlists */
620     for(iidx=0; iidx<nri; iidx++)
621     {
622         /* Load shift vector for this list */
623         i_shift_offset   = DIM*shiftidx[iidx];
624
625         /* Load limits for loop over neighbors */
626         j_index_start    = jindex[iidx];
627         j_index_end      = jindex[iidx+1];
628
629         /* Get outer coordinate index */
630         inr              = iinr[iidx];
631         i_coord_offset   = DIM*inr;
632
633         /* Load i particle coords and add shift vector */
634         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
635         
636         fix0             = _mm_setzero_ps();
637         fiy0             = _mm_setzero_ps();
638         fiz0             = _mm_setzero_ps();
639
640         /* Load parameters for i particles */
641         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
642         isai0            = _mm_load1_ps(invsqrta+inr+0);
643         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
644
645         dvdasum          = _mm_setzero_ps();
646
647         /* Start inner kernel loop */
648         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
649         {
650
651             /* Get j neighbor index, and coordinate index */
652             jnrA             = jjnr[jidx];
653             jnrB             = jjnr[jidx+1];
654             jnrC             = jjnr[jidx+2];
655             jnrD             = jjnr[jidx+3];
656             j_coord_offsetA  = DIM*jnrA;
657             j_coord_offsetB  = DIM*jnrB;
658             j_coord_offsetC  = DIM*jnrC;
659             j_coord_offsetD  = DIM*jnrD;
660
661             /* load j atom coordinates */
662             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
663                                               x+j_coord_offsetC,x+j_coord_offsetD,
664                                               &jx0,&jy0,&jz0);
665
666             /* Calculate displacement vector */
667             dx00             = _mm_sub_ps(ix0,jx0);
668             dy00             = _mm_sub_ps(iy0,jy0);
669             dz00             = _mm_sub_ps(iz0,jz0);
670
671             /* Calculate squared distance and things based on it */
672             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
673
674             rinv00           = sse2_invsqrt_f(rsq00);
675
676             /* Load parameters for j particles */
677             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
678                                                               charge+jnrC+0,charge+jnrD+0);
679             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
680                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
681             vdwjidx0A        = 2*vdwtype[jnrA+0];
682             vdwjidx0B        = 2*vdwtype[jnrB+0];
683             vdwjidx0C        = 2*vdwtype[jnrC+0];
684             vdwjidx0D        = 2*vdwtype[jnrD+0];
685
686             /**************************
687              * CALCULATE INTERACTIONS *
688              **************************/
689
690             r00              = _mm_mul_ps(rsq00,rinv00);
691
692             /* Compute parameters for interactions between i and j atoms */
693             qq00             = _mm_mul_ps(iq0,jq0);
694             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
695                                          vdwparam+vdwioffset0+vdwjidx0B,
696                                          vdwparam+vdwioffset0+vdwjidx0C,
697                                          vdwparam+vdwioffset0+vdwjidx0D,
698                                          &c6_00,&c12_00);
699
700             /* Calculate table index by multiplying r with table scale and truncate to integer */
701             rt               = _mm_mul_ps(r00,vftabscale);
702             vfitab           = _mm_cvttps_epi32(rt);
703             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
704             vfitab           = _mm_slli_epi32(vfitab,3);
705
706             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
707             isaprod          = _mm_mul_ps(isai0,isaj0);
708             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
709             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
710
711             /* Calculate generalized born table index - this is a separate table from the normal one,
712              * but we use the same procedure by multiplying r with scale and truncating to integer.
713              */
714             rt               = _mm_mul_ps(r00,gbscale);
715             gbitab           = _mm_cvttps_epi32(rt);
716             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
717             gbitab           = _mm_slli_epi32(gbitab,2);
718
719             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
720             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
721             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
722             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
723             _MM_TRANSPOSE4_PS(Y,F,G,H);
724             Heps             = _mm_mul_ps(gbeps,H);
725             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
726             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
727             vgb              = _mm_mul_ps(gbqqfactor,VV);
728
729             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
730             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
731             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
732             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
733             fjptrA           = dvda+jnrA;
734             fjptrB           = dvda+jnrB;
735             fjptrC           = dvda+jnrC;
736             fjptrD           = dvda+jnrD;
737             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
738             velec            = _mm_mul_ps(qq00,rinv00);
739             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
740
741             /* CUBIC SPLINE TABLE DISPERSION */
742             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
743             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
744             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
745             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
746             _MM_TRANSPOSE4_PS(Y,F,G,H);
747             Heps             = _mm_mul_ps(vfeps,H);
748             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
749             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
750             fvdw6            = _mm_mul_ps(c6_00,FF);
751
752             /* CUBIC SPLINE TABLE REPULSION */
753             vfitab           = _mm_add_epi32(vfitab,ifour);
754             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
755             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
756             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
757             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
758             _MM_TRANSPOSE4_PS(Y,F,G,H);
759             Heps             = _mm_mul_ps(vfeps,H);
760             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
761             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
762             fvdw12           = _mm_mul_ps(c12_00,FF);
763             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
764
765             fscal            = _mm_add_ps(felec,fvdw);
766
767             /* Calculate temporary vectorial force */
768             tx               = _mm_mul_ps(fscal,dx00);
769             ty               = _mm_mul_ps(fscal,dy00);
770             tz               = _mm_mul_ps(fscal,dz00);
771
772             /* Update vectorial force */
773             fix0             = _mm_add_ps(fix0,tx);
774             fiy0             = _mm_add_ps(fiy0,ty);
775             fiz0             = _mm_add_ps(fiz0,tz);
776
777             fjptrA             = f+j_coord_offsetA;
778             fjptrB             = f+j_coord_offsetB;
779             fjptrC             = f+j_coord_offsetC;
780             fjptrD             = f+j_coord_offsetD;
781             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
782             
783             /* Inner loop uses 82 flops */
784         }
785
786         if(jidx<j_index_end)
787         {
788
789             /* Get j neighbor index, and coordinate index */
790             jnrlistA         = jjnr[jidx];
791             jnrlistB         = jjnr[jidx+1];
792             jnrlistC         = jjnr[jidx+2];
793             jnrlistD         = jjnr[jidx+3];
794             /* Sign of each element will be negative for non-real atoms.
795              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
796              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
797              */
798             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
799             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
800             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
801             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
802             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
803             j_coord_offsetA  = DIM*jnrA;
804             j_coord_offsetB  = DIM*jnrB;
805             j_coord_offsetC  = DIM*jnrC;
806             j_coord_offsetD  = DIM*jnrD;
807
808             /* load j atom coordinates */
809             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
810                                               x+j_coord_offsetC,x+j_coord_offsetD,
811                                               &jx0,&jy0,&jz0);
812
813             /* Calculate displacement vector */
814             dx00             = _mm_sub_ps(ix0,jx0);
815             dy00             = _mm_sub_ps(iy0,jy0);
816             dz00             = _mm_sub_ps(iz0,jz0);
817
818             /* Calculate squared distance and things based on it */
819             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
820
821             rinv00           = sse2_invsqrt_f(rsq00);
822
823             /* Load parameters for j particles */
824             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
825                                                               charge+jnrC+0,charge+jnrD+0);
826             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
827                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
828             vdwjidx0A        = 2*vdwtype[jnrA+0];
829             vdwjidx0B        = 2*vdwtype[jnrB+0];
830             vdwjidx0C        = 2*vdwtype[jnrC+0];
831             vdwjidx0D        = 2*vdwtype[jnrD+0];
832
833             /**************************
834              * CALCULATE INTERACTIONS *
835              **************************/
836
837             r00              = _mm_mul_ps(rsq00,rinv00);
838             r00              = _mm_andnot_ps(dummy_mask,r00);
839
840             /* Compute parameters for interactions between i and j atoms */
841             qq00             = _mm_mul_ps(iq0,jq0);
842             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
843                                          vdwparam+vdwioffset0+vdwjidx0B,
844                                          vdwparam+vdwioffset0+vdwjidx0C,
845                                          vdwparam+vdwioffset0+vdwjidx0D,
846                                          &c6_00,&c12_00);
847
848             /* Calculate table index by multiplying r with table scale and truncate to integer */
849             rt               = _mm_mul_ps(r00,vftabscale);
850             vfitab           = _mm_cvttps_epi32(rt);
851             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
852             vfitab           = _mm_slli_epi32(vfitab,3);
853
854             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
855             isaprod          = _mm_mul_ps(isai0,isaj0);
856             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
857             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
858
859             /* Calculate generalized born table index - this is a separate table from the normal one,
860              * but we use the same procedure by multiplying r with scale and truncating to integer.
861              */
862             rt               = _mm_mul_ps(r00,gbscale);
863             gbitab           = _mm_cvttps_epi32(rt);
864             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
865             gbitab           = _mm_slli_epi32(gbitab,2);
866
867             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
868             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
869             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
870             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
871             _MM_TRANSPOSE4_PS(Y,F,G,H);
872             Heps             = _mm_mul_ps(gbeps,H);
873             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
874             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
875             vgb              = _mm_mul_ps(gbqqfactor,VV);
876
877             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
878             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
879             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
880             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
881             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
882             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
883             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
884             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
885             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
886             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
887             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
888             velec            = _mm_mul_ps(qq00,rinv00);
889             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
890
891             /* CUBIC SPLINE TABLE DISPERSION */
892             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
893             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
894             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
895             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
896             _MM_TRANSPOSE4_PS(Y,F,G,H);
897             Heps             = _mm_mul_ps(vfeps,H);
898             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
899             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
900             fvdw6            = _mm_mul_ps(c6_00,FF);
901
902             /* CUBIC SPLINE TABLE REPULSION */
903             vfitab           = _mm_add_epi32(vfitab,ifour);
904             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
905             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
906             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
907             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
908             _MM_TRANSPOSE4_PS(Y,F,G,H);
909             Heps             = _mm_mul_ps(vfeps,H);
910             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
911             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
912             fvdw12           = _mm_mul_ps(c12_00,FF);
913             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
914
915             fscal            = _mm_add_ps(felec,fvdw);
916
917             fscal            = _mm_andnot_ps(dummy_mask,fscal);
918
919             /* Calculate temporary vectorial force */
920             tx               = _mm_mul_ps(fscal,dx00);
921             ty               = _mm_mul_ps(fscal,dy00);
922             tz               = _mm_mul_ps(fscal,dz00);
923
924             /* Update vectorial force */
925             fix0             = _mm_add_ps(fix0,tx);
926             fiy0             = _mm_add_ps(fiy0,ty);
927             fiz0             = _mm_add_ps(fiz0,tz);
928
929             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
930             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
931             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
932             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
933             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
934             
935             /* Inner loop uses 83 flops */
936         }
937
938         /* End of innermost loop */
939
940         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
941                                               f+i_coord_offset,fshift+i_shift_offset);
942
943         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
944         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
945
946         /* Increment number of inner iterations */
947         inneriter                  += j_index_end - j_index_start;
948
949         /* Outer loop uses 7 flops */
950     }
951
952     /* Increment number of outer iterations */
953     outeriter        += nri;
954
955     /* Update outer/inner flops */
956
957     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*83);
958 }